syllabus - iet lucknow · 13. roe 071-roe 074 oe 071-oe 074 oe o74 eoe 071 to eoe 075 open...

262
SYLLABUS ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Upload: others

Post on 12-Mar-2020

11 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

SYLLABUS ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Page 2: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

CODE WISE STRUCTURE OF THE CURRICULUM

YEAR

SYLLABUS SERIES CODE WITH ACADEMIC SESSION

Session

2019-20

Session

2018-19

Session

2017-18

Session

2016-17

Session

2015-16

Session

2014-15

Session

2013-14

Session

2012-13

1st Year *KAS *KAS RAS RAS AS AS AS EAS

2nd Year *KEC REC REC EC EC EC EEC EEC

3rd Year REC REC EC EC EC EEC EEC EEC

4th Year REC EC EC EC EEC EEC EEC EEC

*As per AICTE Course Structure

Year Syllabus

2009-2015 Old Syllabus

2016-2020 Syllabus with Choice Based Credit System

2018- Till Date Choice Based Credit System with AICTE Model Curriculum

Page 3: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

Program Curriculum grouping based on course components as follows-

S. No. Subject Code

(2019-20)

Subject

Code

(2018-19)

Subject Code (2017-

18)

Subject Code

(2016-17)

Subject Code

(2015-16)

Subject Name Total

hours

Cr Course Component

1. KAS103 KAS103 RAS103 RAS103 AS103 Engineering Maths-I 4 4 Basic Sciences

2. KAS101/KAS1

02

KAS101/

KAS102 - - -

Physics/Chemistry-I 4 5.5 Basic Sciences

3. - - RAS101 RAS101 AS101 Engineering Physics-I 4 4 Basic Sciences

4. - - - - AS102/ME102 Engineering Chemistry/Engineering

Mechanics

4 4 Basic Sciences

5. - - RAS151/RAS152 RAS151/RAS152 - Engg. Physics Lab/ Engg. Chemistry Lab

2 1 Basic Sciences

6. - - - - AS152/ME151 Engg. Chemistry Lab/ Engg. Mechanics Lab

2 1 Basic Sciences

7. - - - - AS151/AS154 Engg. Physics Lab/Professional

Communication Lab

2 1 Basic Sciences

8. KAS203 KAS203 RAS203 RAS203 AS203 Engineering Maths-II 4 4 Basic Sciences

9. KAS201/KAS2

02 KAS201/KAS202

- - - Physics/Chemistry-II 4 5.5 Basic Sciences

10. - - RAS201 RAS201 - Engineering Physics-II 4 4 Basic Sciences

11. - - - - AS201 Engineering Physics-II 3 2 Basic Sciences

12. - - RAS202/REC201 RAS202/REC201 Engineering Chemistry/ Basic Electronics

4 4 Basic Sciences

13. - - - - AS202/ME202 Engineering Chemistry/ Engineering Mechanics

4 4 Basic Sciences

14. - - RAS252/RAS251 RAS252/RAS251 - Engg. Chemistry Lab/ Engg. Physics Lab

2 1 Basic Sciences

15. - - ROE030 to 039/

RAS301 OE031 to 038/

AS301 OE030 to 039/

AS301

Science Based Open Elective/Mathematics-III

4 4 Basic Sciences

16. - - RAS401/ROE040 to

049

AS401/OE031 to

038

AS401/OE040 to

049

Mathematics-III/ Science Based Open Elective

4 4 Basic Sciences

17. - - RAS302/ RVE301 - - Environment & Ecology/ Universal Human Values & Professional Ethics

3 3 Basic Sciences

1. KEE101/KCS101

KEE101/KCS101

- - - Electrical Engg./Programming for problem solving

4 5 Engineering Science

2. KCE101/KWS101

KCE101/KWS101

- - - Engineering Graphics & Design/Workshop Practice

4 3 Engineering Science

3. KEE201/KCS20

1

KEE201/

KCS201 - - -

Electrical Engg./Programing for problem solving

4 5 Engineering Science

4. KCE201/KWS201

KCE201/KWS201

- - - Engineering Graphics &

Design/Workshop Practice

4 3 Workshop Practice

Page 4: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

5. - - REE101/RME101 REE101/RME101 -

Basic Electrical Engg/Elements of Mechanical Engg.

4 4 Engineering Science

6. - - - - EE101/CS101

Electrical Engineering/Computer Concept & Programming in C

4 4 Engineering Science

7. - - REC101/RAS102 REC101/RAS102 -

Basic Electronics/ Engineering Chemistry

4 4 Engineering Science

8. - - - - EC101/AS104

Electronic Engineering/Professional Communication

4 4 Engineering Science

9. - - REE151/ RME151

REE151/ RME151

- Basic Electrical Engg Lab/ Elements of Mechanical Engg, Lab

2 1 Engineering Science

10. - - RME152/RCE151 RME152/RCE151 -

Workshop Practice/ Computer Aided Engg. Graphics

2 2 Engineering Science

11. - - - - WS151/CE151

Workshop Practice/ Computer Aided Engg. Graphics

4 2 Engineering Science

12. - - - - EE151/CS151

Basic Electrical Lab/Computer Programming Lab

2 1 Engineering Science

13. - - RME201/REE201 RME201/REE201 -

Elements of Mechanical

Engg./Basic Electrical Engg

4 4 Engineering Science

14. - - - - EE201/CS201

Electrical Engineering/Computer Concept

& Programming in C

4 4 Engineering Science

15. - - RCS201/ RAS 204

RCS201/ RAS 204

- Computer System & Programming in C/ Professional Communication

3 3 Engineering Science

16. - - - - EC201/AS204

Electronics Engineering/Professional Communication

4 4 Engineering Science

17. - - RME251 RME251 -

Elements of Mechanical Engg Lab

2 1 Engineering Science

18. - - REE251 REE251 - Basic Electrical Engg Lab 2 1 Engineering Science

19. - - RCS251/ RAS 254

RCS251/ RAS 254

- Computer Progm. Lab/ Professional Communication Lab

2 1 Engineering Science

20. - - RCE251 RME252 RCE251 RME252 -

Computer Aided Eng. Graphics/ Workshop Practice

2 2 Engineering Science

1. KAS204 KAS204 - - -

Professional English 2 3 Humanities

Page 5: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

2. - - - - ME 101/AS 105

Manufacturing Processes/Environment & Ecology

3 2 Humanities

3.

- - RAS 104/ RCS101 RAS 104/ RCS101

-

Professional

Communication/Computer System & Programming in C

3 3 Humanities

4. - - - - ME201/AS205

Manufacturing Processes/Environment & Ecology

3 2 Humanities

5. - - RAS 154/ RCS151

RAS 154/ RCS151

- Professional Communication Lab/ Computer Progm. Lab

2 1 Humanities

6. RVE301/ RAS302

RVE301/ RAS302 -

- Universal Human Values & Professional Ethics/ Environment & Ecology

3 3 Humanities

7. RAS402/RVE401

- RAS402/RVE401 - - Environment &Ecology/Universal Human Values& Professional Ehics

3 3 Humanities

8. - - HU 401/HU 402 Industrial Sociology/ Industrial Phycology

9. RAS501 RAS501 HU-501 HU-501 HU-501 Engineering & Managerial Economics

3 3 Humanities

10. RAS502/RUC501

RAS502/RUC501

- - - Sociology/Cyber Security 3 3 Humanities

11. RAS602/RUC601

RAS602/RUC601

- - - Sociology/Cyber Security 3 3 Humanities

12. RAS-601 RAS-601 HU-601 HU-601 HU-601 Industrial Management 3 3 Humanities

1. - - EC302 EC302 Switching Theory and Logic

Design

4 4 Program Core

2. KEC 302 Digital System Design 4 4 Program Core

3. REC 301 REC 301 - - Digital Logic Design 3 3 Program Core

4. KEC 301 Electronics Devices 4 4

5. REC 302 REC 302 - - Electronic Devices and Circuits 4 4 Program Core

6. - - EC301 EC301 Fundamental of Electronic Device

4 4 Program Core

7. KEC 403 - - - - Signals & Systems 4 4 Program Core

8. - REC 303 REC 303 EC 303 EC 303 Signals & Systems 3 3 Program Core

9. KEC 303 REE 305 REE 305 EC 304 EC 304 Network Analysis & Synthesis 3 3 Program Core

10. KEC 401 - - - - Communication Engineering 3 3 Program Core

Page 6: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

11. - REC 401 REC 401 - - Microprocessors& Microcontroller

3 3 Program Core

12. KEC 402 - - - - Analog Circuits 4 4 Program Core

13. - REC 402 REC 402 EC 404 EC 404 Electromagnetic Field Theory 4 4 Program Core

14. - REC 403 REC 403 EC 403 EC 403 Electronic Measurement &

Instrumentation

3 3 Program Core

15. - - - EC402 EC402 Electronic Circuits 4 4 Program Core

16. - RCS 406 RCS 406 EC 401 EC 401 Data Structue& Algorithms 3 3 Program Core

17. REC 501 REC 501 EC 501 EC 501 EC 501 Integrated Circuits 4 4 Program Core

18. REC 502 REC 502 EC 502 EC 502 EC 502 Pricnciples of Communications 4 4 Program Core

19. - - EC 503 EC 503 EC 503 Microprocessors 4 4 Program Core

20. - - IC 501 IC 501 IC 501 Control System-I 4 4 Program Core

21. REC 503 REC 503 - - - Digital Signal Processing 3 3 Program Core

22. - - EC 504 EC 504 EC 504 Antenna & Wave Propagation 3 3 Program Core

23. REC 601 REC 601 EC 601 EC 601 EC 601 Microwave Engineering 4 4 Program Core

24. REC 602 REC 602 EC 602 EC 602 EC 602 Digital Communication 4 4 Program Core

25. - - EC 603 EC 603 EC 603 Integrated Circuit Technology 4 4 Program Core

26. RIC603 RIC603 - - - Control system-1 3 3 Program Core

27. - EC 701 EC 701 EC 701 EEC 701 Optical Fiber Communication 4 4 Program Core

28. REC 701 EC 702 EC 702 EC 702 EEC 702 Data Communication Network 4 4 Program Core

29. REC 702 - - - - VLSI Design 3 3 Program Core

30. - EC 703 EC 703 EC 703 EEC 703 VLSI Design 4 4 Program Core

31. - EC 801 EC 801 EC 801 EEC 801 Wireless & Mobile Communication

4 4 Program Core

32. - EC 802 EC 802 EC 802 EEC 802 Electronics Switching 4 4 Program Core

33. KEC 352 - - - - Digital System Design Lab 2 1 Program Core

34. - REC 351 REC 351 - - Digital Logic Design Lab 2 1 Program Core

35. - - - EC352 EC352 Logic Design Lab 3 1 Program Core

36. KEC 351 - - - - Electronic Devices Lab 2 1 Program Core

37. - REC 352 REC 352 - - Electronic Devices & Circuits Lab

2 1 Program Core

38. - - - EC351 EC351 Electronic Devices Lab 3 1 Program Core

Page 7: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

39. KEC 453 REC 353 REC 353 EC 453 EC 453 Signals & Systems Lab 2 1 Program Core

40. KEC 354 - - - - Mini Project or Internship Assessment

2 1 Program Core

41. - REC 354 REC 354 EC 353 EC 353 Electronics Workshop & PCB Design

2 1 Program Core

42. KEC 353 - - EC354 EC354 Network Analysis & Synthesis Lab

2 1 Program Core

43. KEC 451 - - - - Communication Engineering Lab

2 1 Program Core

44. - REC 451 REC 451 - - Microprocessors & Microcontrollers Lab

2 1 Program Core

45. KEC 452 - - - - Analog Circuits Lab 2 1 Program Core

46. - REC 452 REC 452 - - Advance Electronics Lab 2 1 Program Core

47. - REC 453 REC 453 EC 454 EC 454 Electronics Instrumentation & Measurement Lab

2 1 Program Core

48. - RCS 456 RCS 456 EC 451 EC 451 Data Structure & Algorithms Lab

2 1 Program Core

49. - - - EC 452 EC 452 Electronic Circuits Lab 3 1 Program Core

50. REC 551 REC 551 EC 551 EC 551 EC 551 Integrated Circuit Lab 2 1 Program Core

51. - - IC 551 IC 551 IC 551 Control System Lab 2 1 Program Core

52. REC 552 REC 552 EC552 EC552 EC552 Communication Lab-I 2 1 Program Core

53. REC553 REC553 - - - Digital Signal Processing Lab 2 1 Program Core

54. REC554 REC554 - - - CAD of Electronics Lab-I 2 1 Program Core

55. - - EC553 EC553 EC553 Microprocessors Lab 2 1 Program Core

56. REC 651 REC 651 EC 651 EC 651 EC 651 Antenna & Microwave Lab 2 1 Program Core

57. REC 652 REC 652 EC 652 EC 652 EC 652 Communication Lab-II 2 1 Program Core

58. - - EC 653 EC 653 EC 653 CAD of Electronics Lab 2 1 Program Core

59. RIC653 RIC653 - - - Control System Lab-I 2 1 Program Core

60. RIC651 RIC651 - - - Microcontrollers for Embedded

System Lab

2 1 Program Core

61. REC 751 - - - - Optical Communication Lab 2 1 Program Core

62. - EC 751 EC 751 EC 751 EEC 751 Microwave & Fiber Optic Lab 2 1 Program Core

63. REC 752 EC 752 EC 752 EC 752 EEC 752 Electronic Circuit Design Lab 3 2 Program Core

1. REC 051 to

REC055

REC 051

to

- - - Departmental Elective-I 4 4 Program Elective

Page 8: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC055

2. - - EC 011 EC 011 EC 011 Departmental Elective-I 4 4 Program Elective

3. - - EC023 EC023 EEC023 Departmental Elective-II 3 3 Program Elective

4. REC061 to REC065

REC061 to REC065

- - - Departmental Elective-II 4 4 Program Elective

5. - EC021 EC021 EC021 EEC021 Departmental Elective-II 4 4 Program Elective

6. REC 070 to REC 073

- - - - Departmental Elective-III 3 3 Program Elective

7. - EC031 to EC035

EC031 to EC035 EC031 to EC035 EEC 031 to EEC035

Departmental Elective-III 4 4 Program Elective

8. REC 075 to REC 078

- - - - Departmental Elective-IV 4 4 Program Elective

9. REC 080 to REC 083

- - - - Departmental Elective-V 4 4 Program Elective

10. REC 085 to REC 088

- - - - Departmental Elective-VI 3 3 Program Elective

11. KOE 031 to 038/KAS 302

ROE 030 to

039/RAS 301

- - - Science based Open Elective/Mathematics-III

4 4 Open Elective

12. KOE 041 to 048/KAS 402

RAS401/ROE040 to 049

- - - Mathematics III/Science Based Open Elective

4 4 Open Elective

13. ROE 071-ROE 074

OE 071-OE 074

OE 071-OE O74 OE 071-OE O74 EOE 071 to EOE 075

Open Elective-I 4 4 Open Elective

14. ROE 081-ROE 084

OE-081 to OE-084

OE-081 OE-084 OE-081 OE-084 EOE-081 toEOE-084

Open Elective-II 4 4 Open Elective

15. - - EC 654 EC 654 EC 654 Seminar 2 1 Internship/Seminar

16. REC 753 - - - - Industrial Training Viva-Voce 2 2 Internship/Seminar

17. - EC 753 EC 753 EC 753 EEC 753 Industrial Training 2 1 Internship/Seminar

18. REC 754 - - - - Project - I 3 3 Project

19. - EC 754 EC 754 EC 754 EEC 754 Minor Project 2 1 Project

20. REC 851 - - - - GD & Seminar 2 2 GD/Seminar

21. REC 852 - - - - Major Project 12 12 Project

22. - EC 851 EC 851 EC 851 EEC 851 Major Project 12 8 Project

Page 9: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

K SERIES SYLLABUS FOR

1ST YEAR (2018-19)

AND

2ND YEAR(2019-20)

Page 10: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Page 11: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

PHYSICS

Module - 1 Relativistic Mechanics: [8]

Frame of reference, Inertial & non-inertial frames, Galilean transformations, Michelson- Morley

experiment, Postulates of special theory of relativity, Lorentz transformations, Length contraction, Time

dilation, Velocity addition theorem, Variation of mass with velocity, Einstein ‟s mass energy

relation, Relativistic relation between energy and momentum, Massless particle.

Module- 2 Electromagnetic Field Theory: [8]

Continuity equation for current density, Displacement current, Modifying equation for the curl of

magnetic field to satisfy continuity equation, Maxwell‟s equations in vacuum and in non conducting

medium, Energy in an electromagnetic field, Poynting vector and Poynting theorem, Plane

electromagnetic waves in vacuum and their transverse nature. Relation between electric and magnetic fields of an electromagnetic wave, Energy and momentum carried by electromagnetic waves, Resultant

pressure, Skin depth.

Module- 3 Quantum Mechanics: [8]

Black body radiation, Stefan‟s law, Wien‟s law, Rayleigh-Jeans law and Planck‟s law, Wave particle

duality, Matter waves, Time-dependent and time-independent Schrodinger wave equation, Born

interpretation of wave function, Solution to stationary state Schrodinger wave equation for one-Dimensional particle in a box, Compton effect.

Module- 4 Wave Optics: [10]

Coherent sources, Interference in uniform and wedge shaped thin films, Necessity of extended sources,

Newton‟s Rings and its applications. Fraunhoffer diffraction at single slit and at double slit, absent

spectra, Diffraction grating, Spectra with grating, Dispersive power, Resolving power of grating,

Rayleigh‟s criterion of resolution, Resolving power of grating.

Module- 5Fibre Optics & Laser: [10]

Fibre Optics: Introduction to fibre optics, Acceptance angle, Numerical aperture, Normalized frequency,

Classification of fibre, Attenuation and Dispersion in optical fibres.

Laser: Absorption of radiation, Spontaneous and stimulated emission of radiation, Einstein‟s coefficients, Population inversion, Various levels of Laser, Ruby Laser, He-Ne Laser, Laser applications.

Course Outcomes:

1. To solve the classical and wave mechanics problems

2. To develop the understanding of laws of thermodynamics and their application in various processes

3. To formulate and solve the engineering problems on Electromagnetism &

Electromagnetic Field Theory

4. To aware of limits of classical physics & to apply the ideas in solving the problems in their

parent streams

Reference Books:

1. Concepts of Modern Physics - AurthurBeiser (Mc-Graw Hill)

Page 12: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

2. Introduction to Special Theory of Relativity- Robert Resnick (Wiley)

3. Optics - Brijlal& Subramanian (S. Chand )

4. Engineering Physics: Theory and Practical- Katiyar and Pandey (Wiley India)

5. Applied Physics for Engineers- Neeraj Mehta (PHI Learning, New)

6. Engineering Physics-Malik HK and Singh AK (McGrawHill)

Physics Lab

List of Experiments

Any ten experiments (at least four from each group).

Group A

1. To determine the wavelength of sodium light by Newton‟s ring experiment.

2. To determine the wavelength of different spectral lines of mercury light using plane transmission

grating.

3. To determine the specific rotation of cane sugar solution using polarimeter.

4. To determine the focal length of the combination of two lenses separated by a distance and

verify the formula for the focal length of combination of lenses.

5. To measure attenuation in an optical fiber.

6. To determine the wavelength of He-Ne laser light using single slit diffraction.

7. To study the polarization of light using He-Ne laser light.

8. To determine the wavelength of sodium light with the help of Fresnel‟s bi-prism.

9. To determine the coefficient of viscosity of a given liquid.

10. To determine the value of acceleration due to gravity (g) using compound pendulum.

Group B

1. To determine the energy band gap of a given semiconductor material.

2. To study Hall effect and determine Hall coefficient, carrier density and mobility of a given

semiconductor material using Hall effect setup.

