synchronization in complex network topologies ljupco kocarev institute for nonlinear science,...

24
Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Upload: harold-walters

Post on 14-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Synchronization in complex network topologies

Ljupco Kocarev

Institute for Nonlinear Science, University of California, San Diego

Page 2: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego
Page 3: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Outlook

• Chaotic oscillations and types of synchrony observed between chaotic oscillators

• Experimental and theoretical analysis of chaos synchronization; Stability of the synchronization manifold

• Synchronization in networks

Page 4: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Periodic and Chaotic Oscillations

Power Spectrum

Waveform x(t)

Power Spectrum

Waveform x(t)

),(xFx

dt

d

3 , nnx

Chaotic Attractor

)()( 0 tt(t) xxη

,))(( 0

tdt

dxDF )(0 tx

)0(d)(t

id

Lyapunov exponents:

) 0(

) (log

t

1 lim )) ( ( 0

d

t i dt it

x

Page 5: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

• Phase Synchronization.

• Synchronization of switching.

• Others

Types of chaos synchronization

Complete Synchronization Partial Synchronization

• Identical synchronous chaotic oscillations.

• Generalized synchronized chaos.

• Threshold synchronization of chaotic pulses.

0)()(lim

tytxt

0)()(lim

tytxt

time

nT1nT )( 1 nn TFT

nt1n

t2nt

)(tx

)( )( ,)( )( yn

ttyxn

ttx

11,A22 ,A

const 21

)()( yn

txn

t

t

)(tx )(ty

Page 6: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Synchronization of chaos in electrical circuits.

3.0

-3.0

-2.5

-2.0-1.5

-1.0

-0.50.00.5

1.01.5

2.02.5

2.1-2.1 -1.5-1.0-0.5 0.0 0.5 1.0 1.5

PHASE PORTRAIT

)(1 tx

)(3 tx

Unidirectional coupling

N

R

C’C

rL

)f( 1x

)(1 tx)(3 tx

2~)( xtI

N

R

C’C

rL

)f( 1y

)(1 ty)(3 ty

2~)( ytI

)(1 tx

Driving Oscillator Response OscillatorCoupling

CI

)()(1

11 tytxR

IC

C

CR

-2 -1 0 1 2

-0.5

0.0

0.5)(f x

x

Page 7: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Synchronization Manifold

23132313

32123212

112121

])f([])f([

)(

yyyyxxxx

yyyyxxxx

yxgyyxx

The model:

C

L

Rcg

1The coupling parameter:

There exits a 3-dimensional invariant manifold:

33

22

11

yx

yx

yx

Page 8: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Synchronization of chaos: Experiment

1

devic e (1)

0,80

c hannels (0)

5000

buffer size

(10000)

40000.00

sc an rate

(4000 scans/ sec)

5000

# scans to read

at a time (1000)

3.0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0-3.0 -2.0 -1.0 0.0 1.0 2.0

PHASE PORTRAIT

Hanning

window

1.0E+0

1.0E -11

1.0E -9

1.0E -7

1.0E -5

1.0E -3

40000 500 1000 1500 2000 2500 3000 3500

POWER SPECTRUM

2.5

-2.5

-2.0

-1.0

0.0

1.0

2.0

400 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

WAVEFORM X(t)

Hz

mSec

3.0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0-3.0 -2.0 -1.0 0.0 1.0 2.0

PHASE PORTRAIT3.0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0-3.0 -2.0 -1.0 0.0 1.0 2.0

PHASE PORTRAIT

3.0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0-3.0 -2.0 -1.0 0.0 1.0 2.0

PHASE PORTRAIT3.0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0-3.0 -2.0 -1.0 0.0 1.0 2.0

PHASE PORTRAIT

3.0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0-3.0 -2.0 -1.0 0.0 1.0 2.0

PHASE PORTRAIT3.0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0-3.0 -2.0 -1.0 0.0 1.0 2.0

PHASE PORTRAIT

Driving OscillatorDriving Oscillator Response OscillatorResponse Oscillator

UncoupledOscillators

Coupling belowthe threshold of synchronization

Coupling abovethe threshold of synchronization

Page 9: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Stability of the Synchronization Manifold:Identical Synchronization

0)0( , , )()(

),(

GyyxGyFy

,xxFxn

n

yx

)()()( ttt xy

j

iij x

FtDFtt

)(xDGxDF )(,)]0())(([)(

Synchronization Manifold:

Perturbations transversal to the Synchronization Manifold:

Linearized Equations for the transversal perturbations:

Driving System:

Response System:

x

y )(t

)(tx

0

0

Page 10: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Chaos Synchronization Regime

)]0())(([)(

)(

DGxDF

xFx

ttConsider dynamics in the

phase space ),( x

x

x

x

x

The parameter space

p1

p2

Synch

No Synch

No Synchronization Synchronization

A regime of dynamical behavior should have a qualitative feature that is an invariant for this regime.

