synchronisation activities for 4gls supported by eurofel ds3

8
Synchronisation Activities for 4GLS Supported by EUROFEL DS3 G J Hirst CCLRC Central Laser Facility

Upload: hera

Post on 07-Feb-2016

41 views

Category:

Documents


0 download

DESCRIPTION

Synchronisation Activities for 4GLS Supported by EUROFEL DS3 G J Hirst CCLRC Central Laser Facility. IR-FEL. 50 MeV. 4GLS Schematic. 4 MeV dump (~400kW). CW gun (4 MeV). 50 MeV. Beam transport & compression. BC 1. 600 MeV. 3 rd harm. 200 MeV. 550 MeV - Linac 1. 750 MeV. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Synchronisation Activities for 4GLS Supported by EUROFEL DS3

Synchronisation Activities for 4GLS Supported by

EUROFEL DS3G J Hirst

CCLRC Central Laser Facility

Page 2: Synchronisation Activities for 4GLS Supported by EUROFEL DS3

G J HirstCLF

4GLS SchematicCW gun (4 MeV)

600 MeV

750 MeV

4 MeV dump (~400kW)

1 GeV dump (~1 kW)

BC 2XUV-FEL

Spontaneoussource

XUV experiments

Seed laserVisible

XUV-FELgun

BC 13rd harm.

THzsource

Photon diagnostics & filtering

High average currentVUV-FEL

Spontaneous sources and beam optics/compression

High bunch charge

200 MeV

Beam transport & compression

Bending magnet source

550 MeV - Linac 1

Matching &diagnostics

200 MeV

IR-FEL

50 MeV

50 MeV

Page 3: Synchronisation Activities for 4GLS Supported by EUROFEL DS3

G J HirstCLF

4GLS Time Structures

• XUV FEL: ~1 kHz, using high-charge bunches substituted into the low-charge train

• “XUV” spontaneous: From same bunches as XUV FEL

• VUV FEL: ~5 MHz cavity round-trip rate

• Undulators & BMs: Up to the accelerator RF rate(0.7-1.5 GHz - TBD)

• IR FEL: ~5 MHz cavity round-trip rate

• Conventional lasers: Arbitrary

Page 4: Synchronisation Activities for 4GLS Supported by EUROFEL DS3

G J HirstCLF

4GLS SynchronisationUser synchronisation requests (from 53 experiments*):

Conventional VUV FEL Undulatorslasers

IR FEL 1 10 4

VUV FEL 4 7

XUV FEL 2 2 1

Undulators/BMs 2

(It is suspected that conventional laser requirements have been underestimated)*See the 4GLS Science Case at www.4gls.ac.uk/Documents/EPSRC-Dec2001/Science_Case.pdf

Page 5: Synchronisation Activities for 4GLS Supported by EUROFEL DS3

G J HirstCLF

4GLS SynchronisationUser synchronisation requests (from 53 experiments*):

Conventional VUV FEL Undulatorslasers

IR FEL 1 10 4

VUV FEL 4 7

XUV FEL 2 + seeding 2 1

Undulators/BMs 2

(It is suspected that conventional laser requirements have been underestimated)*See the 4GLS Science Case at www.4gls.ac.uk/Documents/EPSRC-Dec2001/Science_Case.pdf

Page 6: Synchronisation Activities for 4GLS Supported by EUROFEL DS3

G J HirstCLF

4GLS/DS3 Programme

• Machine stability: Can a machine like 4GLS be designed and built with enough stability for a distributed RF system to be a good timing reference everywhere ?

• Local sensors:If the machine is not stable enough then local sensors will be needed. Can these be sufficiently accurate and cheap to be fielded in many locations ?

• Complex time structures:Can signal processing systems be developed to allow feedback jitter correction when the pulse time structure is irregular ?

Page 7: Synchronisation Activities for 4GLS Supported by EUROFEL DS3

G J HirstCLF

ERLP TestsERLP is a 35 MeV ERL with 1.3 GHz SCRF and an 81.25 MHz, 6mA photoinjector

Bunch compression to 600 fs is planned

Photoinjector laser locked to RF to <400 fs

Complex time structures will be trialled

Separate kHz/mJ TiS laser for EO measurements

Local pickup sensors will be tested

Page 8: Synchronisation Activities for 4GLS Supported by EUROFEL DS3

G J HirstCLF

4GLS Project Plan

ERLP Electron gun completeAccelerator assembledCommissioning & testing

4GLSConceptual Design ReportTechnical Design ReportBid submittedBid decision

EUROFEL DS3Local timing sensor reportMachine stability reportComplex time structure report

2005 2006 2007Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4