3. To determine the variation of magnetic field with the distance along the axis of a current carrying

coil and estimate the radius of the coil.

4. To verify Stefan‟s law by electric method.

5. To determine resistance per unit length and specific resistance of a given resistance using Carey

Foster's Bridge.

6. To study the resonance condition of a series LCR circuit.

7. To determine the electrochemical equivalent (ECE) of copper.

8. To calibrate the given ammeter and voltmeter by potentiometer.

9. To draw hysteresis (B-H curve) of a specimen in the form of a transformer and to determine its

hysteresis loss.

10. To measure high resistance by leakage method.

Reference Books

1. Practical Physics- K. K. Dey & B. N. Dutta (Kalyani Publishers New Delhi)

2. Engineering Physics-Theory and Practical- Katiyar& Pandey (Wiley India)

3. Engineering Physics Practical- S K Gupta ( KrishnaPrakashan Meerut)

Course Outcomes:

1. To determine the wavelength of sodium light by Newton‟s ring experiment

2. To determine the wavelength of sodium light with the help of Fresnel‟s bi-prism

Page 13: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

3. To determine the variation of magnetic field with the distance along the axis of a current carrying

coil and estimate the radius of the coil.

4. To draw hysteresis (B-H curve) of a specimen in the form of a transformer and to determine its

hysteresis loss.

CHEMISTRY

Module-1 [08]

Atomic and Molecular Structure:

Molecular orbital‟s of diatomic molecules. Band theory of solids. Liquid crystal and its applications. Point

defects in solids. Structure and applications of Graphite and Fullerenes. Concepts of Nanomaterials and its

application.

Module-2 [08]

Spectroscopic techniques and Applications:

Elementary idea and simple applications of Rotational, Vibrational, Ultraviolet& Visible and Raman

spectroscopy.

Module-3 [08]

Electrochemistry

Nernst Equation and application, relation of EMF with thermodynamic functions (∆H, ∆F and ∆ S). Lead

storage battery. Corrosion; causes, effects and its prevention.

Phase Rule and its application to water system.

Module-4 [08]

Water Analysis; Hardness of water, Techniques for water softening (Lime-soda, Zeolite, Ion exchange resin

and Reverse osmosis method).

Fuels: classification of fuels, Analysis of coal, Determination of calorific value (Bomb calorimeterand Dulong‟smethos).

Module-5 [08]

Polymer; Basic concepts of polymer-Blend and composites, Conducting and biodegradable polymers.

Preparation and application of some industrially important polymers (Buna-S, Buna-N, Neoprene, Nylon-6,

nylon-6,6 and Terylene). General methods of synthesis of organometallic compounds (Grignard reagent) and

their applications.

Course Outcomes:

1. Use of different analytical instruments.

2. Measure molecular/system properties such as surface tension, viscosity, conductance of

solution, chloride and iron content in water.

3. Measure hardness of water.

4. Estimate the rate constant of reaction.

Page 14: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Reference Books:

1. University Chemistry By B.H. Mahan

2. University Chemistry By C.N.R. Rao

3. Organic Chemistry By I.L. Finar

4. Physical Chemistry By S. Glasstone

5. Engineering Chemistry By S.S. Dara

6. Polymer Chemistry ByFre W., Billmeyer

7. Engineering ChemistryBy Satya Prakash

CHEMISTRY- PRACTICAL

LIST OF EXPERIMENTS

1. Determination of alkalinity in the given water sample.

2. Determination of temporary and permanent hardness in water sample using EDTA.

3. Determination of iron content in the given solution by Mohr‟s method.

4. Determination of viscosity of given liquid.

5. Determination of surface tension of given liquid.

6. Determination of chloride content in water sample.

7. Determination of available chlorine in bleaching powder.

8. Determination of pH by pH-metric titration.

9. Preparation of Phenol-formaldehyde and Urea-formaldehyde resin.

10. Determination of Cell constant and conductance of a solution.

11. Determination of rate constant of hydrolysis of esters.

12. Verification of Beer‟s law.

NOTE: Choice of any 10 experiments from the above. Institute can change any 02 experiments from the

aforesaid experiments.

Course Outcomes:

1. Use of different analytical instruments.

2. Measure molecular/system properties such as surface tension, viscosity, conductance of

solution, chloride and iron content in water.

3. Measure hardness of water.

4. Estimate the rate constant of reaction.

Page 15: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

MATHEMATICS-I

ommon to all B. Tech. Courses except B. Tech. (Biotechnology)&B. Tech. (Agricultural Engineering)

Module 1: Matrices [08]

Types of Matrices: Symmetric, Skew-symmetric and Orthogonal Matrices; Complex Matrices, Inverse and Rank

of matrix using elementary transformations, Rank-Nullity theorem; System of linear equations, Characteristic

equation, Cayley-Hamilton Theorem and its application, Eigen values and eigenvectors; Diagonalisation of a

Matrix,

Module 2: Differential Calculus- I [08]

Introduction to limits, continuity and differentiability, Rolle’s Theorem, Lagrange’s Mean value theorem and

Cauchy mean value theorem, Successive Differentiation (nth order derivatives), Leibnitz theorem and its

application, Envelope, Involutes and Evolutes, Curve tracing: Cartesian and Polar co-ordinates

Module 3: Differential Calculus-II [08]

Partial derivatives, Total derivative, Euler’s Theorem for homogeneous functions, Taylor and Maclaurin’s

theorems for a function of one and two variables, Maxima and Minima of functions of several variables,

Lagrange Method of Multipliers, Jacobians, Approximation of errors.

Module 4: Multivariable Calculus-I [08]

Multiple integration: Double integral, Triple integral, Change of order of integration, Change of variables,

Application: Areas and volumes, Center of mass and center of gravity (Constant and variable densities),

Module 5: Vector Calculus [08]

Vector differentiation: Gradient, Curl and Divergence and their Physical interpretation, Directional derivatives,

Tangent and Normal planes.

Vector Integration: Line integral, Surface integral, Volume integral, Gauss’s Divergence theorem, Green’s

theorem, Stoke’s theorem ( without proof) and their applications.

COURSE OUTCOMES

1. Remember the concept of matrices and apply for solving linear simultaneous equations.

2. Understand the concept of limit, continuity and differentiability and apply in the study of

Rolle,s , Lagrange,s and Cauchy mean value theorem and Leibnitz theorems .

Page 16: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

3. Identify the application of partial differentiation and apply for evaluating maxima, minima,

series and Jacobians.

4. Illustrate the working methods of multiple integral and apply for finding area, volume, centre

of mass and centre of gravity.

5. Remember the concept of vector and apply for directional derivatives, tangent and normal

planes. Also evaluate line, surface and volume integrals.

Text Books:-

1. B. V. Ramana, Higher Engineering Mathematics, Tata Mc Graw-Hill Publishing Company Ltd.,

2008.

2. B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher, 2005.

3. R K. Jain & S R K. Iyenger , Advance Engineering Mathematics, Narosa Publishing House 2002.

Reference Books-

1.E. Kreyszig, Advance Engineering Mathematics, John Wiley & Sons, 2005.

2.Peter V. O’Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning, 2007. 3.Maurice D.

Weir, Joel Hass, Frank R. Giordano, Thomas, Calculus, Eleventh Edition,

Pearson.

4.D. Poole, Linear Algebra : A Modern Introduction, 2nd Edition, Brooks/Cole, 2005. 5.Veerarajan T.,

Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008. 6.Ray Wylie C and Louis C Barret,

Advanced Engineering Mathematics, Tata Mc-Graw-Hill;

Sixth Edition.

7.P. Sivaramakrishna Das and C. Vijayakumari, Engineering Mathematics, 1st Edition, Pearson India Education

Services Pvt. Ltd

8. Advanced Engineering Mathematics. Chandrika Prasad, Reena Garg, 2018.

9. Engineering Mathemathics – I. Reena Garg, 2018.

BASIC ELECTRICAL ENGINEERING

Module - 1: DC Circuits [08]

Electrical circuit elements (R, L and C), Concept of active and passive elements, voltage and current sources,

concept of linearity and linear network, unilateral and bilateral elements, Kirchhoff‟s laws, Loop and nodal

methods of analysis, Star-delta transformation, Superposition theorem, Thevenin theorem, Norton theorem.

Module - 2: Steady- State Analysis of Single Phase AC Circuits [10]

Representation of Sinusoidal waveforms – Average and effective values, Form and peak factors, Concept of

phasors, phasor representation of sinusoidally varying voltage and current.

Analysis of single phase AC Circuits consisting of R, L, C, RL, RC, RLC combinations (Series and Parallel),

Page 17: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Apparent, active & reactive power, Power factor, power factor improvement. Concept of Resonance in series &

parallel circuits, bandwidth and quality factor.

Three phase balanced circuits, voltage and current relations in star and delta connections.

Module - 3 : Transformers [08]

Magnetic materials, BH characteristics, ideal and practical transformer, equivalent circuit, losses in

transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

Module –4 : Electrical machines [08]

DC machines: Principle & Construction, Types, EMF equation of generator and torque equation of motor,

applications of DC motors (simple numerical problems)

Three Phase Induction Motor: Principle & Construction, Types, Slip-torque characteristics, Applications

(Numerical problems related to slip only)

Single Phase Induction motor: Principle of operation and introduction to methods of starting, applications.

Three Phase Synchronous Machines: Principle of operation of alternator and synchronous motor and their

applications.

Module –5 : Electrical Installations [06]

Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables,

Importance of earthing. Types of Batteries, Important characteristics for Batteries.Elementary calculations for

energy consumption and savings, battery backup.

COURSE OUTCOMES

1. Apply the concepts of KVL/KCL and network theorems in solving DC circuits.

2. Analyze the steady state behavior of single phase and three phase AC electrical circuits.

3. Identify the application areas of a single phase two winding transformer as well as an auto

transformer and calculate their efficiency. Also identify the connections of a three phase

transformer.

4. Illustrate the working principles of induction motor, synchronous machine as well as DC

machine and employ them in different area of applications.

5. Describe the components of low voltage electrical installations and perform elementary

calculations for energy consumption.

Spoken Tutorial (MOOCs):

1. AC DC Circuit Analysis using NgSpice, Open Source Software (http://spoken- tutorial.org)

Text Books:

1. Ritu Sahdev, “Basic Electrical Engineering”, Khanna Publishing House.

2. S. Singh, P.V. Prasad, “Electrical Engineering: Concepts and Applications” Cengage.

3. D. P. Kothari and I. J. Nagrath, “Basic Electrical Engineering”, Tata McGraw Hill.

Page 18: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

4. D. C. Kulshreshtha, “Basic Electrical Engineering”, McGraw Hill.

Reference Books:

1. E. Hughes, “Electrical and Electronics Technology”, Pearson, 2010.

2. L. S. Bobrow, “Fundamentals of Electrical Engineering”, Oxford University Press.

3. V. D. Toro, “Electrical Engineering Fundamentals”, Pearson India.

ELECTRICAL ENGINEERING LABORATORY

LIST OF EXPERIMENTS

Note: A minimum of ten experiments from the following should be performed.

1. Verification of Kirchhoff‟s laws

2. Verification of Superposition and Thevenin Theorem.

3. Measurement of power and power factor in a single phase ac series inductive circuit and study improvement of power

factor using capacitor

4. Study of phenomenon of resonance in RLC series circuit and obtain resonant frequency.

5. Connection and measurement of power consumption of a fluorescent lamp (tube light).

6. Measurement of power in 3- phase circuit by two wattmeter method and determination of its power factor for star as well as

delta connected load.

7. Determination of parameters of ac single phase series RLC circuit

8. To observe the B-H loop of a ferromagnetic material in CRO.

9. Determination of (i) Voltage ratio (ii) polarity and (iii) efficiency by load test of a single phase transformer

10. Determination of efficiency of a dc shunt motor by load test

11. To study running and speed reversal of a three phase induction motor and record speed in both directions.

12. Demonstration of cut-out sections of machines: dc machine, three phase induction machine, single- phase induction

machine and synchronous machine.

Page 19: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

COURSE OUTCOMES

1. Conduct experiments illustrating the application of KVL/KCL and network theorems to DC electrical

circuits.

2. Demonstrate the behavior of AC circuits connected to single phase AC supply and measure power in

single phase as well as three phase electrical circuits.

3. Perform experiment illustrating BH curve of magnetic materials.

4. Calculate efficiency of a single phase transformer and DC machine.

5. Perform experiments on speed measurement and reversal of direction of three phase induction motor

and Identify the type of DC and AC machines based on their construction.

Programming for Problem Solving

Module – 1 : (Introduction to Programming) [08]

Introduction to components of a computer system: Memory, processor, I/O Devices, storage, operating system,

Concept of assembler, compiler, interpreter, loader and linker.

Idea of Algorithm: Representation of Algorithm, Flowchart, Pseudo code with examples, From algorithms to

programs, source code.

Programming Basics: Structure of C program, writing and executing the first C program, Syntax and logical errors in

compilation, object and executable code. Components of C language. Standard I/O in C, Fundamental data types,

Variables and memory locations, Storage classes.

Module – 2 : (Arithmetic expressions & Conditional Branching) [08]

Arithmetic expressions and precedence:Operators and expression using numeric and relational operators, mixed

operands, type conversion, logical operators, bit operations, assignment operator, operator precedence and associativity.

Conditional Branching: Applying if and switch statements, nesting if and else, use of break and default with switch.

Module – 3 : (Loops & Functions) [08]

Iteration and loops: use of while, do while and for loops, multiple loop variables, use of break and continue

statements.

Functions: Introduction, types of functions, functions with array, passing parameters to functions, call by value, call by

reference, recursive functions.

Module – 4 : (Arrays & Basic Algorithms) [08]

Arrays: Array notation and representation, manipulating array elements, using multi dimensional arrays. Character

arrays and strings, Structure, union, enumerated data types, Array of structures, Passing arrays to functions.

Basic Algorithms: Searching &Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of

equations, Notion of order of complexity.

Module – 5 :( Pointer& File Handling) [08]

Page 20: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Pointers:Introduction, declaration, applications, Introduction to dynamic memory allocation (malloc, calloc, realloc,

free), Use of pointers in self-referential structures, notion of linked list (no implementation)

File handling:File I/O functions, Standard C preprocessors, defining and calling macros, command-line arguments.

COURSE OUTCOMES

1. To develop simple algorithms for arithmetic and logical problems.

2. To translate the algorithms to programs & execution (in C language).

3. To implement conditional branching, iteration and recursion.

4. To decompose a problem into functions and synthesize a complete program using divide and conquer

approach.

5. To use arrays, pointers and structures to develop algorithms and programs.

Text books:

1. Schum‟s Outline of Programming with C by Byron Gottfried, McGraw-Hill

2. The C programming by Kernighan Brain W. and Ritchie Dennis M., Pearson Education.

3. Computer Basics and C Programming by V.Rajaraman , PHI Learning Pvt. Limited, 2015.

4. Computer Concepts and Programming in C, R.S. Salaria, Khanna Publishing House

5. Computer Concepts and Programming in C, E Balaguruswami, McGraw Hill

6. Computer Science- A Structured Programming Approach Using C, by Behrouz A. Forouzan,

Richard F. Gilberg, Thomson, Third Edition , Cengage Learning - 2007.

7. Let Us C By Yashwant P. Kanetkar.

8. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson

Addison-Wesley, 2006.

9. Programming in C by Kochan Stephen G. Pearson Education – 2015.

10. Computer Concepts and Programming in C by D.S. Yadav and Rajeev Khanna, New AgeInternational

Publication.

11. Computer Concepts and Programming by Anami, Angadi and Manvi, PHI Publication.

12. Computer Concepts and Programming in C by Vikas Gupta, Wiley India Publication

13. Computer Fundamentals and Programming in C. Reema Thareja, Oxford Publication

14. Problem Solving and Programming in C, R.S. Salaria, Khanna Publishing House

Page 21: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Programming for Problem Solving Lab

1. WAP that accepts the marks of 5 subjects and finds the sum and percentage marks obtained by the student.

2. WAP that calculates the Simple Interest and Compound Interest. The Principal, Amount, Rate of Interest and

Time are entered through the keyboard.

3. WAP to calculate the area and circumference of a circle.

4. WAP that accepts the temperature in Centigrade and converts into Fahrenheit using the formula C/5=(F-32)/9.

5. WAP that swaps values of two variables using a third variable.

6. WAP that checks whether the two numbers entered by the user are equal or not.

7. WAP to find the greatest of three numbers.

8. WAP that finds whether a given number is even or odd.

9. WAP that tells whether a given year is a leap year or not.

10. WAP that accepts marks of five subjects and finds percentage and prints grades according to the following criteria:

Between 90-100% ----------------- Print „A‟

80-90% ----------------------------- Print „B‟

60-80% ---------------------------- Print „C‟

Below 60% ------------------------ Print „D‟

11. WAP that takes two operands and one operator from the user and perform the operation and prints the result by using

Switch statement.

12. WAP to print the sum of all numbers up to a given number.

13. WAP to find the factorial of a given number.

14. WAP to print sum of even and odd numbers from 1 to N numbers.

15. WAP to print the Fibonacci series.

16. WAP to check whether the entered number is prime or not.

17. WAP to find the sum of digits of the entered number.

18. WAP to find the reverse of a number.

19. WAP to print Armstrong numbers from 1 to 100.

20. WAP to convert binary number into decimal number and vice versa.

Other Reference: -

1. Use C Open Source Software

referring Spoken Tutorial MOOC

Page 22: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

21. WAP that simply takes elements of the array from the user and finds the sum of these elements.

22. WAP that inputs two arrays and saves sum of corresponding elements of these arrays in a third array and prints them.

23. WAP to find the minimum and maximum element of the array.

24. WAP to search an element in a array using Linear Search.

25. WAP to sort the elements of the array in ascending order using Bubble Sort technique.

26. WAP to add and multiply two matrices of order nxn.

27. WAP that finds the sum of diagonal elements of a mxn matrix.

28. WAP to implement strlen (), strcat (),strcpy () using the concept of Functions.

29. Define a structure data type TRAIN_INFO. The type contain Train No.: integer type Train name: string Departure Time:

aggregate type TIME Arrival Time: aggregate type TIME Start station: string End station: string The structure type Time

contains two integer members: hour and minute. Maintain a train timetable and implement the following operations:

(i) List all the trains (sorted according to train number) that depart from a particular section.

(ii) List all the trains that depart from a particular station at a particular time.

(iii) List all he trains that depart from a particular station within the next one hour of a given time.

(iv) List all the trains between a pair of start station and end station.

30. WAP to swap two elements using the concept of pointers.

31. WAP to compare the contents of two files and determine whether they are same or not.

32. WAP to check whether a given word exists in a file or not. If yes then find the number of times it occurs.

COURSE OUTCOMES

1. To write programs for arithmetic and logical problems.

2. To translate the algorithms to programs & execution (in C language).

3. To write programs for conditional branching, iteration and recursion.

4. To write programs using functions and synthesize a complete program using divide and conquer approach.

5. write programs using arrays, pointers and structures.

Page 23: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Engineering Graphics and Design

Module 1: Introduction to Engineering Drawing, Orthographic Projections [08]

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Scales – Plain and Diagonal

Scales

Principles of Orthographic Projections – Conventions – Projections of Points and Lines inclined to both planes; Projections of

planes inclined Planes – Auxiliary Planes.