- Projection of chaotic limiting set Transienttrajectories- Limit cycles

Page 11: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Synchronization of Chaos in Numerical Simulations

)(1 tx

)(3 tx

)(1 tx )(1 tx

)(1 ty )(1 ty

Simulation without noise and parameter

mismatch

Simulation with 0.4% of parameter mismatch

Attractor in the DrivingCircuit )1.0( max

Transversal Lyapunov exponent evaluatedfor the chaotic trajectory x(t) equals 03.0max Coupling: g=1.1

Page 12: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

N

kk ik i ix D x f x

1

) (

i x

ik D

m - dimensional vector

- real matrixm m

N i,..., 1

H g Dik ikH

- real matrixm m

Assumptions:

ik g

- real number

Network with N nodes

Synchronization manifold:

Connectivity matrix:

) (ik g G N N

- real matrix

Nx x x ... 2 1

0 jij g

Page 13: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

k k kH J ) (

k

- eigenvalue of the connectivity matrix

N k,..., 1

Variation equation:

) (ik g G

0 1

) (i ix f x

k kH i J ] ) ( [

}0 ) , ( : ) , {(max

Page 14: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Properties of the master stability function

}0 ) , ( : ) , {(max

• Empty set• Ellipsoid • Half plane

The master stability function for x coupling in the Rossler circuit.

The dashed lines show contours in theunstable region.

The solid lines are contours in the stable region.

Page 15: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

) , ( max versus

Stable region:

) , (2 1 max

) , ( max

0 ...1 2 1 N N2

1

2

N) , (2 1 max

) , ( max 2

Page 16: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

L G

Laplacian matrix

BN

2

A 2

Class-A oscillators

Class-B oscillators

B>1

Page 17: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Consider N nodes (dots); Take every pair (i,j) of nodes and connect them with an edge with probability p

),(, EVG pN

Erdős-Rényi Random Graph(also called the binomial random graph)

Page 18: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Power-law networks

Power-law distribution

=<k>

•Power-law graphs with prescribed degree sequence (configuration model, 1978)•Evolution models (BA model, 1999; Cooper and Frieze model, 2001)•Power-law models with given expected degree sequence (Chung and Lu, 2001)

Page 19: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Hybrid Graphs

Hybrid graph is a union of global graph (consisting of “long edges” providing small distances) and a local graph (consisting of “short edges” representing local connections). The edge set of of the hybrid graph is a disjoint union of the edge set of the global graph G and that of the local graph L.

G: classical random model power-law model

L: grid graph

Page 20: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Theorem 1. Let G(N,p) be a random graph on N vertices. For sufficiently large N, the class-A network G(N,q) almost surely synchronize for arbitrary small coupling. For sufficiently large N, almost every class-B network G(N,p) with B>1 is synchronizable.

Page 21: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Theorem 2. Let M(N, , d, m) be a random power-law graph on N vertices. For sufficiently large N, the class-A network M(N, , d, m) almost surely synchronize for arbitrary small coupling. For sufficiently large N, almost every class-B network M(N, , d, m) is synchronizable only if B

d

mN lim

2

power of the power-law

d expected average degree

m expected maximum degree

Page 22: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

75 . 16592

N

0024 . 0 2

Consider a hybrid graph for which L is a circle with N=128.

Consider class-A oscillators for which A=1 and

10

Consider class-B oscillators for which B=40

pNG number of global edges a)

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

γ2

b)

0

100

200

300

400

500

0.001 0.01 0.1 1

p

γN/γ2

p=0.005 p=0.01

Page 23: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Local networks Oscillators do not synchronize

Hybrid networks

Random networks

Power-law Oscillators may or may not synchronize

Binomial Oscillators synchronize

Power-law Oscillators synchronize

Binomial Oscillators synchronize

Page 24: Synchronization in complex network topologies Ljupco Kocarev Institute for Nonlinear Science, University of California, San Diego

Conclusions

• Two oscillators may have different synchronous behavior

• Synchronization of identical chaotic oscillations are found in the oscillators of various nature (including biological neurons)

• Global edges improve synchronization