Module 2: Projections and Sections of Regular Solids [08]

Sections in lined to both the Planes – Auxiliary Views; Simple annotation, dimensioning and scale. Floor plans the include:

windows, doors and fixtures such as WC, Both, sink, shower, etc.

Prism, Cylinder, Pyramid, Cone – Auxiliary Vies: Development of surfaces of Right Regular Solids – Prism, Pyramid, Cylinder

and Cone.

Module 3: Isometric Projections [08]

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes Simple and

compound Solids; Conversion of Isometric Views to Orthographic Views and Vice- versa, Conversions.

Module 4: Computer Graphics [08]

Listing the computer technologies the impact on graphical communication, Demonstration knowledge of the theory of CAD

software [such as: The Menu System, Tollbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area

(Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line

(where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects: Isometric Views of lines,

Planes, Simple and compound Solids];

Set up of the drawing page and the printer, including scale settings, Setting up of units and drawing limits; ISO and ANSI

standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically;

Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing

circles:

Applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create,

edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to

pater using the print command: orthographic projection techniques; Drawing sectional views of composite right regular geometric

solids and project the true shape of the sectioned surface; Drawing annotation, Computer-aided design (CAD) software modelling

of parts and assemblies. Parametric and non-parametric solid, surface, and wireframe models. Part editing and two- dimensional

documentation of models. Planar projection theory, including sketching of perspective, isometric, Multiview, auxiliary, and

section views. Spatial visualization exercises Dimensioning guidelines, tolerancing techniques; dimensioning and scale multi

views of dwelling:

Module 5: Demonstration of a simple team design project [08]

Page 24: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint

form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component

manufacture; geometric dimensioning and tolerancing; Use of solid-modelling software for creating associative models at the

component and assembly levels; floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc.

Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling;

Introduction to Building Information Modelling (BIM).

Course Outcomes

1: Understanding of the visual aspects of engineering design

2: Understanding of engineering graphics standards and solid modelling 3:

Effective communication through graphics

4: Applying modern engineering tools necessary for engineering practice 5: Appling

computer-aided geometric design

6: Analysis of Isometric views 7:

Creating working drawings

Suggested Text/ Reference Books:

(i) Bhatt N.D., Panchal V.M. & Ingle P.R. (2014), Engineering Drawing, Charotar Publishing House.

(ii) Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education

(iii) Agrawal B. & Agrawal C.M. (2012), Engineering Graphics, TMH Publication

(iv) Engineering Graphics & Design, A.P. Gautam & Pradeep Jain, Khanna Publishing House

(v) Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers.

(vi) (Corresponding set of) CAD Software Theory and User Manuals.

Page 25: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

WORKSHOP PRACTICE

LIST OF EXPERIMENTS

Machine shop:

Study of machine tools in particular Lathe machine

Demonstration of different operations on Lathe machine

Practice of Facing, Plane Turning, step turning, taper turning, knurling and parting.

Study of Quick return mechanism of Shaper.

Fitting shop:

Preparation of T-Shape Work piece as per the given specifications.

Preparation of U-Shape Work piece which contains: Filing, Sawing, Drilling, Grinding.

Practice marking operations.

Carpentry:

Study of Carpentry Tools, Equipment and different joints.

Practice of Cross Half lap joint, Half lap Dovetail joint and Mortise Tenon Joint

Electrical & Electronics

Introduction to House wiring, different types of cables. Types of power supply, types of motors, Starters, distribution of

power supply, types of bulbs, parts of tube light, Electrical wiring symbols.

Soldering and desoldering of Resistor in PCB.

Soldering and desoldering of IC in PCB.

Soldering and desoldering of Capacitor in PCB

Welding:

Instruction of BI standards and reading of welding drawings.

Butt Joint

Lap Joint

TIG Welding

MIG Welding

Casting:

introduction to casting processes

Smithy

Sharpening any arc and edge.

Preparing small arc and edge,

Repair of agricultural implements and power plough, use of power hammer etc.

Page 26: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Plastic Moulding& Glass Cutting

Introduction to Patterns, pattern allowances, ingredients of moulding sand and melting furnaces. Foundry tools and their

purposes

Demo of mould preparation

Practice – Preparation of mould

Glass cutting

COURSE OUTCOMES

1. Study and practice on machine tools and their operations

2. Practice on manufacturing of components using workshop trades including fitting, carpentry, foundry

and welding

3. Identify and apply suitable tools for machining processes including turning, facing, thread cutting and

tapping

4. Welding and soldering operations

5. Apply basic electrical engineering knowledge for house wiring practice

Text Books:

1. Raghuwanshi B.S., Workshop Technology Vol. I & II, Dhanpath Rai & Sons.

2. Kannaiah P. and Narayana K.L., Workshop Manual, 2nd Edn, Scitech publishers.

3. John K.C., Mechanical Workshop Practice. 2nd Edn. PHI 2010.

4. JeyapoovanT.and Pranitha S., Engineering Practices Lab Manual, 3rd Edn. Vikas Pub.2008.

Page 27: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

SEMESTER - II

PHYSICS

Module - 1 Relativistic Mechanics: [8]

Frame of reference, Inertial & non-inertial frames, Galilean transformations, Michelson-Morley experiment, Postulates of

special theory of relativity, Lorentz transformations, Length contraction, Time dilation, Velocity addition theorem, Variation

of mass with velocity, Einstein‟s mass energy relation, Relativistic relation between energy and momentum, Massless

particle.

Module- 2 Electromagnetic Field Theory: [8]

Continuity equation for current density, Displacement current, Modifying equation for the curl of magnetic field to satisfy

continuity equation, Maxwell‟s equations in vacuum and in non-conducting medium, Energy in an electromagnetic field,

Poynting vector and Poynting theorem, Plane electromagnetic waves in vacuum and their transverse nature. Relation between

electric and magnetic fields of an electromagnetic wave, Energy and momentum carried by electromagnetic waves, Resultant

pressure, Skin depth.

Module- 3 Quantum Mechanics: [8]

Black body radiation, Stefan‟s law, Wien‟s law, Rayleigh-Jeans law and Planck‟s law, Wave particle duality, Matter waves,

Time-dependent and time-independent Schrodinger wave equation, Born interpretation of wave function, Solution to stationary

state Schrodinger wave equation for one- Dimensional particle in a box, Compton effect.

Module- 4 Wave Optics: [10]

Coherent sources, Interference in uniform and wedge shaped thin films, Necessity of extended sources, Newton‟s Rings and

its applications. Fraunhoffer diffraction at single slit and at double slit, Absent spectra, Diffraction grating, Spectra with

grating, Dispersive power, Resolving power of grating, Rayleigh‟s criterion of resolution, Resolving power of grating.

Module- 5Fibre Optics & Laser: [10]

Fibre Optics: Introduction to fibre optics, Acceptance angle, Numerical aperture, Normalized frequency, Classification of fibre,

Attenuation and Dispersion in optical fibres.

Laser: Absorption of radiation, Spontaneous and stimulated emission of radiation, Einstein‟s coefficients, Population inversion,

Various levels of Laser, Ruby Laser, He-Ne Laser, Laser applications.

Page 28: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Course Outcomes:

1. To solve the classical and wave mechanics problems

2. To develop the understanding of laws of thermodynamics and their application in various

processes

3. To formulate and solve the engineering problems on Electromagnetism &

Electromagnetic Field Theory

4. To aware of limits of classical physics & to apply the ideas in solving the problems in their parent

streams

Reference Books:

1. Concepts of Modern Physics - AurthurBeiser (Mc-Graw Hill)

2. Introduction to Special Theory of Relativity- Robert Resnick (Wiley)

3. Optics - Brijlal& Subramanian (S. Chand )

4. Engineering Physics: Theory and Practical- Katiyar and Pandey (Wiley India)

5. Applied Physics for Engineers- Neeraj Mehta (PHI Learning, New)

6. Engineering Physics-Malik HK and Singh AK (McGrawHill)

Page 29: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

PHYSICS LAB

List of Experiments (Any ten experiments (at least four from each group).

Group A

11. To determine the wavelength of sodium light by Newton‟s ring experiment.

12. To determine the wavelength of different spectral lines of mercury light using plane transmission grating.

13. To determine the specific rotation of cane sugar solution using polarimeter.

14. To determine the focal length of the combination of two lenses separated by a distance and verify the formula for the focal

length of combination of lenses.

15. To measure attenuation in an optical fiber.

16. To determine the wavelength of He-Ne laser light using single slit diffraction.

17. To study the polarization of light using He-Ne laser light.

18. To determine the wavelength of sodium light with the help of Fresnel‟s bi-prism.

19. To determine the coefficient of viscosity of a given liquid.

20. To determine the value of acceleration due to gravity (g) using compound pendulum.

Group B

11. To determine the energy band gap of a given semiconductor material.

12. To study Hall effect and determine Hall coefficient, carrier density and mobility of a given semiconductor

material using Hall effect setup.

13. To determine the variation of magnetic field with the distance along the axis of a current carrying coil and estimate the

radius of the coil.

14. To verify Stefan‟s law by electric method.

15. To determine resistance per unit length and specific resistance of a given resistance using Carey Foster's Bridge.

16. To study the resonance condition of a series LCR circuit.

17. To determine the electrochemical equivalent (ECE) of copper.

18. To calibrate the given ammeter and voltmeter by potentiometer.

19. To draw hysteresis (B-H curve) of a specimen in the form of a transformer and to determine its hysteresis loss.

20. To measure high resistance by leakage method.

Course Outcomes:

1. To determine the wavelength of sodium light by Newton‟s ring experiment

2. To determine the wavelength of sodium light with the help of Fresnel‟s bi-prism

3. To determine the variation of magnetic field with the distance along the axis of a current carrying

coil and estimate the radius of the coil.

4. To draw hysteresis (B-H curve) of a specimen in the form of a transformer and to determine its

hysteresis loss.

Reference Books

1. Practical Physics- K. K. Dey & B. N. Dutta (Kalyani Publishers New Delhi)

2. Engineering Physics-Theory and Practical- Katiyar& Pandey (Wiley India)

3. Engineering Physics Practical- S K Gupta ( KrishnaPrakashan Meerut)

Page 30: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

CHEMISTRY

Module-1 [08]

Atomic and Molecular Structure:

Molecular orbital‟s of diatomic molecules. Band theory of solids. Liquid crystal and its applications. Point

defects in solids. Structure and applications of Graphite and Fullerenes. Concepts of Nanomaterials and its

application.

Module-2 [08]

Spectroscopic techniques and Applications:

Elementary idea and simple applications of Rotational, Vibrational, Ultraviolet& Visible and Raman

spectroscopy.

Module-3 [08]

Electrochemistry

Nernst Equation and application, relation of EMF with thermodynamic functions (∆H, ∆F and ∆ S). Lead

storage battery.

Corrosion; causes, effects and its prevention.

Phase Rule and its application to water system.

Module-4 [08]

Water Analysis; Hardness of water, Techniques for water softening (Lime-soda, Zeolite, Ion exchange resin

and Reverse osmosis method).

Fuels: classification of fuels, Analysis of coal, Determination of calorific value (Bomb calorimeterand

Dulong‟smethos).

Module-5 [08]

Polymer; Basic concepts of polymer-Blend and composites, Conducting and biodegradable polymers.

Preparation and application of some industrially important polymers (Buna-S, Buna-N, Neoprene, Nylon-6,

nylon-6,6 and Terylene). General methods of synthesis of organometallic compounds (Grignard reagent) and

their applications.

Course Outcomes:

1. Get an understanding of the theoretical principles understanding molecular structure, bonding and properties.

2. Know the fundamental concepts of determination of structure with various techniques.

3. Know the fundamental concepts of chemistry applicable in industrial processes.

Reference Books:

1. University Chemistry By B.H. Mahan

2. University Chemistry By C.N.R. Rao

3. Organic Chemistry By I.L. Finar

4. Physical Chemistry By S. Glasstone

5. Engineering Chemistry By S.S. Dara

7. Polymer Chemistry ByFre W., Billmeyer

8. Engineering Chemistry By Satya Prakash

Page 31: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

CHEMISTRY- PRACTICAL

LIST OF EXPERIMENTS

1. Determination of alkalinity in the given water sample.

2. Determination of temporary and permanent hardness in water sample using EDTA.

3. Determination of iron content in the given solution by Mohr‟s method.

4. Determination of viscosity of given liquid.

5. Determination of surface tension of given liquid.

6. Determination of chloride content in water sample.

7. Determination of available chlorine in bleaching powder.

8. Determination of pH by pH-metric titration.

9. Preparation of Phenol-formaldehyde and Urea-formaldehyde resin.

10. Determination of Cell constant and conductance of a solution.

11. Determination of rate constant of hydrolysis of esters.

12. Verification of Beer‟s law.

NOTE: Choice of any 10 experiments from the above. Institute can change any 02 experiments from the

aforesaid experiments.

Course Outcomes:

1. Use of different analytical instruments.

2. Measure molecular/system properties such as surface tension, viscosity,

conductance of solution, chloride and iron content in water.

3. Measure hardness of water.

4. Estimate the rate constant of reaction.

Page 32: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

MATHEMATICS-II

(Common to all B. Tech. Courses except B. Tech., Biotechnology and Agricultural Engineering)

Module 1: Ordinary Differential Equation of Higher Order [10]

Linear differential equation of nth order with constant coefficients, Simultaneous linear differential equations,

Second order linear differential equations with variable coefficients, Solution by changing independent variable,

Reduction of order, Normal form, Method of variation of parameters, Cauchy-Euler equation, Series solutions

(Frobenius Method).

Module 2: Multivariable Calculus-II [08]

Improper integrals, Beta & Gama function and their properties, Dirichlet’s integral and its applications,

Application of definite integrals to evaluate surface areas and volume of revolutions.

Module 3: Sequences and Series [08]

Definition of Sequence and series with examples, Convergence of sequence and series, Tests for convergence of

series, (Ratio test, D’ Alembert’s test, Raabe’s test). Fourier series, Half range Fourier sine and cosine series.

Module 4: Complex Variable – Differentiation [08]

Limit, Continuity and differentiability, Functions of complex variable, Analytic functions, Cauchy- Riemann

equations (Cartesian and Polar form), Harmonic function, Method to find Analytic functions, Conformal

mapping, Mobius transformation and their properties

Module 5: Complex Variable –Integration [08]

Complex integrals, Contour integrals, Cauchy- Goursat theorem, Cauchy integral formula, Taylor’s series,

Laurent’s series, Liouvilles’s theorem, Singularities, Classification of Singularities, zeros of analytic functions,

Residues, Methods of finding residues, Cauchy Residue theorem, Evaluation of real integrals of the

type and

.

COURSE OUTCOMES

1. Understand the concept of differentiation and apply for solving differential equations.

2. Remember the concept of definite integral and apply for evaluating surface areas and volumes.

3. Understand the concept of convergence of sequence and series. Also evaluate Fourier series

4. Illustrate the working methods of complex functions and apply for finding analytic functions.

5. Apply the complex functions for finding Taylor’s series, Laurent’s series and evaluation of definite

integrals.

Page 33: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Text Books:-

1. B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill Publishing Company Ltd.,

2008.

2. B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher, 2005.

3. R. K. Jain & S. R. K. Iyenger , Advance Engineering Mathematics , Narosa Publishing -

House, 2002.

Reference Books:-

1. E. Kreyszig, Advance Engineering Mathematics, John Wiley & Sons, 2005.

2. Peter V. O’Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning,

2007.

3. Maurice D. Weir, Joel Hass, Frank R.Giordano, Thomas, Calculus, Eleventh Edition,

Pearson.

4. G.B Thomas, R L Finney, Calculus and Analytical Geometry, Ninth Edition Pearson,

2002.

5. James Ward Brown and Ruel V Churchill, Fourier Series and Boundary Value Problems, 8th

Edition-Tata McGraw-Hill

6. D. Poole , Linear Algebra : A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

7. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.

8. Charles E Roberts Jr, Ordinary Diffrential Equations, Application, Model and Computing,

CRC Press T&F Group.

9. Ray Wylie C and Louis C Barret, Advanced Engineering Mathematics, 6th Edition, Tata

McGraw-Hill.

10. James Ward Brown and Ruel V Churchill, Complex Variable and Applications, 8th Edition,

Tata McGraw-Hill.

11. P. Sivaramakrishna Das and C. Vijayakumari, Engineering Mathematics, 1st Edition,

Pearson India Education Services Pvt. Ltd.

12. Advanced Engineering Mathematics By Chandrika Prasad, Reena Garg Khanna Publishing

House, Delhi

Page 34: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

BASIC ELECTRICAL ENGINEERING

Module - 1: DC Circuits [08]

Electrical circuit elements (R, L and C), Concept of active and passive elements, voltage and current sources,

concept of linearity and linear network, unilateral and bilateral elements, Kirchhoff‟s laws, Loop and nodal

methods of analysis, Star-delta transformation, Superposition theorem, Thevenin theorem, Norton theorem.

Module - 2: Steady- State Analysis of Single Phase AC Circuits [10]

Representation of Sinusoidal waveforms – Average and effective values, Form and peak factors, Concept of

phasors, phasor representation of sinusoidally varying voltage and current.

Analysis of single phase AC Circuits consisting of R, L, C, RL, RC, RLC combinations (Series and Parallel),

Apparent, active & reactive power, Power factor, power factor improvement. Concept of Resonance in series &

parallel circuits, bandwidth and quality factor.

Three phase balanced circuits, voltage and current relations in star and delta connections.

Module - 3 : Transformers [08]

Magnetic materials, BH characteristics, ideal and practical transformer, equivalent circuit, losses in

transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

Module –4 : Electrical machines [08]

DC machines: Principle & Construction, Types, EMF equation of generator and torque equation of motor,

applications of DC motors (simple numerical problems)

Three Phase Induction Motor: Principle & Construction, Types, Slip-torque characteristics, Applications

(Numerical problems related to slip only)

Single Phase Induction motor: Principle of operation and introduction to methods of starting, applications.

Three Phase Synchronous Machines: Principle of operation of alternator and synchronous motor and their

applications.

Module –5 : Electrical Installations [06]

Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables,

Importance of earthing. Types of Batteries, Important characteristics for Batteries.Elementary calculations for

energy consumption and savings, battery backup.

Page 35: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

COURSE OUTCOMES

1. Apply the concepts of KVL/KCL and network theorems in solving DC circuits.

2. Analyze the steady state behavior of single phase and three phase AC electrical circuits.

3. Identify the application areas of a single phase two winding transformer as well as an auto

transformer and calculate their efficiency. Also identify the connections of a three phase

transformer.

4. Illustrate the working principles of induction motor, synchronous machine as well as DC

machine and employ them in different area of applications.

5. Describe the components of low voltage electrical installations and perform elementary

calculations for energy consumption.

Spoken Tutorial (MOOCs):

1. AC DC Circuit Analysis using NgSpice, Open Source Software (http://spoken- tutorial.org)

Text Books:

1. Ritu Sahdev, “Basic Electrical Engineering”, Khanna Publishing House.

2. S. Singh, P.V. Prasad, “Electrical Engineering: Concepts and Applications” Cengage.

3. D. P. Kothari and I. J. Nagrath, “Basic Electrical Engineering”, Tata McGraw Hill.

4. D. C. Kulshreshtha, “Basic Electrical Engineering”, McGraw Hill.

Reference Books:

1. E. Hughes, “Electrical and Electronics Technology”, Pearson, 2010.

2. L. S. Bobrow, “Fundamentals of Electrical Engineering”, Oxford University Press.

3. V. D. Toro, “Electrical Engineering Fundamentals”, Pearson India.

Page 36: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

ELECTRICAL ENGINEERING LABORATORY

LIST OF EXPERIMENTS

Note: A minimum of ten experiments from the following should be performed.

1. Verification of Kirchhoff‟s laws

2. Verification of Superposition and Thevenin Theorem.

3. Measurement of power and power factor in a single phase ac series inductive circuit and study improvement of power

factor using capacitor

4. Study of phenomenon of resonance in RLC series circuit and obtain resonant frequency.

5. Connection and measurement of power consumption of a fluorescent lamp (tube light).

6. Measurement of power in 3- phase circuit by two wattmeter method and determination of its power factor for star as well as

delta connected load.

7. Determination of parameters of ac single phase series RLC circuit

8. To observe the B-H loop of a ferromagnetic material in CRO.

9. Determination of (i) Voltage ratio (ii) polarity and (iii) efficiency by load test of a single phase transformer

10. Determination of efficiency of a dc shunt motor by load test

11. To study running and speed reversal of a three phase induction motor and record speed in both directions.

12. Demonstration of cut-out sections of machines: dc machine, three phase induction machine, single- phase induction

machine and synchronous machine.

COURSE OUTCOMES

1. Conduct experiments illustrating the application of KVL/KCL and network theorems to DC electrical

circuits.

2. Demonstrate the behavior of AC circuits connected to single phase AC supply and measure power in

single phase as well as three phase electrical circuits.

3. Perform experiment illustrating BH curve of magnetic materials.

4. Calculate efficiency of a single phase transformer and DC machine.

5. Perform experiments on speed measurement and reversal of direction of three phase induction motor and

Identify the type of DC and AC machines based on their construction.

Page 37: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Programming for Problem Solving

Module – 1 : (Introduction to Programming) [08]

Introduction to components of a computer system: Memory, processor, I/O Devices, storage, operating system,

Concept of assembler, compiler, interpreter, loader and linker.

Idea of Algorithm: Representation of Algorithm, Flowchart, Pseudo code with examples, From algorithms to

programs, source code.

Programming Basics: Structure of C program, writing and executing the first C program, Syntax and logical errors in

compilation, object and executable code. Components of C language. Standard I/O in C, Fundamental data types,

Variables and memory locations, Storage classes.

Module – 2 : (Arithmetic expressions & Conditional Branching) [08]

Arithmetic expressions and precedence:Operators and expression using numeric and relational operators, mixed

operands, type conversion, logical operators, bit operations, assignment operator, operator precedence and associativity.

Conditional Branching: Applying if and switch statements, nesting if and else, use of break and default with switch.

Module – 3 : (Loops & Functions) [08]

Iteration and loops: use of while, do while and for loops, multiple loop variables, use of break and continue

statements.

Functions: Introduction, types of functions, functions with array, passing parameters to functions, call by value, call by

reference, recursive functions.

Module – 4 : (Arrays & Basic Algorithms) [08]

Arrays: Array notation and representation, manipulating array elements, using multi-dimensional arrays. Character

arrays and strings, Structure, union, enumerated data types, Array of structures, passing arrays to functions.

Basic Algorithms: Searching &Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of

equations, Notion of order of complexity.

Module – 5 :( Pointer& File Handling) [08]

Pointers:Introduction, declaration, applications, Introduction to dynamic memory allocation (malloc, calloc, realloc,

free), Use of pointers in self-referential structures, notion of linked list (no implementation)

Page 38: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

File handling:File I/O functions, Standard C preprocessors, defining and calling macros, command-line arguments.

COURSE OUTCOMES

1. To develop simple algorithms for arithmetic and logical problems.

2. To translate the algorithms to programs & execution (in C language).

3. To implement conditional branching, iteration and recursion.

4. To decompose a problem into functions and synthesize a complete program using divide and conquer

approach.

5. To use arrays, pointers and structures to develop algorithms and programs.

Text books:

1. Schum‟s Outline of Programming with C by Byron Gottfried, McGraw-Hill

2. The C programming by Kernighan Brain W. and Ritchie Dennis M., Pearson Education.

3. Computer Basics and C Programming by V.Rajaraman , PHI Learning Pvt. Limited, 2015.

4. Computer Concepts and Programming in C, R.S. Salaria, Khanna Publishing House

5. Computer Concepts and Programming in C, E Balaguruswami, McGraw Hill

6. Computer Science- A Structured Programming Approach Using C, by Behrouz A. Forouzan,

Richard F. Gilberg, Thomson, Third Edition , Cengage Learning - 2007.

7. Let Us C By Yashwant P. Kanetkar.

8. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson Addison-

Wesley, 2006.

9. Programming in C by Kochan Stephen G. Pearson Education – 2015.

10. Computer Concepts and Programming in C by D.S. Yadav and Rajeev Khanna, New AgeInternational Publication.

11. Computer Concepts and Programming by Anami, Angadi and Manvi, PHI Publication.

12. Computer Concepts and Programming in C by Vikas Gupta, Wiley India Publication

13. Computer Fundamentals and Programming in C. Reema Thareja, Oxford Publication

14. Problem Solving and Programming in C, R.S. Salaria, Khanna Publishing House

Page 39: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Programming for Problem Solving Lab

1. WAP that accepts the marks of 5 subjects and finds the sum and percentage marks obtained by the student.

2. WAP that calculates the Simple Interest and Compound Interest. The Principal, Amount, Rate of Interest and

Time are entered through the keyboard.

3. WAP to calculate the area and circumference of a circle.

4. WAP that accepts the temperature in Centigrade and converts into Fahrenheit using the formula C/5=(F-32)/9.

5. WAP that swaps values of two variables using a third variable.

6. WAP that checks whether the two numbers entered by the user are equal or not.

7. WAP to find the greatest of three numbers.

8. WAP that finds whether a given number is even or odd.

9. WAP that tells whether a given year is a leap year or not.

10. WAP that accepts marks of five subjects and finds percentage and prints grades according to the following criteria:

Between 90-100% ----------------- Print „A‟

80-90% ----------------------------- Print „B‟

60-80% ---------------------------- Print „C‟

Below 60% ------------------------ Print „D‟

11. WAP that takes two operands and one operator from the user and perform the operation and prints the result by using

Switch statement.

12. WAP to print the sum of all numbers up to a given number.

13. WAP to find the factorial of a given number.

14. WAP to print sum of even and odd numbers from 1 to N numbers.

15. WAP to print the Fibonacci series.

16. WAP to check whether the entered number is prime or not.

17. WAP to find the sum of digits of the entered number.

18. WAP to find the reverse of a number.

19. WAP to print Armstrong numbers from 1 to 100.

20. WAP to convert binary number into decimal number and vice versa.

21. WAP that simply takes elements of the array from the user and finds the sum of these elements.

22. WAP that inputs two arrays and saves sum of corresponding elements of these arrays in a third array and prints them.

Other Reference: -

1. Use C Open Source Software referring Spoken

Tutorial MOOC

Page 40: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

23. WAP to find the minimum and maximum element of the array.

24. WAP to search an element in a array using Linear Search.

25. WAP to sort the elements of the array in ascending order using Bubble Sort technique.

26. WAP to add and multiply two matrices of order nxn.

27. WAP that finds the sum of diagonal elements of a mxn matrix.

28. WAP to implement strlen (), strcat (),strcpy () using the concept of Functions.

29. Define a structure data type TRAIN_INFO. The type contain Train No.: integer type Train name: string Departure Time:

aggregate type TIME Arrival Time: aggregate type TIME Start station: string End station: string The structure type Time

contains two integer members: hour and minute. Maintain a train timetable and implement the following operations:

(i) List all the trains (sorted according to train number) that depart from a particular section.

(ii) List all the trains that depart from a particular station at a particular time.

(iii) List all he trains that depart from a particular station within the next one hour of a given time.

(iv) List all the trains between a pair of start station and end station.

30. WAP to swap two elements using the concept of pointers.

31. WAP to compare the contents of two files and determine whether they are same or not.

32. WAP to check whether a given word exists in a file or not. If yes then find the number of times it occurs.

COURSE OUTCOMES

1. To write programs for arithmetic and logical problems.

2. To translate the algorithms to programs & execution (in C language).

3. To write programs for conditional branching, iteration and recursion.

4. To write programs using functions and synthesize a complete program using divide and conquer approach.

5. write programs using arrays, pointers and structures.

Page 41: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Engineering Graphics and Design

Module 1: Introduction to Engineering Drawing, Orthographic Projections [08]

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Scales – Plain and Diagonal

Scales

Principles of Orthographic Projections – Conventions – Projections of Points and Lines inclined to both planes; Projections of

planes inclined Planes – Auxiliary Planes.

Module 2: Projections and Sections of Regular Solids [08]

Sections in lined to both the Planes – Auxiliary Views; Simple annotation, dimensioning and scale. Floor plans the include:

windows, doors and fixtures such as WC, Both, sink, shower, etc.

Prism, Cylinder, Pyramid, Cone – Auxiliary Vies: Development of surfaces of Right Regular Solids – Prism, Pyramid, Cylinder

and Cone.

Module 3: Isometric Projections [08]

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes Simple and

compound Solids; Conversion of Isometric Views to Orthographic Views and Vice- versa, Conversions.

Module 4: Computer Graphics [08]

Listing the computer technologies the impact on graphical communication, Demonstration knowledge of the theory of CAD

software [such as: The Menu System, Tollbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area

(Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line

(where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects: Isometric Views of lines,

Planes, Simple and compound Solids];

Set up of the drawing page and the printer, including scale settings, Setting up of units and drawing limits; ISO and ANSI

standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically;

Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing

circles:

Applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create,

edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to

pater using the print command: orthographic projection techniques; Drawing sectional views of composite right regular geometric

solids and project the true shape of the sectioned surface; Drawing annotation, Computer-aided design (CAD) software modelling

of parts and assemblies. Parametric and non-parametric solid, surface, and wireframe models. Part editing and two- dimensional

documentation of models. Planar projection theory, including sketching of perspective, isometric, Multi view, auxiliary, and

section views. Spatial visualization exercises Dimensioning guidelines, tolerancing techniques; dimensioning and scale multi

views of dwelling:

Module 5: Demonstration of a simple team design project [08]

Page 42: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint

form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component

manufacture; geometric dimensioning and tolerancing; Use of solid-modelling software for creating associative models at the

component and assembly levels; floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc.

Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling;

Introduction to Building Information Modelling (BIM).

Course Outcomes

1: Understanding of the visual aspects of engineering design

2: Understanding of engineering graphics standards and solid modelling 3:

Effective communication through graphics

4: Applying modern engineering tools necessary for engineering practice 5: Appling

computer-aided geometric design

6: Analysis of Isometric views 7:

Creating working drawings

Suggested Text/ Reference Books:

(i) Bhatt N.D., Panchal V.M. & Ingle P.R. (2014), Engineering Drawing, Charotar Publishing House.

(ii) Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education

(iii) Agrawal B. & Agrawal C.M. (2012), Engineering Graphics, TMH Publication

(iv) Engineering Graphics & Design, A.P. Gautam & Pradeep Jain Khanna Publishing House

(v) Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers.

(vi) (Corresponding set of) CAD Software Theory and User Manuals.

Page 43: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

WORKSHOP PRACTICE

LIST OF EXPERIMENTS

Machine shop:

Study of machine tools in particular Lathe machine

Demonstration of different operations on Lathe machine

Practice of Facing, Plane Turning, step turning, taper turning, knurling and parting.

Study of Quick return mechanism of Shaper.

Fitting shop:

Preparation of T-Shape Work piece as per the given specifications.

Preparation of U-Shape Work piece which contains: Filing, Sawing, Drilling, Grinding.

Practice marking operations.

Carpentry:

Study of Carpentry Tools, Equipment and different joints.

Practice of Cross Half lap joint, Half lap Dovetail joint and Mortise Tenon Joint

Electrical & Electronics

Introduction to House wiring, different types of cables. Types of power supply, types of motors, Starters, distribution of

power supply, types of bulbs, parts of tube light, Electrical wiring symbols.

Soldering and desoldering of Resistor in PCB.

Soldering and desoldering of IC in PCB.

Soldering and desoldering of Capacitor in PCB

Welding:

Instruction of BI standards and reading of welding drawings.

Butt Joint

Lap Joint

TIG Welding

MIG Welding

Casting:

introduction to casting processes

Smithy

Sharpening any arc and edge.

Preparing small arc and edge,

Repair of agricultural implements and power plough, use of power hammer etc.

Page 44: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Plastic Moulding& Glass Cutting

Introduction to Patterns, pattern allowances, ingredients of moulding sand and melting furnaces. Foundry tools and their

purposes

Demo of mould preparation

Practice – Preparation of mould

Glass cutting

COURSE OUTCOMES

1. Study and practice on machine tools and their operations

2. Practice on manufacturing of components using workshop trades including fitting, carpentry, foundry and

welding

3. Identify and apply suitable tools for machining processes including turning, facing, thread cutting and

tapping

4. Welding and soldering operations

5. Apply basic electrical engineering knowledge for house wiring practice

Text Books:

1. Raghuwanshi B.S., Workshop Technology Vol. I & II, Dhanpath Rai & Sons.

2. Kannaiah P. and Narayana K.L., Workshop Manual, 2nd Edn, Scitech publishers.

3. John K.C., Mechanical Workshop Practice. 2nd Edn. PHI 2010.

4. JeyapoovanT.and Pranitha S., Engineering Practices Lab Manual, 3rd Edn. Vikas Pub.2008.

Page 45: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

PROFESSIONAL ENGLISH

Module 1- Basics of Technical English [08]

Technical English: Definition; Extent& Coverage; Dimensions; Reading; Skimming; Scanning; Churning &

Assimilation; Writing: Methods: Inductive; Deductive; Exposition; Linear; Interrupted; Spatial & Chronological

etc; Technical Communication; Approaches: Brevity; Objectivity; Simplicity; Utility & Clarity. Listening:

Active; Passive; Thinking strategies: Positive & Logical thinking; Speaking: Essentials Nuances & Modes of

Speech Delivery.

Module 2- Components of Technical Writing [08]

Vocabulary Building: Select words; Concept of word formation; Word formation; Root words from foreign

languages & their use in English; Prefixes & Suffixes: Derivatives; Synonyms; Antonyms; Abbreviations.

Homophones. One word substitutes; Requisites of Sentences.

Module 3- Basic Technical Writing Skills [08]

Forms: Business writing: Principle; Purchase & Sales Letters; Drafts; Official Writing: Official Letter; D.O.

Letter; Notices; Agenda; Minutes of Meeting; Sentence Structure; Phrases & Clauses in sentences; Coherence;

Unity; Emphasis in Writing; Devices; Use of Writing methods in Documents; Techniques of writing.

Module 4- Common Grammatical Errors & Technical Style [08]

Subject-verb agreement; Correct usage: Noun; Pronoun; Agreement; Modifiers; Articles; Prepositions; Cliches;

Redundancies; Technical Style: Features; Choice of words; Sentences: Descriptive; Narrative; Expository;

Defining & Classifying; Length of paragraph; Writing of Introduction & Conclusion.

Module 5- Presentation Strategies & Oral Communications [08]Analysis of

locale; Audience; Modulating Style & Content; Speaking with confidence; Kinesics; Paralinguistic features of

Voice-Dynamics: Pitch; Intonation; Stress & Rhythm; Conversation & dialogues; Communication at work-

place; etc.

COURSE OUTCOMES

1. Students will be enabled to understand the basic objective of the course by being acquainted with

specific dimensions of communication skills i.e. Reading, Writing, Listening, Thinking and Speaking.

2. Students would be able to create substantial base by the formation of strong professional vocabulary

for its application at different platforms and through numerous modes as Comprehension, reading, writing and

speaking etc.

3. Students will apply it at their work place for writing purposes such as Presentation/official

drafting/administrative communication and use it for document/project/report/research paper writing.

Page 46: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

4. Students will be made to evaluate the correct & error-free writing by being well- versed in rules

of English grammar & cultivate relevant technical style of communication & presentation at their work

place & also for academic uses.

5. Students will apply it for practical and oral presentation purposes by being honed up in

presentation skills and voice-dynamics. They will apply techniques for developing inter- personal

communication skills and positive attitude leading to their professional competence.

Text Books:

1. Technical Communication – Principles and Practices by Meenakshi Raman & Sangeeta Sharma,

Oxford Univ. Press, 2016, New Delhi.

2. Improve Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, NewDelhi.

Reference Books:

1. Word Power Made Easy by Norman Lewis, W.R.Goyal Pub. & Distributors, 2009, Delhi.

2. Manual of Practical Communication by L.U.B. Pandey; A.I.T.B.S. Publications India Ltd.; Krishan Nagar, 2013, Delhi.

3. English Grammar and Usage by R.P.Sinha, Oxford University Press, 2005, New Delhi.

4. English Grammar, Composition and Usage by N.K.Agrawal&F.T.Wood, Macmillan India Ltd., New Delhi.

5. Effective Communication Skill, Kulbhusan Kumar, RS Salaria, Khanna Publishing House

6. English Grammar & Composition by Wren & Martin, S.Chand& Co. Ltd., New Delhi.

7. Communication Skills for Engineers and Scientists, Sangeeta Sharma et.al. PHI Learning Pvt. Ltd, 2011, New Delhi.

8. Personality Development, Harold R. Wallace &L.Ann Masters, Cengage Learning, New Delhi

9. Personality Development & Soft Skills, BarunK.Mitra, Oxford University Press, 2012 New Delhi.

10. Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co.

Ltd., 2001, New Delhi.

11. Developing Communication Skills by Krishna Mohan, Meera Bannerji- Macmillan India Ltd. 1990, Delhi.

12. Spoken English- A manual of Speech and Phonetics by R.K.Bansal&J.B.Harrison, Orient Blackswan, 2013, New

Delhi.

Business English by Ken Taylor, Orient Blackswan, 2011, New

Course: B. TECH.

Second Year, Semester III

Sr.

No.

Course

Code

Course Title L T P Contact

Hrs./wk.

Credits

1. KAS301 Technical Communication 2 0 2 4 3

2. KEC301 Electronic Devices 3 1 0 4 4

Page 47: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

3. KEC302 Digital System Design 3 1 0 4 4

4. KEC303 Network Analysis and Synthesis 3 1 0 4 4

5. KEC304 Electronics Engineering 3 0 0 3 3

6. KEC351 Electronics Devices Lab 0 0 2 2 1

7. KEC352 Digital System Design Lab 0 0 2 2 1

8. KEC353 Network Analysis and Synthesis lab 0 0 2 2 1

9. KEC354 Mini Project or Internship Assessment 0 0 2 2 1

10. NC+ Cyber Security/Environmental Science 2 0 0 2

11. MOOCs (Essential for Hons. Degree)

TOTAL CREDITS 22

Course: B. TECH.

Second Year, Semester IV

Sr.

No.

Course

Code

Course Title L T P Contact

Hrs./wk.

Credits

1. KAS401 Maths-IV 3 1 0 4 4

2. KAS402 Universal Human Values 3 0 0 3 3

3. KEC401 Communication Engineering 3 0 0 3 3

4. KEC402 Analog Circuits 3 1 0 4 4

5. KEC403 Signal System 3 1 0 4 4

6. KEC451 Communication Engineering Lab 0 0 2 2 1

7. KEC452 Analog Circuits Lab 0 0 2 2 1

8. KEC453 Signal System Lab 0 0 2 2 1

9. NC Environmental Science/Cyber Security 2 0 0 2

10. MOOCs (Essential for Hons. Degree)

TOTAL CREDITS 21

MOOCS (Essential for Hons. Degree):

1. Programming, Data Structure and Algorithms using Python.

2. Mathematical Methods and its Applications.

3. MATLAB, Programing for Numerical Computation

4. Artificial Intelligence: Knowledge Representations and Reasoning.

5. Communication Skills.

6. Introduction on Intellectual Property to Engineers and Technologists.

KEC 301 Electronics Devices 3L:1T:0P 4 Credits

Unit Topics Lectures

I Introduction to semiconductor physics: Review of quantum mechanics, electrons in

periodic lattices, E-k diagrams.

8

II Energy bands in intrinsic and extrinsic silicon, carrier transport, diffusion current, drift

current, mobility and resistivity, sheet resistance, design of resistors.

8

Page 48: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

III Generation and recombination of carriers, Poisson and continuity equation P-N junction

characteristics, I-V characteristics, and small signal switching models.

8

IV Avalanche breakdown, Zener diode, Schottky diode, Bipolar Junction Transistor, I-V

characteristics, Ebers-Moll model.

8

V MOS capacitor, C-V characteristics, MOSFET, I-V characteristics, and small signal models

of MOS transistor, LED, photodiode and solar cell.

8

Text /Reference Books:

1. G. Streetman, and S. K. Banerjee, “Solid State Electronic Devices,” 7th edition, Pearson, 2014.

2. D. Neamen , D. Biswas, "Semiconductor Physics and Devices," McGraw-Hill Education.

3. S. M. Sze and K. N. Kwok, “Physics of Semiconductor Devices,” 3rd edition, John Wiley &Sons, 2006.

4. C.T. Sah, “Fundamentals of Solid State Electronics,” World Scientific Publishing Co. Inc, 1991.

5. Y. Tsividis and M. Colin, “Operation and Modeling of the MOS Transistor,” Oxford univ. press, 2011.

6. Muhammad H. Rashid, “Electronic Devices and Circuits,” Cengage publication, 2014.

Course Outcomes:

At the end of this course students will demonstrate the ability to:

1. Understand the principles of semiconductor Physics.

2. Understand and utilize the mathematical models of semiconductor junctions.

3. Understand carrier transport in semiconductors and design resistors.

4. Utilize the mathematical models of MOS transistors for circuits and systems.

5. Analyse and find application of special purpose diodes.

Page 49: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

KEC302 Digital System Design 3L:1T:0P 4 Credits

Unit Topics Lectures

I Logic simplification and combinational logic design: Binary codes, code conversion,

review of Boolean algebra and Demorgans theorem, SOP & POS forms, Canonical forms,

Karnaugh maps up to 6 variables, tabulation method.

8

II MSI devices like comparators, multiplexers, encoder, decoder, driver & multiplexed

display, half and full adders, subtractors, serial and parallel adders, BCD adder, barrel

shifter and ALU.

8

III Sequential logic design: Building blocks like S-R, JK and Master-Slave JK FF, edge

triggered FF, state diagram, state reduction, design of sequential circuits, ripple and

synchronous counters, shift registers, finite state machines, design of synchronous FSM,

algorithmic state machines charts. Designing synchronous circuits like pulse train

generator, pseudo random binary sequence generator, clock generation.

8

IV Logic families and semiconductor memories: TTL NAND gate, specifications, noise

margin, propagation delay, fan-in, fan-out, tristate TTL, ECL, CMOS families and their

interfacing, memory elements, concept of programmable logic devices like FPGA, logic

implementation using programmable devices.

8

V Digital-to-Analog converters (DAC): Weighted resistor, R-2R ladder, resistor string etc. analog-to-digital converters (ADC): single slope, dual slope, successive approximation,

flash etc. switched capacitor circuits: Basic concept, practical configurations, application in

amplifier, integrator, ADC etc.

8

Text/Reference Books:

1. R.P. Jain, “Modern Digital Electronics,” Tata McGraw Hill, 4th edition, 2009.

2. A. Anand Kumar, “Fundamental of Digital Circuits,” PHI 4th edition, 2018.

3. W.H. Gothmann, “Digital Electronics- An Introduction to Theory and Practice,” PHI, 2nd edition, 2006.

4. D.V. Hall, “Digital Circuits and Systems,” Tata McGraw Hill, 1989.

5. A. K. Singh, “Foundation of Digital Electronics & Logic Design,” New Age Int. Publishers.

6. Subrata Ghosal, “Digital Electronics,” Cengage publication, 2nd edition, 2018

Course outcomes:

At the end of this course students will demonstrate the ability to:

1. Design and analyze combinational logic circuits.

2. Design and analyze modular combinational circuits with MUX / DEMUX, Decoder & Encoder

3. Design & analyze synchronous sequential logic circuits

4. Analyze various logic families.

5. Design ADC and DAC and implement in amplifier, integrator, etc.

Page 50: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

KEC303 Network Analysis and Synthesis 3L:1T:0P 4 Credits

Unit Topics Lectures

I Node and mesh analysis, matrix approach of network containing voltage & current sources

and reactances, source transformation and duality.

8

II Network theorems: Superposition, reciprocity, Thevenin’s, Norton’s, Maximum power

transfer, compensation and Tallegen's theorem as applied to A.C. circuits.

8

III Trigonometric and exponential Fourier series: Discrete spectra and symmetry of waveform,

steady state response of a network to non-sinusoidal periodic inputs, power factor, effective

values, Fourier transform and continuous spectra, three phase unbalanced circuit and power

calculation.

8

IV Laplace transforms and properties: Partial fractions, singularity functions, waveform

synthesis, analysis of RC, RL, and RLC networks with and without initial conditions with

Laplace transforms evaluation of initial conditions.

8

V Transient behaviour, concept of complex frequency, driving points and transfer functions

poles and zeros of immittance function, their properties, sinusoidal response from pole-zero

locations, convolution theorem and two four port network and interconnections, behaviour

of series and parallel resonant circuits, introduction to band pass, low pass, high pass and band reject filters.

8

Text/Reference Books

1. Franklin F. Kuo, “Network Analysis and Synthesis,” Wiley India Education, 2nd Ed., 2006.

2. Van, Valkenburg, “Network analysis,” Prentice hall of India, 2000.

3. Sudhakar, A., Shyammohan, S. P., “Circuits and Network,” Tata McGraw-Hill New Delhi, 1994.

4. A William Hayt, “Engineering Circuit Analysis,” 8th Edition, McGraw-Hill Education.

5. A. Anand Kumar, “Network Analysis and Synthesis,” PHI publication, 2019.

Course Outcomes:

At the end of this course students will demonstrate the ability to: 1. Understand basics electrical circuits with nodal and mesh analysis.

2. Appreciate electrical network theorems.

3. Apply Laplace transform for steady state and transient analysis.

4. Determine different network functions.

5. Appreciate the frequency domain techniques.

Page 51: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

KEC 304 Electronics Engineering 3L:0T:0P 3 Credits

Unit Topics Lectures

I PN junction diode: Introduction of semiconductor materials; Semiconductor diode:

Depletion layer, V-I characteristics, ideal and practical, diode resistance, capacitance, diode equivalent circuits, transition and diffusion capacitance, Zener diodes breakdown

mechanism (Zener and avalanche).

8

II Diode application: Series, parallel and series, parallel diode configuration, half and full

wave rectification, clippers, clampers, Zener diode as shunt regulator, voltage-multiplier

circuits special purpose two terminal devices : light-emitting diodes, Varactor (Varicap)

diodes, tunnel diodes, liquid-crystal displays.

8

III Bipolar junction transistors and field effect transistor: Bipolar junction transistor: Transistor

construction, operation, amplification action, common base, common emitter, common collector configuration dc biasing BJTs: operating point, fixed-bias, emitter bias, voltage-

divider bias configuration. Collector feedback, emitter-follower configuration. Bias

stabilization. CE, CB, CC amplifiers and AC analysis of single stage CE amplifier (re

Model), Field effect transistor: Construction and characteristic of JFETs. AC analysis of CS

amplifier, MOSFET (depletion and enhancement) type, transfer characteristic.

8

IV Operational amplifiers: Introduction and block diagram of Op-Amp, ideal & practical

characteristics of Op-Amp, differential amplifier circuits, practical Op-Amp circuits

(inverting amplifier, non-inverting amplifier, unity gain amplifier, summing amplifier,

integrator, differentiator), Op-Amp parameters: input offset voltage, output offset voltage,

input biased current, input offset current differential and common-mode operation.

8

V Electronic instrumentation and measurements: Digital voltmeter: Introduction, RAMP

techniques digital multimeters: Introduction Oscilloscope: introduction, basic principle,

CRT, block diagram of oscilloscope, simple, measurement of voltage, current phase and

frequency using CRO, introduction of digital storage oscilloscope and comparison of DSO with analog oscilloscope.

8

Text /Reference Books:

1. Robert L. Boylestand / Louis Nashelsky, “Electronic Devices and Circuit Theory,” Latest Edition, Pearson Education.

2. H S Kalsi, “Electronic Instrumentation”, Latest Edition, TMH Publication.

3. Meeti dehran/ A.K. singh “fundamental of electronics Engineering”, New age international publisher.

Course Outcomes:

At the end of this course students will demonstrate the ability to: 1. Understand the concept of PN junction and special purpose diodes.

2. Study the application of conventional diode and semiconductor diode.

3. Analyse the I-V characteristics of BJT and FET.

4. Analyze the of Op-Amp, amplifiers, integrator, and differentiator.

5. Understand the concept of digital storage oscilloscope and compare of DSO with analog oscilloscope

KEC351 Electronic Devices Lab 0L:0T:2P 1 Credits

SUGGESTIVE LIST OF EXPERIMENTS

1. Study of Lab Equipment and Components: CRO, multimeter, and function generator, power supply- active, passive components

and bread board.

2. P-N Junction diode: Characteristics of PN junction diode - static and dynamic resistance measurement from graph.

3. Applications of PN Junction diode: Half & Full wave rectifier- Measurement of Vrms, Vdc, and ripple factor.

4. Characteristics of Zener diode: V-I characteristics of Zener diode, graphical measurement of forward and reverse resistance.

5. Characteristics of Photo diode: V-I characteristics of photo diode, graphical measurement of forward and reverse resistance.

6. Characteristics of Solar cell: V-I characteristics of solar cell, graphical measurement of forward and reverse resistance.

7. Application of Zener diode: Zener diode as voltage regulator. Measurement of percentage regulation by varying load resistor.

8. Characteristic of BJT: BJT in CE configuration- graphical measurement of h-parameters from input and output characteristics.

Measurement of Av, AI, Ro and Ri of CE amplifier with potential divider biasing.

Page 52: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

9. Field Effect Transistors: Single stage common source FET amplifier –plot of gain in dB Vs frequency, measurement of,

bandwidth, input impedance, maximum signal handling capacity (MSHC) of an amplifier.

10. Metal Oxide Semiconductor Field Effect Transistors: Single stage MOSFET amplifier –plot of gain in dB Vs frequency,

measurement of, bandwidth, input impedance, maximum signal handling capacity (MSHC) of an amplifier.

11. Simulation of amplifier circuits studied in the lab using any available simulation software and measurement of bandwidth and other

parameters with the help of simulation software.

Course outcomes:

At the end of this course students will demonstrate the ability to:

1. Understand working of basic electronics lab equipment.

2. Understand working of PN junction diode and its applications.

3. Understand characteristics of Zener diode.

4. Design a voltage regulator using Zener diode.

5. Understand working of BJT, FET, MOSFET and apply the concept in designing of amplifiers.

Page 53: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

KEC352 Digital System Design Lab 0L:0T:2P 1 Credits

SUGGESTIVE LIST OF EXPERIMENTS

1. Introduction to digital electronics lab- nomenclature of digital ICs, specifications, study of the data sheet, Concept of Vcc and

ground, verification of the truth tables of logic gates using TTL ICs.

2. Implementation of the given Boolean function using logic gates in both SOP and POS forms.

3. Verification of state tables of RS, JK, T and D flip-flops using NAND & NOR gates.

4. Implementation and verification of Decoder using logic gates.

5. Implementation and verification of Encoder using logic gates.

6. Implementation of 4:1 multiplexer using logic gates.

7. Implementation of 1:4 demultiplexer using logic gates.

8. Implementation of 4-bit parallel adder using 7483 IC.

9. Design, and verify the 4-bit synchronous counter. 10. Design, and verify the 4-bit asynchronous counter.

11. Implementation of Mini Project using digital integrated circuits and other components.

Course outcomes:

At the end of this course students will demonstrate the ability to:

1. Design and analyze combinational logic circuits.

2. Design & analyze modular combinational circuits with MUX/DEMUX, decoder, encoder.

3. Design & analyze synchronous sequential logic circuits.

4. Design & build mini project using digital ICs.

Page 54: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

KEC353 Network Analysis and Synthesis Lab 0L:0T:2P 1 Credits

SUGGESTIVE LIST OF EXPERIMENTS

1. Verification of Kirchhoff’s laws.

2. Verification of Superposition theorem.

3. Verification of Thevenin’s Theorem and Maximum power transfer theorem.

4. Verification of Tallegen's theorem.

5. Measurement of power and power factor in a single phase AC series inductive circuit and study improvement of power factor

using capacitor.

6. Study of phenomenon of resonance in RLC series circuit and obtain resonant frequency.

7. Determination of parameters of AC single phase series RLC circuit.

8. To find poles and zeros of immittance function.

9. Design and find cut-off frequency of low pass and high pass filters.

10. Design and find the pass band frequencies of band pass filters.

11. Design and find the stop band frequencies of band reject filters.

Course Outcomes:

At the end of this course students will demonstrate the ability to: 1. Understand basics of electrical circuits with nodal and mesh analysis.

2. Appreciate electrical network theorems.

3. Analyse RLC circuits.

4. Determine the stability of an electrical circuit.

5. Design network filters.

Page 55: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

KEC401 Communication Engineering 3L:0T:0P 3 Credits

Unit Topics Lectures

I Review of signals and systems, frequency domain representation of signals, principles of

amplitude modulation systems- DSB, SSB and VSB modulations.

8

II Angle modulation, representation of FM and PM signals, spectral characteristics of angle

modulated signals.

8

III Review of probability and random process, Gaussian and white noise characteristics, noise

in amplitude modulation systems, noise in frequency modulation systems, pre-emphasis and

de-emphasis, threshold effect in angle modulation.

8

IV Pulse modulation, sampling process, pulse amplitude and pulse code modulation (PCM),

differential pulse code modulation. Delta modulation, noise considerations in PCM, time

division multiplexing, digital multiplexers.

8

V Digital modulation schemes- phase shift keying, frequency shift keying, quadrature

amplitude modulation, continuous phase modulation and minimum shift keying.

8

Text/Reference Books:

1. Haykin S., "Communications Systems," John Wiley and Sons, 2001.

2. Proakis J. G. and Salehi M., "Communication Systems Engineering," Pearson Education, 2002. 3. Taub H. and Schilling D.L., "Principles of Communication Systems,” Tata McGraw Hill, 2001.

4. Wozencraft J. M. and Jacobs I. M., “Principles of Communication Engineering,” John Wiley, 1965.

5. Barry J. R., Lee E. A. and Messerschmitt D. G., “Digital Communication,” Kluwer Academic Publishers, 2004.

6. Proakis J.G., “Digital Communications',' 4th Edition, McGraw Hill, 2000.

7. Abhay Gandhi, “Analog and Digital Communication,” Cengage publication, 2015.

Course Outcomes:

At the end of this course students will demonstrate the ability to:

1. Analyze and compare different analog modulation schemes for their efficiency and bandwidth.

2. Analyze the behavior of a communication system in presence of noise.

3. Investigate pulsed modulation system and analyze their system performance. 4. Investigate various multiplexing techniques.

5. Analyze different digital modulation schemes and compute the bit error performance.

Page 56: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

KEC402 Analog Circuits 3L:1T:0P 4 Credits

Unit Topics Lectures

I Diode circuits, amplifier models: Voltage amplifier, current amplifier, trans-conductance

amplifier and trans-resistance amplifier. biasing schemes for BJT and FET amplifiers, bias

stability, various configurations (such as CE/CS, CB/CG, CC/CD) and their features, small

signal analysis, low frequency transistor models, estimation of voltage gain, input

resistance, output resistance etc., design procedure for particular specifications, low

frequency analysis of multistage amplifiers.

8

II High frequency transistor models, frequency response of single stage and multistage

amplifiers, cascode amplifier, various classes of operation (Class A, B, AB, C etc.), their

power efficiency and linearity issues, feedback topologies: Voltage series, current series,

voltage shunt, current shunt, effect of feedback on gain, bandwidth etc., calculation with

practical circuits, concept of stability, gain margin and phase margin.

8

III Oscillators: Review of the basic concept, Barkhausen criterion, RC oscillators (phase shift,

Wien bridge etc.), LC oscillators (Hartley, Colpitt, Clapp etc.), non-sinusoidal oscillators.

8

IV Current mirror: Basic topology and its variants, V-I characteristics, output resistance and

minimum sustainable voltage (VON), maximum usable load, differential amplifier: Basic structure and principle of operation, calculation of differential gain, common mode gain,

CMRR and ICMR, Op-Amp design: Design of differential amplifier for a given

specification, design of gain stages and output stages, compensation.

8

V Op-Amp applications: Review of inverting and non-inverting amplifiers, integrator and

differentiator, summing amplifier, precision rectifier, Schmitt trigger and its applications,

active filters: Low pass, high pass, band pass and band stop, design guidelines.

8

Text/Reference Books:

1. J.V. Wait, L.P. Huelsman and GA Korn, “Introduction to Operational Amplifier theory and applications,” Mc Graw Hill, 1992.

2. J. Millman and A. Grabel, “Microelectronics,” 2nd edition, McGraw Hill, 1988.

3. P. Horowitz and W. Hill, “The Art of Electronics,” 2nd edition, Cambridge University Press, 1989.

4. A.S. Sedra and K.C. Smith, “Microelectronic Circuits,” Saunder's College11 Publishing, 4th edition.

5. Paul R. Gray and Robert G. Meyer, “Analysis and Design of Analog Integrated Circuits,” John Wiley, 3rd edition. 6. Muhammad H. Rashid, “Electronic Devices and Circuits,” Cengage publication, 2014.

Course Outcomes:

At the end of this course students will demonstrate the ability to:

1. Understand the characteristics of diodes and transistors.

2. Design and analyze various rectifier and amplifier circuits.

3. Design sinusoidal and non-sinusoidal oscillators.

4. Understand the functioning of OP-AMP and design OP-AMP based circuits.

5. Design LPF, HPF, BPF, BSF.

KEC403 Signal and System 3L:1T:0P 4 Credits

Unit Topics Lectures

I Signals and systems as seen in everyday life, and in various branches of engineering and

science, energy and power signals, continuous and discrete time signals, continuous and

discrete amplitude signals, system properties: linearity, additivity and homogeneity, shift-

invariance, causality, stability, realizability.

8

II Linear shift-invariant (LSI) systems, impulse response and step response, convolution,

input-output behaviour with aperiodic convergent inputs, characterization of causality and

stability of linear shift invariant systems, system representation through differential equations and difference equations, Periodic and semi-periodic inputs to an LSI system, the

notion of a frequency response and its relation to the impulse response

8

III Fourier series representation, Fourier transform, convolution/multiplication and their effect

in the frequency domain, magnitude and phase response, Fourier domain duality , Discrete-

Time Fourier Transform (DTFT) and the Discrete Fourier transform (DFT), Parseval's

Theorem, the idea of signal space and orthogonal bases, the Laplace transform, notion of

Eigen functions of LSI systems, a basis of Eigen functions, region of convergence, poles

8

Page 57: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

and zeros of system, Laplace domain analysis, solution to differential equations and system

behaviour.

IV The z-Transform for discrete time signals and systems-Eigen functions, region of

convergence, z-domain analysis.

8

V The sampling theorem and its implications- spectra of sampled signals, reconstruction: ideal

interpolator, zero-order hold, first-order hold, and so on, aliasing and its effects, relation

between continuous and discrete time systems.

8

Text/Reference books:

1. A.V. Oppenheim, A.S. Willsky and I.T. Young, "Signals and Systems," Prentice Hall, 1983.

2. R.F. Ziemer, W.H. Tranter and D.R. Fannin, "Signals and Systems - Continuous and Discrete," 4th edition, Prentice Hall, 1998.

3. B.P. Lathi, "Signal Processing and Linear Systems," Oxford University Press, 1998.

4. Douglas K. Lindner, "Introduction to Signals and Systems," McGraw Hill International Edition: 1999.

5. Simon Haykin, Barry van Veen, "Signals and Systems," John Wiley and Sons (Asia) Private Limited, 1998. 6. V. Krishnaveni, A. Rajeswari, “"Signals and Systems," Wiley India Private Limited, 2012.

7. Robert A. Gabel, Richard A. Roberts, "Signals and Linear Systems," John Wiley and Sons, 1995.

8. M. J. Roberts, "Signals and Systems - Analysis using Transform methods and MATLAB," TMH, 2003.

9. J. Nagrath, S. N. Sharan, R. Ranjan, S. Kumar, "Signals and Systems," TMH New Delhi, 2001.

10. A. Anand Kumar, “Signals and Systems,” PHI 3rd edition, 2018.

11. D. Ganesh Rao, K.N. Hari Bhat, K. Anitha Sheela, “Signal, Systems, and Stochastic Processes,” Cengage publication, 2018.

Course outcomes:

At the end of this course students will demonstrate the ability to:

1. Analyze different types of signals.

2. Analyze linear shift-invariant (LSI) systems. 3. Represent continuous and discrete systems in time and frequency domain using Fourier series and transform.

4. Analyze discrete time signals in z-domain.

5. Study sampling and reconstruction of a signal.

Page 58: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

KEC451 Communication Engineering Lab 0L:0T:2P 1 Credits

SUGGESTIVE LIST OF EXPERIMENTS

1. To study DSB/ SSB amplitude modulation & determine its modulation factor & power in side bands.

2. To study amplitude demodulation by linear diode detector.

3. To study frequency modulation and determine its modulation factor.

4. To study sampling and reconstruction of pulse amplitude modulation system.

5. To study pulse amplitude modulation.

a) Using switching method

b) By sample and hold circuit

6. To demodulate the obtained PAM signal by 2nd order LPF.

7. To study pulse width modulation and pulse position modulation.

8. To study pulse code modulation and demodulation technique.

9. To study delta modulation and demodulation technique.

10. To construct a square wave with the help of fundamental frequency and its harmonic component.

11. Study of amplitude shift keying modulator and demodulator.

12. Study of frequency shift keying modulator and demodulator.

13. Study of phase shift keying modulator and demodulator.

14. Study of single bit error detection and correction using hamming code.

15. Study of quadrature phase shift keying modulator and demodulator.

16. To simulate differential phase shift keying technique using MATLAB software.

17. To simulate M-ary Phase shift keying technique using MATLAB software (8PSK, 16PSK) and perform BER calculations.

18. Design a front end BPSK modulator and demodulator.

Course Outcomes:

At the end of this course students will demonstrate the ability to

1. Analyze and compare different analog modulation schemes for their modulation factor and power.

2. Study pulse amplitude modulation.

3. Analyze different digital modulation schemes and can compute the bit error performance.

4. Study and simulate the Phase shift keying.

5. Design a front end BPSK modulator and demodulator.

Page 59: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

KEC452 Analog Circuit Lab 0L:0T:2P 1 Credits

SUGGESTIVE LIST OF EXPERIMENTS

1. Characteristic of BJT: Study of BJT in various configurations (such as CE/CS, CB/CG, CC/CD).

2. BJT in CE configuration: Graphical measurement of h-parameters from input and output characteristics, measurement of Av, AI,

Ro and Ri of CE amplifier with potential divider biasing.

3. Study of Multi-stage amplifiers: Frequency response of single stage and multistage amplifiers.

4. Feedback topologies: Study of voltage series, current series, voltage shunt, current shunt, effect of feedback on gain, bandwidth etc.

5. Measurement of Op-Amp parameters: Common mode gain, differential mode gain, CMRR, slew rate.

6. Applications of Op-Amp: Op-Amp as summing amplifier, difference amplifier, integrator and differentiator.

7. Field effect transistors: Single stage common source FET amplifier –plot of gain in dB vs frequency, measurement of bandwidth,

input impedance, maximum signal handling capacity (MSHC) of an amplifier. 8. Oscillators: Study of sinusoidal oscillators- RC oscillators (phase shift, Wien bridge etc.).

9. Study of LC oscillators (Hartley, Colpitt, Clapp etc.),

10. Study of non-sinusoidal oscillators.

11. Simulation of amplifier circuits studied in the lab using any available simulation software and measurement of bandwidth and other

parameters with the help of simulation software.

12. ADC/DAC: Design and study of Analog to Digital Converter.

13. Design and study of Digital to Analog Converter.

Course Outcome

At the end of this course students will demonstrate the ability to:

1. Understand the characteristics of transistors. 2. Design and analyze various configurations of amplifier circuits.

3. Design sinusoidal and non-sinusoidal oscillators.

4. Understand the functioning of OP-AMP and design OP-AMP based circuits.

5. Design ADC and DAC.

Page 60: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

KEC453 Signal and System Lab 0L:0T:2P 1 Credits

SUGGESTIVE LIST OF EXPERIMENTS

1. Introduction to MATLAB

a. To define and use variables and functions in MATLAB.

b. To define and use Vectors and Matrices in MATLAB.

c. To study various MATLAB arithmetic operators and mathematical functions.

d. To create and use m-files.

2. Basic plotting of signals

a. To study various MATLAB commands for creating two and three dimensional plots.

b. Write a MATLAB program to plot the following continuous time and discrete time signals.

i. Step Function

ii. Impulse Function

iii. Exponential Function

iv. Ramp Function

v. Sine Function

3. Time and Amplitude transformations

Write a MATLAB program to perform amplitude-scaling, time-scaling and time-shifting on a given signal.

4. Convolution of given signals

Write a MATLAB program to obtain linear convolution of the given sequences.

5. Autocorrelation and Cross-correlation

a. Write a MATLAB program to compute autocorrelation of a sequence x(n) and verify the property.

b. Write a MATLAB program to compute cross-correlation of sequences x(n) and y(n) and verify the property.

6. Fourier Series and Gibbs Phenomenon

a. To calculate Fourier series coefficients associated with Square Wave.

b. To Sum the first 10 terms and plot the Fourier series as a function of time.

c. To Sum the first 50 terms and plot the Fourier series as a function of time.

7. Calculating transforms using MATLAB

a. Calculate and plot Fourier transform of a given signal.

b. Calculate and plot Z-transform of a given signal.

8. Impulse response and Step response of a given system

a. Write a MATLAB program to find the impulse response and step response of a system form its difference equation.

b. Compute and plot the response of a given system to a given input.

9. Pole-zero diagram and bode diagram

a. Write a MATLAB program to find pole-zero diagram, bode diagram of a given system from the given system function.

b. Write a MATLAB program to find, bode diagram of a given system from the given system function.

10. Frequency response of a system

Write a MATLAB program to plot magnitude and phase response of a given system.

11. Checking linearity/non-linearity of a system using SIMULINK

a. Build a system that amplifies a sine wave by a factor of two.

b. Test the linearity of this system using SIMULINK.

Course outcomes:

At the end of this course students will demonstrate the ability to:

1. Understand the basics operation of MATLAB.

2. Analysis the time domain and frequency domain signals.

3. Implement the concept of Fourier series and Fourier transforms.

4. Find the stability of system using pole-zero diagrams and bode diagram.

5. Design frequency response of the system.

Page 61: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

R SERIES

SYLLABUS

FOR

1ST YEAR (2016-17)

2ND YEAR(2017-18)

3RD YEAR(2018-19)

4TH YEAR(2019-20)

Page 62: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

B.Tech. First Year

On

Choice Based Credit System

(Effective from the Session: 2016-17)

B. TECH. 1st SEMESTER

Sl

No. Subject

Code Subject Name

L-T-P

Th/Lab

Marks

Sessional Total

Credit

Test Assig/Att.

1 RAS103 Engineering Maths-I 3---1---0 70 20 10 100 4

2 RAS101 Engineering Physics-I 3---1---0 70 20 10 100 4

3 REE101/

RME101 Basic Electrical Engg/

Elements of Mechanical Engg 3---1---0

70

20

10

100

4

4

RAS 104/ RCS101

Professional Communication/

Computer System & Programming in

3---0---0

70

20

10

100

3

5

REC101/ RAS102

Basic Electronics/ Engineering Chemistry

3---1---0

70

20

10

100

4

6

RAS151/ RAS152

Engg. Physics Lab/ Engg. Chemistry Lab

0---0---2

50

50

100

1

7

REE151/

RME151

Basic Electrical Engg Lab/ Elements of Mechanical Engg

Lab

0---0---2

50

50

100

1

8

RAS 154/ RCS151

Professional Communication Lab/ Computer Progm. Lab

0---0---2

50

50

100

1

9

RME152/

RCE151 Workshop Practice/ Computer

Aided Engg. Graphics 0---0---3

50

50

100

2

TOTAL 900 24

Page 63: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

B

.

T

E

C

E

S

T

E

R

B.TECH 2ND

SEMESTER

Sl

No. Subject

Code Subject Name

L-T-P

Th/Lab

Marks

Sessional Total

Credit

Test Assig/Att. 1 RAS203 Engineering Maths-II 3---1---

0 70 2

0 10 100 4

2 RAS201 Engineering Physicss-II 3---1---0

70 20

10 100 4

3 RME201/

REE201

Elements of Mechanical

Engg/

Basic Electrical Engg

3---1---

0

70

2

0

10

100

4

4

RCS201/

RAS 204

Computer System &

Programming in C/

Professional

Communication

3---0---

0

70

20

10

100

3

5

RAS202/

REC201

Engineering Chemistry/

Basic

Electronics

3---1---0

70

2

0

10

100

4

6 RAS252/

RAS251

Engg. Chemistry Lab/ Engg.

Physics Lab

0---0---

2

50

50

100

1

7

RME251/

REE251

Elements of Mechanical

Engg

Lab/ Basic Electrical Engg

Lab

0---0---2

50

50

100

1

8

RCS251/

RAS 254

Computer Progm. Lab/

Professional

Communication

Lab

0---0---2

50

50

100

1

9

RCE251/

RME252

Computer Aided Engg.

Graphics/ Workshop

Practice

0---0---

3

50

50

100

2

TOTAL 900 24

Page 64: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RAS103

Engineering Mathematics - I

L T P

3 1 0

Unit - 1: Differential Calculus – I

Successive Differentiation, Leibnitz’s theorem, Limit , Continuity and Differentiability of functions of several variables, Partial derivatives, Euler’s theorem for homogeneous functions,

Total derivatives, Change of variables, Curve tracing: Cartesian and Polar coordinates.

Unit - 2: Differential Calculus - II Taylor’s and Maclaurin’s Theorem, Expansion of function of several variables, Jacobian, Approximation of errors, Extrema of functions of several variables, Lagrange’s method of

multipliers (Simple applications).

Unit - 3: Matrix Algebra Types of Matrices, Inverse of a matrix by elementary transformations, Rank of a matrix

(Echelon & Normal form), Linear dependence, Consistency of linear system of equations and

their solution, Characteristic equation, Eigen values and Eigen vectors, Cayley-Hamilton

Theorem, Diagonalization, Complex and Unitary Matrices and its properties

Unit - 4: Multiple Integrals Double and triple integrals, Change of order of integration, Change of variables, Application of

integration to lengths, Surface areas and Volumes – Cartesian and Polar coordinates. Beta and

Gamma functions, Dirichlet’s integral and its applications.

Unit - 5: Vector Calculus

Point function, Gradient, Divergence and Curl of a vector and their physical interpretations, Vector identities, Tangent and Normal, Directional derivatives. Line, Surface and Volume

integrals, Applications of Green’s, Stoke’s and Gauss divergence theorems (without proof).

Text Books:

1. E. Kreyszig, Advanced Engineering Mathematics,John-Wiley & Sons

2. B. V. Ramana, Higher Engineering Mathematics, Tata Mc Graw- Hill Publishing

Company Ltd.

3. R.K.Jain & S.R.K. Iyenger, Advance Engineering Mathematics, Narosa Publishing

House.

Reference Books:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers. 2. Peter V. O’ Neil, Advanced Engineering Mathematics, Thomas ( Cengage) Learning.

3. Thomas & Finley, Calculus, Narosa Publishing House

4. Rukmangadachari, Engineering Mathematics – I, Pearson Education.

A.C.Srivastava & P.K.Srivastava, Engineering Mathematics, Vol.I, PHI Learning Pvt. Limited, New Delh

Page 65: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RAS101

ENGINEERING PHYSICS-I

Unit – I: Relativistic Mechanics 08 Hrs. Inertial & non-inertial frames, Galilean transformations, Michelson-Morley experiment,

Einstein’s postulates, Lorentz transformation equations, Length contraction & Time dilation,

Relativistic addition of velocities; Variation of mass with velocity, Mass energy equivalence,

Concept of rest mass of photon.

Unit – II: Modern Physics 10 Hrs. Black body radiation spectrum, Weins law and Rayleigh-Jeans law, Assumption of quantum

theory of radiation, Planck’s law. Wave-particle duality, de-Broglie matter waves, Bohr’s

quantization rule, Phase and Group velocities, Davisson-Germer experiment, Heisenberg

uncertainty principle and its applications, Wave function and its significance, Schrödinger’s

wave equation ( Time dependent and time independent) – particle in one dimensional potential

box, Eigen values and Eigen function.

Unit – III: Wave Optics 10 Hrs. Interference: Coherent sources, Interference in thin films (parallel and wedge shaped film),

Newton’s rings and its applications..

Diffraction: Single, double and N- Slit Diffraction, Diffraction grating, Grating spectra,

dispersive power, Rayleigh’s criterion and resolving power of grating.

Unit – IV: Polarization and Laser 08 Hrs. Polarization: Phenomena of double refraction, Nicol prism, Production and analysis of plane,

circular and elliptical polarized light, Retardation Plate, Optical Activity, Fresnel’s theory,

Specific rotation.

Laser: Spontaneous and stimulated emission of radiation, population inversion, Einstein’s

Coefficients, Concept of 3 and 4 level Laser, Construction and working of Ruby, He-Ne lasers

and laser applications.

Unit – V: Fiber Optics and Holography 06 Hrs.

Fiber Optics: Fundamental ideas about optical fiber, Propagation mechanism, Acceptance

angle and cone, Numerical aperture, Single and Multi Mode Fibers, Dispersion and Attenuation.

Holography: Basic Principle of Holography, Construction and reconstruction of Image on

hologram and applications of holography.

Reference Books: 1. Concepts of Modern Physics - Aurthur Beiser (Mc-Graw Hill)

2. Introduction to Special Theory of Relativity- Robert Resnick (Wielly)

3. Optics –Ajoy Ghatak ( Tata McGraw Hill Education Private Ltd. New Delhi)

4. Optics - Brijlal & Subramanian (S. Chand )

5. Engineering Physics- C. Mani Naidu(Pearson)

6. Lasers Principles, Types and Applications- K R Nambiar (New Age)

7. Applied Physics for Engineers- Neeraj Mehta (PHI Learning, New

Page 66: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RAS-151/RAS-251

List of Experiments

ENGINEERING PHYSICS LAB L T P

0 0 2

Any ten experiments, at least four from each group.

Group -A 1. To determine the wavelength of monochromatic light by Newton’s ring.

2. To determine the wavelength of monochromatic light with the help of Fresnel’s biprism.

3. To determine the focal length of two lenses by nodal slide and locate the position of

cardinalpoints.

4. To determine the specific rotation of cane sugar solution using polarimeter.

5. To determine the wavelength of spectral lines using plane transmission grating.

6. To study the polarization of light by simple reflection using laser.

7. Measurement of Wavelength of a laser (He- Ne) light using single slit diffraction.

Group – B 8. To determine the specific resistance of a given wire using Carey Foster’s bridge.

9. To study the variation of magnetic field along the axis of current carrying - Circular coil and

then to estimate the radius of the coil.

10. To verify Stefan’s Law by electrical method.

11. To calibrate the given ammeter and voltmeter by potentiometer.

12. To study the Hall effect and determine Hall coefficient, carrier density and - mobility of a

given semiconductor using Hall effect set up.

13. To determine the energy band gap of a given semiconductor material.

14 To determine E.C.E. of copper using Tangent or Helmholtz galvanometer.

15. To draw hysteresis curve of a given sample of ferromagnetic material and from - this to

determine magnetic susceptibility and permeability of the given specimen.

16. To determine the ballistic constant of a ballistic galvanometer. 17. To determine the coefficient of viscosity of a liquid.

18. Measurement of fiber attenuation and aperture of fiber.

19. High resistance by leakage method.

20. Magnetic Susceptibility of paramagnetic solution.

Page 67: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RAS102/ RAS202

ENGINEERING CHEMISTRY

L T P

3 1 0

Unit Content Hours

Unit-1 Molecular orbital theory and its applications to homo-nuclear diatomic molecules. Band theory of solids. Liquid crystals and its applications.

Point defects in Solids. Structure and applications of Graphite and

Fullerenes. Concepts of nano-materials and its applications

8

Unit-2 Polymers: Basic concepts of polymer- blends and composites. Conducting and biodegradablepolymers. Preparations and applications of

some industrially important polymers(Buna N, Buna S, Neoprene, Nylon

6, Nylon 6,6 , Terylene). General methods of synthesis of organometallic

compound (Grignard Reagent) and their applications in polymerization.

8

Unit-3 Electrochemistry: Galvanic cell, electrode potential, Lead storage battery. Corrosion, causes and its prevention. Setting and hardening of cement,

applications of cement. Plaster of paris. Lubricants- Classification,

mechanism and applications..

8

Unit-4 Hardness of water. Disadvantage of hard water. Boiler troubles, Techniques for water softening; Lime-soda, Zeolite, Ion exchange resin,

Reverse osmosis. Phase Rule and its application to water system.

8

Unit-5 Fuels; Classification of fuels. Analysis of Coal. Determination of

Calorific values (bomb calorimeter & Dulong’s method). Biogas.

Elementary ideas and simple applications of UV, Visible, IR and H1NMR

spectral Techniques.

8

Textbook 1. Chemistry for Engineers, by S. Vairam and Suba Ramesh; Wiley India

Reference Books 1. Textbook of Engineering Chemistry by Dr. Gopal Krishna Bhatt, Acme Publishers 2. Chemistry (9th ed), by Raymond Chang, Tata McGraw-Hill

3. Chemistry Concepts and Applications by Steven S. Zumdahl; Cengage Learning

4. Engineering Chemistry, Wiley India

5. Engineering Chemistry Author: Abhijit Mallick, Viva Books

6. Text Book of Engineering Chemistry by Harsh Malhotra; Sonali Publications

7. Concise Inorganic Chemistry by J.D. Lee; Wiley India

8. Organic Chemistry (6 ed) by Morrison & Boyd; Pearson Education

9. Physical Chemistry by Gordon M. Barrow; Mc-Graw Hill

10. Organic Chemistry, Volume 1(6 ed)& 2 (5ed) by I. L. Finar; Pearson Education

11. Atkins’ Physical Chemistry by Peter Atkins & Julio De Paula; Oxford University Press

Page 68: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RAS 152/ RAS 252

ENGINEERING CHEMISTRY PRACTICALS

LIST OF EXPERIMENTS

1. Determination of alkalinity in the given water sample.

2. Determination of temporary and permanent hardness in water sample using EDTA ..

3. Determination of available chlorine in bleaching powder.

4. Determination of chloride content in water sample.

5. Determination of iron content in the given solution by Mohr’s method.

6. pH- metric titration.

7. Viscosity of an addition polymer like polyester by viscometer.

8. Determination of iron concentration in sample of water by colorimetric method. The method

involves the use of KCN as a chelating agent and the measurements are carried out at

480nm.

9. Element detection and functional group identification in organic compounds.

10. Preparation of Bakelite and Urea formaldehyde resin.

Note: Institute can replace two experiments from the aforesaid experiments as per

Page 69: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC101 / REC201

ELECTRONICS ENGINEERING

Unit Topics Lectures

I PN junction diode: Introduction of Semiconductor Materials Semiconductor

Diode: Depletion layer, V-I characteristics, ideal and practical, diode resistance,

capacitance, Diode Equivalent Circuits, Transition and Diffusion Capacitance,

Zener Diodes breakdown mechanism (Zener and avalanche) Diode Application:

Series , Parallel and Series, Parallel Diode Configuration, Half and Full Wave

rectification, Clippers, Clampers, Zener diode as shunt regulator, Voltage-Multiplier

Circuits Special Purpose two terminal Devices :Light-Emitting Diodes, Varactor

(Varicap) Diodes, Tunnel Diodes, Liquid-Crystal Displays.

12

II Bipolar Junction Transistors and Field Effect Transistor: Bipolar Junction Transistor: Transistor Construction, Operation, Amplification

action. Common Base, Common Emitter, Common Collector Configuration DC

Biasing BJTs: Operating Point, Fixed-Bias, Emitter Bias, Voltage-Divider Bias

Configuration.Collector Feedback, Emitter-Follower Configuration. Bias

Stabilization. CE, CB, CC amplifiers and AC analysis of single stage CE amplifier

(re Model ). Field Effect Transistor: Construction and Characteristic of JFETs. AC

analysis of CS amplifier, MOSFET (Depletion and Enhancement)Type, Transfer

Characteristic,

10

III Operational Amplifiers : Introduction and Block diagram of Op Amp, Ideal &

Practical characteristics of Op Amp, Differential amplifier circuits, Practical Op-

Amp Circuits (Inverting Amplifier, Non inverting Amplifier, Unity Gain Amplifier,

Summing Amplifier, Integrator, Differentiator). OPAMP Parameters: Input offset

voltage, Output offset voltage, Input biased current, Input offset current

Differential and Common-Mode Operation

6

IV Electronic Instrumentation and Measurements: Digital Voltmeter : Introduction,

RAMP Techniques Digital Multimeters: Introduction Oscilloscope: Introduction,

Basic Principle, CRT , Block Diagram of Oscilloscope, Simple CRO, Measurement

of voltage, current phase and frequency using CRO, Introduction of Digital

Storage Oscilloscope and Comparison of DSO with Analog Oscilloscope.

6

V Fundamentals of Communication Engineering: Elements of a Communication

System, Need of Modulation, Electromagnetic spectrum and typical applications.

Basics of Signal Representation and Analysis, Introduction of various analog modulation techniques, Fundamentals of amplitude modulation, Modulation and

Demodulation Techniques of AM.

6

Text Books:

1. Robert L. Boylestand / Louis Nashelsky “Electronic Devices and Circuit Theory”, Latest

Edition, Pearson Education.

2. H S Kalsi, “Electronic Instrumentation”, Latest Edition, TMH Publication,.

3. George Kennedy, “Electronic Communication Systems”, Latest Edition, TMH,

Page 70: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Reference Books:

1. David A. Bell, “Electronic Devices and Circuits”, Latest Edition, Oxford University

Press.

2. Jacob Millman, C.C. Halkias, Staya brataJit, “Electronic Devices and Circuits”, Latest

Edition , TMH.

3. David A. Bell, Electronic Instrumentation and Measurements, Latest Edition, Oxford

University Press India.

Page 71: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RME-101/RME-201: ELEMENTS OF MECHANICAL ENGINEERING L T P: 3-1-0

UNIT-I: Force System: Force, Parallelogram Law, Lami’s theorem, Principle of Transmissibility of

forces. Moment of a force, Couple, Varignon’s theorem, Resolution of a force into a force and a

couple. Resultant of coplanar force system. Equilibrium of coplanar force system, Free body

diagrams, Determination of reactions.

Concept of Centre of Gravity and Centroidand Area Moment of Inertia, Perpendicular axis

theorem and Parallel axis theorem

9

UNIT-II: Plane Truss: Perfect and imperfect truss, Assumptions and Analysis of Plane Truss by Method

of joints and Method of section.

Beams: Types of beams, Statically Determinate Beams, Shear force and bending moment in beams, Shear force and bending moment diagrams, Relationships between load, shear and

bending moment.

8

UNIT-III: Simple stress and strain: Normal and shear stresses. One Dimensional Loading; members of

varying cross section, bars in series. Tensile Test diagram for ductile and brittle materials, Elastic

constants, Strain energy.

Bending (Flexural) Stresses: theory of pure bending, neutral surface and neutral axis, stresses

in beams of different cross sections.

Engineering Materials: Importance of engineering materials, classification, mechanical

properties and applications of Ferrous, Nonferrous and composite materials.

8

UNI-IV:

Basic Concepts and Definitions of Thermodynamics: Introduction and definition of

thermodynamics, Microscopic and Macroscopic approaches, System, surrounding and universe,

Concept of continuum, Thermodynamic equilibrium, Thermodynamic properties, path, process

and cycle, Quasi static process, Energy and its forms, Work and heat. Thermodynamic definition

of work.

Zeroth law of thermodynamics: Temperature and its’ measurement.

First law of thermodynamics: First law of thermodynamics, Internal energy and enthalpy. First

law analysis for non-flow processes. Non-flow work Steady flow energy equation; Boilers,

Condensers, Turbine, Throttling process, Pumps etc.

8

UNIT-V:

Second law: Thermal reservoir, Kelvin Planck statement, Heat engines, Efficiency; Clausius’

statement Heat pump, refrigerator, Coefficient of Performance. Carnot cycle, Carnot theorem

and it’s corollaries.Clausius inequality, Concept of Entropy.

Properties of pure substances: P-v, T-s and h-s diagram, dryness fraction and steam tables. Rankine Cycle. Internal Combustion Engines: Classification of I.C. Engines and their parts, working principle and comparison between 2 Stroke and 4 stroke engine , difference between SI and CI engines. P-

v and T-s diagramsof Otto and Diesel cycles, comparison of efficiency.

9

Page 72: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Books & References:

1. Engineering Mechanics: Statics by J.L Meriam , Wiley

2. Engineering Mechanics : Statics and Dynamics by R. C. Hibbler, Pearson

3. Strength of Materials by Thimoshenko& Young

4. Mechanics of Solid by R. C. Hibbler, Pearson

5. Engineering Thermodynamics by P.K.Nag, McGraw Hill

6. Thermodynamics An Engineering Approach by Cengel& Boles, McGraw Hill

7. Engineering Thermodynamics by P. Chattopadhyay, OXFORD Publication 8. Internal Combustion Engine by V Ganesan, McGraw Hill Pub . 9. An Introduction to Mechanical Engineering by Wickert& Lewis, Cengage Learning 10. Engineering Mechanics By S. S. Bhavikatti, K. G. Rajashekarappa, New Age International 11. Engineering Mechanics by R K Bansal, Laxmi Publications 12. Fundamentals of Mechanical Engineering by Sawhney, PHI 13. Basic Mechanical Engineering by Pravin Kumar, Pearson 14. Basic Mechanical Engineering by Agrawal&Agrawal, Wiley 15. Elements of Mechanical Engineering by Singh, Anne Books Pvt Ltd 16. Elements of Workshop Technology by Hajra Choudhary Media Promoter

Page 73: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RME-151/RME-251: ELEMENTS OF MECHANICAL ENGINEERING LAB LTP: 0- 0-0-2

Note: Any 10 experiments (Minimum of 3 from each module) are to be conducted Module 1:

1. To conduct the tensile test and determine the ultimate tensile strength, percentage elongation for a mild steel specimen.

2. To conduct the Impact-tests (Izod / Charpy) on Impact-testing machine to find the Impact Strength of the specimen.

3. To determine the hardness of the given specimen using Vicker/Brinell/Rockwell hardness testing machine.

4. To conduct experiment on Torsion of Rod/wire.

Module 2:

1. To Study the working of 2 stroke Diesel/Petrol engine. 2. To Study and working of 4 stroke Petrol/Diesel engine. 3. To Study the model of Babcock and Wilcox and Lancashire boiler. 4. To Study various types of Mounting and Accessories of Boilers.

Module 3: 1. To verify the parallelogram, and Triangle law. 2. To verify the polygon law of force. 3. To determine the coefficient of friction on inclined surface. 4. To determine the efficiency and Mechanical Advantage of Worm & Worm-wheel. 5. To conduct experiment on Force Analysis on simple truss and Jib-crane Apparatus. 6. To conduce friction experiment on screw-jack.

Page 74: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

REE 101/REE201

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

BASIC ELECTRICAL ENGINEERING

COURSE OUTCOMES

L T P

3 1 0

1. Solve and analyze the DC & AC electrical circuits using KVL/KCL and network

theorems.

2. Solve and analyze the behavior of AC electrical circuits and resonance.

3. Apply the concepts of measurements in measuring electrical quantities.

4. Solve and analyze the behavior of magnetic circuits and demonstrate the working of

single phase transformers, auto-transformer and their applications.

5. Demonstrate the working principles of basic electrical machines including DC as well as

AC machines and identify the type of electrical machine used for a particular application.

DETAILED SYLLABUS

Unit-I : Electrical Circuit Analysis:

Introduction, Circuit Concepts: Concepts of network, Active and passive elements, Voltage and

current sources, Concept of linearity and linear network, Unilateral and bilateral elements,

Source transformation, Kirchhoff’s laws, Loop and nodal methods of analysis, Star-delta

transformation,

AC fundamentals: Sinusoidal, square and triangular waveforms – Average and effective values,

Form and peak factors, Concept of phasors, phasor representation of sinusoidally varying voltage

and current.

Unit-II: Steady- State Analysis of Single Phase AC Circuits:

Analysis of series and parallel RLCCircuits, Concept of Resonance in series & parallel circuits,

bandwidth and quality factor; Apparent, active & reactive powers, Power factor, Concept of

power factor improvement and its improvement (Simple numerical problems)

Network theorems (AC & DC with independent sources): Superposition theorem, Thevenin’s

theorem, Norton’s theorem, Maximum Power Transfer theorem (Simple numerical problems)

Unit-III : Three Phase AC Circuits: Three phase system-its necessity and advantages, Star and delta connections, Balanced supply

and balanced load, Line and phase voltage/current relations, Three-phase power and its

measurement (simple numerical problems).

Page 75: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Measuring Instruments: Types of instruments, Construction and working principles of PMMC

and moving iron type voltmeters & ammeters, Single phase dynamometer wattmeter, Use of

shunts and multipliers (Simple numerical problems on shunts and multipliers)

Unit-IV: Magnetic Circuit:Magnetic circuit concepts, analogy between electric & magnetic

circuits, B-H curve, Hysteresis and eddy current losses, Magnetic circuit calculations (Series &

Parallel).

Single Phase Transformer: Principle of operation, Construction, EMF equation, Equivalent

circuit, Power losses, Efficiency (Simple numerical problems), Introduction to auto transformer.

Unit-V: Electrical Machines:

DC machines:Principle & Construction, Types, EMF equation of generator and torque equation

of motor, applications of DC motors (simple numerical problems)

Three Phase Induction Motor:Principle & Construction, Types, Slip-torque characteristics,

Applications (Numerical problems related to slip only)

Single Phase Induction motor: Principle of operation and introduction to methods of starting,

applications.

Three Phase Synchronous Machines: Principle of operation of alternator and synchronous

motor and their applications.

Text Books:

1 .“Basic Electrical Engineering”, S N Singh; Prentice Hall International 2. “Basic Electrical Engineering”, Kuldeep Sahay, New Age International Publishers

3.“Fundamentals of Electrical Engineering”, B Dwivedi, A Tripathi; Wiley India

4.“Principles of Electrical Engineering”, V. Del Toro,; Prentice Hall International

5. “Electrical Engineering”, J. B. Gupta, Kataria and Sons

Reference Books:

1.“Electrical and Electronics Technology”, Edward Hughes; Pearson 2.“Engineering Circuit Analysis”, W.H. Hayt& J.E. Kimerly; Mc Graw Hill

3.“Basic Electrical Engineering”, C L Wadhwa; New Age International

4.“Basic Electrical Engineering”, T.K. Nagsarkar,M.S. Shukhija; Oxford University Press

Page 76: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

REE 151/REE251

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

ELECTRICAL ENGINEERING LABORATORY

COURSE OUTCOMES

L T P

0 0 2

At the end of the course, the student should be able

o Conduct experiments illustrating the application of KVL/KCL and network theorems to

DC electrical circuits.

o Demonstrate the working of various measuring instruments like ammeter, voltmeter,

wattmeter, energy meter etc.

o Conduct experiments illustrating the working of magnetic circuits, single phase

transformers and auto-transformers.

o Conduct experiments illustrating the behavior of DC and AC machines and identify the

type of electric machine used for a particular application.

LIST OF EXPERIMENTS

Note: A minimum of ten experiments from the following should be performed

1. Verification of Kirchhoff’s laws

2. Verification of Superposition theorem

3. Verfication of Thevenin’s Theorem and Maximum Power Transfer Theorem.

4. Measurement of power and power factor in a single phase ac series inductive circuit and study

improvement of power factor using capacitor

5. Study of phenomenon of resonance in RLC series circuit and obtain resonant frequency.

6. Connection and measurement of power consumption of a fluorescent lamp (tube light).

7. Measurement of power in 3- phase circuit by two wattmeter method and determination of its

power factor for star as well as delta connected load.

8. Determination of parameters of ac single phase series RLC circuit

9. To observe the B-H loop of a ferromagnetic material in CRO.

10. Determination of (i) Voltage ratio (ii) polarity and (iii) efficiency by load test of a single

phase transformer

11. Determination of efficiency of a dc shunt motor by load test

12. To study running and speed reversal of a three phase induction motor and record speed in

both directions.

Page 77: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RCS101/RCS201

Computer System and Programming in C

L T P

3 0 0

Unit1: (10 Lectures)

Basics of Computer: Introduction to digital computer, basic operations of computer, functional

components of computer, Classification of computers.

Introduction to operating system: [DOS, Windows, Linux and Android] purpose, function,

services and types.

Number system: Binary, octal and hexadecimal number systems, their mutual conversions,

Binary arithmetic.

Basics of programming: Approaches to Problem Solving, Concept of algorithm and flow

charts, Types of computer languages:- Machine Language, Assembly Language and High Level

Language, Concept of Assembler, Compiler, Loader and Linker.

Unit2: (8 Lectures)

Standard I/O in “C”, Fundamental data types- Character type, integer, short, long, unsigned,

single and double floating point, Storage classes- automatic, register, static and external,

Operators and expression using numeric and relational operators, mixed operands, type

conversion, logical operators, bit operations, assignment operator, operator precedence and

associatively.

Fundamentals of C programming: Structure of C program, writing and executing the first C

program, Components of C language. Standard I/O in C.

Unit3: (10 Lectures)

Conditional program execution: Applying if and switch statements, nesting if and else, use of

break and default with switch, program loops and iterations: use of while, do while and for loops,

multiple loop variables, use of break and continue statements.

Functions: Introduction, types of functions, functions with array, passing values to functions,

recursive functions.

Unit 4: (6 Lectures)

Arrays: Array notation and representation, manipulating array elements, using multi

dimensional arrays.Structure, union, enumerated data types

Unit 5: (8 Lectures)

Pointers: Introduction, declaration, applications File handling, standard C preprocessors,

defining and calling macros, conditional compilation, passing values to the compiler.

Reference:

1. The C programming by Kernighan Brain W. and Ritchie Dennis M., Pearson Education .

2. Computer Basics and C Programming by V.Rajaraman , PHI Learning Pvt. Limited –

2015.

3. Programming in C by Kochan Stephen G. Pearson Education – 2015.

4. Computer Concepts and Programming in C by D.S. Yadav and Rajeev Khanna, New Age

International Publication .

Page 78: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

5. Computer Concepts and Programming in C by Vikas Gupta, Wiley India Publication

6. Computer Fundamentals and Programming in C. Reema Thareja, Oxford Publication

7. Computer Concepts and Programming in C, E Balaguruswami, McGraw Hill

8. Computer Science- A Structured Programming Approach Using C, by Behrouz A.

Forouzan, Richard F. Gilberg, Thomson, Third Edition , Cengage Learning - 2007.

9. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson

Addison-Wesley, 2006.

10. Computer Concepts and Programming by Anami, Angadi and Manvi, PHI Publication

11. Computer Fundamental and C programming by K K Gupta, Acme Learning Publication

RCS151/RCS251

Computer Programming Lab

1.WAP that accepts the marks of 5 subjects and finds the sum and percentage marks obtained

bythe student.

2.WAP that calculates the Simple Interest and Compound Interest. The Principal , Amount, Rate

ofInterest and Time are entered through the keyboard.

3.WAP to calculate the area and circumference of a circle.

4.WAP that accepts the temperature in Centigrade and converts into Fahrenheit using the

formula C/5=(F-32)/9.

5.WAP that swaps values of two variables using a third variable.

6.WAP that checks whether the two numbers entered by the user are equal or not. 7.WAP to find the greatest of three numbers.

8.WAP that finds whether a given number is even or odd.

9.WAP that tells whether a given year is a leap year or not.

10.WAP that accepts marks of five subjects and finds percentage and prints grades according to

the following criteria:

Between 90-100%--------------Print ‘A’

80-90%----------------------------Print ‘B’

60-80%---------------------------Print ‘C’

Below 60%----------------------Print ‘D’

11.WAP that takes two operands and one operator from the user and perform the operation and

prints the result by using Switch statement.

12.WAP to print the sum of all numbers up to a given number.

13.WAP to find the factorial of a given number.

14.WAP to print sum of even and odd numbers from 1 to N numbers.

15.WAP to print the Fibonacci series.

16.WAP to check whether the entered number is prime or not.

17.WAP to find the sum of digits of the entered number.

18.WAP to find the reverse of a number.

19.WAP to print Armstrong numbers from 1 to 100.

20.WAP to convert binary number into decimal number and vice versa.

21.WAP that simply takes elements of the array from the user and finds the sum of these

elements.

22.WAP that inputs two arrays and saves sum of corresponding elements of these arrays in a

third array and prints them.

23.WAP to find the minimum and maximum element of the array.

Page 79: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

24.WAP to search an element in a array using Linear Search.

25.WAP to sort the elements of the array inascending order using Bubble Sort technique.

26.WAP to add and multiply two matrices of order nxn.

27.WAP that finds the sum of diagonal elements of a mxn matrix.

28.WAP to implement strlen (), strcat (),strcpy () using the concept of Functions.

23

29.Define a structure data type TRAIN_INFO. The type contain Train No.: integer type Train

name: string Departure Time: aggregate type TIME Arrival Time : aggregate type TIME Start

station: string End station : string The structure type Time contains two integer members: hour

and minute. Maintain a train

timetable and implement the following operations:

(i)List all the trains (sorted according to train number) that depart from a particular section.

(ii)List all the trains that depart from a particular station at a particular time.

(iii)List all he trains that depart from a particular station within the next one hour of a given time.

(iv)List all the trains between a pair of start station and end station.

30. WAP to swap two elements using the concept of pointers.

31.WAP to compare the contents of two files and determine whether they are same or not.

32.WAP to check whether a given word exists in a file or not. If yes then find the number of

times it occurs.

Page 80: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

RAS104/RAS204

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Professional Communication

S.No. Unit Contents

1 Unit-1

Fundamentals of

Communications

Technical Communication: features: Distinction between General And Technical Communication; Language as a tool of

communications; Levels of communication: Interpersonal,

Organizational, Mass communication; The flow of communication:

Downward, Upward, Lateral/Horizontal (Peer group) : Importance

of technical communication; Barriers to Communication.

2 Unit-II Written

Communication

Words and Phrases: Word formation, Synonyms and Antonyms; Homophones; Select vocabulary of about 500-1000 New words;

correct Usage: all Parts of Speech; Modals; Concord; Articles;

Infinitives; Transformation of sentences; Requisites f Sentence

Construction: Paragraph Development: Techniques and Methods-

Inductive, Deductive, Spatial , Linear, Chronological etc.

3 Unit-III

Business

Communication

Principles, Sales & Credit letters; Claim and Adjustment Letters; Job Application and Resumes. Reports: Types; Significance; Structure,

Style & Writing of Reports.

Technical Proposal; Parts; Types; Writing of Proposal; Significance;

Negotiation skills.

4 Unit-IV

Presentation

Strategies and

Soft Skills.

Nuances and Modes of Delivery; Body Language; Dimensions of Speech: Syllable; Accent; Pitch; Rhythm; Intonation; Paralinguistic

features of voice; Interpersonal communication: Definition; Types;

Team work; Attitude; Way to improve Attitude Listening Skills :

Types; Methods for improving Listening Skills.

5 Unit –V

Value- Based

Text Readings

Following essays from the prescribed text book with emphasis on Mechanics of writing.

(i) Humanistic and Scientific Approaches to Human Activity

by Moody E. Prior

(ii) The Language of Literature and Science by A. Huxley

(iii) Man and Nature by J. Bronowski

(iv) Science and Survival by Barry Commoner

(v) The Mother of the Sciences by A.J. Bahm.

6 Text Book 1. Improve your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, New Delhi.

2. Technical Communication- Principles and Practices by

Meenakshi Raman & Sangeeta Sharma, Oxford Univ. Press,

2007, New Delhi.

3. Functional skills in Language and Literature, by R.P. Singh,

Oxford Univ. Press, 2005, New Delhi.

7 Reference Books 1. Communication Skills for Engineers and Scientists, Sangeeta Sharma et.al. PHI Learning Pvt. Ltd, 2011, New Delhi.

2. Business Correspondence and Report Writing by Prof.

R.C.,Sharma & Krishna Mohan, Tata McGraw Hill & Co.

Ltd. , 2001, New Delhi.

3. Word Power Made Easy by Norman Lewis, W.R. Goyal Pub.

& Distributors, 2009, Delhi.

Page 81: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

4. Developing Communication skills by Krishna Mohan, Mecra

Bannerji- Macmillan India Ltd. 1990, Delhi.

5. Manual of Practical Communication by L.U.B. Pandey:

A.I.T.B.S. Publications India Ltd.; Krishan Nagar, 2013,

Delhi.

6. English Grammar and Usage by R.P.Sinha, Oxford University Press, 2005, New Delhi.

7. Spoken English- A manual of Speech and Phonetics by R.K.

Bansal & J.B. Harrison Orient Blackswan, 2013, New Delhi.

Page 82: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

RAS154/RAS254

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

PROFESSIONAL COMMUNICATION LABORATORY PRACTICALS

Interactive and Communicative Practical with emphasis on Oral Presentation/Spoken

Communication based on International Phonetic Alphabets (I.P.A) LIST OF PRACTICALS

1. Group Discussion: Practical based on Accurate and Current Grammatical Patterns.

2. Conversational skills for Interviews under suitable Professional Communication Lab

conditions with emphasis on Kinesics.

3. Communication Skills for Seminars/Conferences/Workshops with emphasis on

Paralinguistics / Kinesics.

4. Presentation Skills of Technical Paper/Project Reports/Professional Reports based on

proper Stress and Intonation Mechanics.

5. Official /Public Speaking based on Rhythmic Patterns.

6. Theme-Pressentation /Key-Note Presentation based on correct argumentation

methodologies.

7. Individual Speech Delivery/Conferences with skills to defend Interjections/Quizzes.

8. Argumentative Skills/Role Play Presentation with Stress and Intonation.

9. Comprehensions Skills based on Reading and Listening Practicals on a model Audio-

Visual Usage.

Reference Books

1. Bansal R.K.& Harrison: Phonetics in English, Orient Longman , New Delhi.

2. Sethi & Dhamija: A Course in Phonetics and Spoken English, Prentice Hall, New

Delhi.

3. L.U.B. Pandey & R.P.Singh, A Manual of Practical Communication, A.I.T.B.S. Pub.

India Ltd. Krishan Nagar, Delhi.

4. Joans Daniel, English Pronouncing Dictionary, Cambridge Univ. Press.

Page 83: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RME-152/RME-252: WORKSHOP PRACTICE L T P:

0 0 3

1. Carpentry Shop:

(a) Study of tools & operations and carpentry joints.

(b) Simple exercise usingjack plane.

(c) To prepare half-lap corner joint, mortise &tennon joints.

(d) Simple exercise onwoodworking lathe. 2. Fitting (Bench Working) Shop:

(a) Study of tools & operations (b) Simple exercises involving fitting work.

(c) Make perfect malefemalejoint.

(d) Simple exercises involving drilling/tapping/dieing.

3. Black Smithy Shop:

(a) Study of tools & operations (b) Simple exercises based on black smithyoperations such as upsetting, drawing down,

punching, bending, fullering& swaging. 4. Welding Shop:

(a) Study of tools & operations of Gas welding & Arc welding (b) Simple butt andLap welded joints.

(c) Oxy-acetylene flame cutting. 5. Sheet-metal Shop:

(a) Study of tools & operations. (b) Making Funnel complete with ‘soldering’.

(c) Fabrication of tool-box, tray, electric panel box etc. 6. Machine Shop:

(a) Study of Single point cutting tool, machine tools and operations. (b) Planeturning.

(c) Step turning

(d) Taper turning.

(e) Threading 7. Foundry Shop:

(a) Study of tools & operations (b) Pattern making.

(c) Mould making with the use ofa core.

(d) Casting

Page 84: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RCE151/RCE251

Introduction

Computer Aided Engineering Graphics

L T P

0 0 3

Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning line conventions

and free hand practicing, AUTO CAD, layout of the software, standard tool bar/menus and

description of most commonly used tool bars, navigational tools. Co-ordinate system and

reference planes. Definitions of HP, VP, RPP & LPP. Creation of 2D/3D environment. Selection

of drawing size and scale. Commands and creation of Lines,Co-ordinate points, axes, poly-lines,

square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim,

extend, break, chamfer, fillet, curves, constraints.

2 – Sheets Orthographic Projections Introduction, Definitions - Planes of projection, reference

line and conventions employed, Projections of points in all the four quadrants, Projections of

straight lines (located in First quadrant/first angle only), True and apparent lengths, True and

apparent inclinations to reference planes

2 – Sheets Orthographic Projections of Plane Surfaces (First Angle Projection Only)

Introduction, Definitions–projections of plane surfaces–triangle, square, re

ctangle, rhombus, pentagon, hexagon and circle, planes in different positions by change of

position method only.

1 – Sheet Projections of Solids (First Angle Projection Only) Introduction, Definitions –

Projections of right regular tetrahedron, hexahedron (cube), prisms, pyramids, cylinders and

cones in different positions.

2-Sheets Sections And Development of Lateral Surfaces of Solids Introduction, Section planes,

Sections, Section views, Sectional views, Apparent shapes and True shapes of Sections of right

regular prisms, pyramids, cylinders and cones resting with base on HP.

1 – Sheet Isometric Projection (Using Isometric Scale Only) Introduction, Isometric scale, Isometric projection of simple plane figures, Isometric projection

of tetrahedron, hexahedron(cube), right regular prisms

, pyramids, cylinders, cones, spheres, cut spheres.

1-Sheet

Text Books

1. Engineering Drawing - N.D. Bhatt & V.M. Panchal, 48thedition, 2005-Charotar Publishing

House, Gujarat.

2. Computer Aided Engineering Drawing - S. Trymbaka Murthy, -I.K International Publishing

House Pvt. Ltd., New Delhi, 3rdrevised edition- 2006.

Reference Books

1. Engineering Graphics - K.R. Gopalakrishna, 32nd edition, 2005- Subash Publishers Bangalore. 2. Fundamentals of Engineering Drawing with an Introduction to Interactive Computer Graphics

for Design and Production-Luzadder Warren J., Duff John M., Eastern Economy Edition, 2005-

Prentice-Hall of India Pvt. Ltd., New Delhi.

Engineering Drawing – M.B. Shah, B.C.Rana, 2nd Edition,2

Page 85: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RAS203

Engineering Mathematics - II

L T P

3 1 0

Unit - 1: Ordinary Differential Equations

Linear differential equations of nth order with constant coefficients, Complementary function and Particular integral, Simultaneous linear differential equations, Solution of second order

differential equations by changing dependent & independent variables, Method of variation of

parameters, Applications to engineering problems (without derivation).

Unit - 2: Series Solution and Special Functions Series solution of second order ordinary differential equations with variable coefficient

(Frobenius method), Bessel and Legendre equations and their series solutions, Properties of

Bessel function and Legendre polynomials.

Unit - 3: Laplace Transform

Laplace transform, Existence theorem, Laplace transforms of derivatives and integrals, Initial and final value theorems, Unit step function, Dirac- delta function, Laplace transform of

periodic function, Inverse Laplace transform, Convolution theorem, Application to solve simple

linear and simultaneous differential equations.

Unit - 4: Fourier Series and Partial Differential Equations

Periodic functions, Dirichlet’s Conditions, Fourier series of arbitrary periods, Euler’s Formulae, Even and odd functions, Half range sine and cosine series, Gibbs Phenomena.

Solution of first order Lagrange’s linear partial differential equations, Second order linear partial

differential equations with constant coefficients.

Unit - 5: Applications of Partial Differential Equations

Classification of second order partial differential equations, Method of separation of variables for solving partial differential equations, Solution of one and two dimensional wave and heat

conduction equations, Laplace equation in two dimension, Equation of transmission lines.

Text Books:

1. E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.

2. B. V. Ramana, Higher Engineering Mathematics, Tata Mc Graw- Hill Publishing

Company Ltd.

3. R.K.Jain & S.R.K. Iyenger, Advance Engineering Mathematics, Narosa Publishing

House.

Reference Books: 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.

2. Peter V. O’ Neil, Advanced Engineering Mathematics, Thomas (Cengage) Learning.

3. Chandrika Prasad, Advanced Mathematics for Engineers, Prasad Mudranalaya

4. A. C. Srivastava & P. K. Srivastava, Engineering Mathematics, Vol. – II, PHI Learning

Pvt. Ltd.

5. Rukmangadachari, Engineering Mathematics – II, Pearson Education.

Page 86: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RAS-201

ENGINEERING PHYSICS- II

Unit – I: Crystal Structures and X-ray Diffraction 10Hrs. Space lattice, basis, Unit cell, Lattice parameter, Seven crystal systems and Fourteen Bravais

lattices, Co-ordination number, Atomic radius and Packing factor of different cubic structures,

Crystal structure of NaCl and diamond, Lattice planes and Miller Indices, Diffraction of X-rays

by crystal, Laue’s experiment, Bragg’s Law, Bragg’s spectrometer. Compton Effect.

Unit – II: Dielectric and Magnetic Properties of Materials 10Hrs. Dielectric Properties: Dielectric constant and Polarization of dielectric materials, Relation

between E, D and P, Types of Polarization (Polarizability). Equation of internal fields in liquid

and solid (One- Dimensional), Claussius-Mossotti equation, Frequency dependence of dielectric

constant, Dielectric Losses, Important applications of dielectric material, Ferroelectricity,

Piezoelectricity.

Magnetic Properties: Magnetization, Origin of magnetic moment, Dia, para and ferro

magnetism, Langevin’s theory for diamagnetic material, Phenomena of hysteresis and its

applications.

Unit – III: Electromagnetic Theory 06 Hrs.

Equation of continuity, Maxwell’s Equations (Integral and Differential Forms) and its

derivations, Displacement Current, Poynting vector and Poynting theorem, EM - Wave equation and its propagation characteristics in free space, non-conducting and conducting media, energy

density of electromagnetic wave, Skin depth.

Unit – IV: Band Theory of Solids 06 Hrs. Free electron Theory, Formation of bands in Solids, Classification of solids on band theory,

Density of states, Fermi-Dirac distribution, Concept of effective mass, Charge carrier density

(electrons and holes), Conductivity of semiconductors, carrier concentrations Fermi energy,

Position of Fermi level in intrinsic and in extrinsic semiconductors. Temperature dependence of

conductivity in semiconductors.

Unit – V: Physics of some technologically important Materials 08Hrs. Superconductors: Temperature dependence of resistivity in superconducting materials, Effect

of magnetic field (Meissner effect), Temperature dependence of critical field, London equations,

Josephson theory, persistent currents, Type I and Type II superconductors, BCS theory

(Qualitative), High temperature superconductors and Applications of Super-conductors.

Nano-Materials: Basic principle of nanoscience and technology, structure, properties and uses

of Fullerene, Carbon nanotubes Single and double walled nanotubes, synthesis of nanotubes,

Properties and Applications of nanotubes.

Reference books: 1. Concept of Modern Physics - by Beiser (Tata Mc-Graw Hill)

2. Solid State Physics - by C. Kittel, 7th edition (Wiley Eastern)

3. Materials Science and Engineering - by V. Raghavan (Prentice- Hall India)

4. Solid State Physics - by S.O. Pillai, 5th edition (New Age International)

Page 87: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

5. Introduction to Electrodynamics - by David J. Griffith (PH I)

6. Engineering Physics- C. Mani Naidu(Pearson)

7. Applied Physics for Engineers- Neeraj Mehta (PHI Learning, New Delhi)

Page 88: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

B.Tech. Second Year

On

Choice Based Credit System

(Effective from the Session: 2017-18) Semester III

CT: Class Test TA: Teacher Assessment L/T/P: Lecture/ Tutorial/ Practical *Students admitted in B.Tech. IInd Year through lateral entry on the basis of B.Sc. qualification have to

qualify these subjects as AUDIT COURSES.

Science Based Open Electives:

a. ROE030/ROE040 Manufacturing Process

b. ROE031/ROE041 Introduction to soft computing

c. ROE032/ROE042 Nano Science

d. ROE033/ROE043 Laser System and Application

e. ROE034/ROE044 Space Science

S.

No.

Subject Code

Subject Name

L-T-P

ESE

Marks Sessional

Total

Credit

CT TA

1. ROE030 to

039/ RAS301

Science Based Open Elective/

Mathematics-III

3-1-0

70

20

10

100

4

2.

RVE301/

RAS302

Universal Human Values &

Professional Ethics/ Environment & Ecology

3-0-0

70

20

10

100

3

3. REE305 Network Analysis and Synthesis 3-0-0 70 20 10 100 3

4. REC301 Digital Logic Design 3-0-0 70 20 10 100 3

5. REC302 Electronic Devices and Circuits 3-1-0 70 20 10 100 4

6. REC303 Signals & Systems 3-0-0 70 20 10 100 3

7. REC351 Digital Logic Design Lab 0-0-2 50 30 20 100 1

8.

REC352

Electronic Devices and Circuits

Lab

0-0-2

50

30

20

100

1

9. REC353 Signals & Systems Lab 0-0-2 50 30 20 100 1

10.

REC354

Electronics Workshop & PCB

Design Lab

0-0-2

50

30

20

100

1

11.

RME151*

Elements of Mechanical

Engineering*

3-1-0

70

20

10

100*

--

12.

RCE151*

Computer Aided Engineering

Graphics*

0-0-3

50

30

20

100*

--

Total 1000 24

Page 89: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

S.

No.

Subject Code

Subject Name

L-T-P ESE

Marks Sessional

Total

Credit CT TA

1. RAS401/ ROE040 to 049

Mathematics-III/ Science Based Open Elective

3-1-0

70

20

10

100

4

2.

RAS402/

RVE401

Environment & Ecology/ Universal Human Values &

Professional Ethics

3-0-0

70

20

10

100

3

3.

REC401 Microprocessors & Microcontrollers

3-0-0

70

20

10

100

3

4. REC402 Electromagnetic Field Theory 3-1-0 70 20 10 100 4

5.

REC403 Electronic Measurement & Instrumentation

3-0-0

70

20

10

100

3

6. RCS406 Data Structure & Algorithms 3-0-0 70 20 10 100 3

7.

REC451 Microprocessors & Microcontrollers Lab

0-0-2

50

30

20

100

1

8.

REC452 Electronic Measurement & Instrumentation Lab

0-0-2

50

30

20

100

1

9.

REC453 Advanced Electronics System Lab

0-0-2

50

30

20

100

1

10.

RCS456 Data Structure & Algorithms Lab

0-0-2

50

30

20

100

1

11.

RME251* Elements of Mechanical Engineering*

3-1-0

70

20

10

100*

--

12.

RCE251* Computer Aided Engineering Graphics*

0-0-3

50

30

20

100*

--

Total 1000 24

f. ROE035/ROE045 Polymer Science & Technology

g. ROE036/ROE046 Nuclear Science

h. ROE037/ROE047 Material Science

i. ROE038/ROE048 Discrete Mathematics

j. ROE039/ROE049 Applied Linear Algebra

Semester IV

Page 90: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

1

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

CT: Class Test TA: Teacher Assessment L/T/P: Lecture/ Tutorial/ Practical

*Students admitted in B.Tech. IInd Year through lateral entry on the basis of B.Sc. qualification have to qualify

these subjects as AUDIT COURSES.

Science Based Open Electives:

a. ROE030/ROE040 Manufacturing Process

b. ROE031/ROE041 Introduction to soft computing c.

ROE032/ROE042 Nano Science

d. ROE033/ROE043 Laser System and Application

e. ROE034/ROE044 Space Science

f. ROE035/ROE045 Polymer Science & Technology g.

ROE036/ROE046 Nuclear Science

h. ROE037/ROE047 Material Science

i. ROE038/ROE048 Discrete Mathematics

j. ROE039/ROE049 Applied Linear Algebra

Page 91: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

2

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

REE305: NETWORK ANALYSIS & SYNTHESIS

UNIT-I Signal Analysis, Complex Frequency, General Characteristics and Descriptions of Signals, Node Voltage Analysis, Mesh Current Analysis, Step Function and Associated Wave Forms, The Unit

Impulse, Initial and final conditions, Step and Impulse Response, Response of Source Free

Circuits, Forced Response, Phasor and Steady State Responses of Circuits to Sinusoidal

Functions, Resonance in AC Circuits.

UNIT-II Review of Laplace Transforms, Poles and Zeroes, Initial and Final Value theorems, The transform circuit, Superposition Theorem, Thevenin’s and Norton’s theorems, Maximum Power

Transfer Theorem, Convolution Integral, Amplitude and phase responses. Network functions.

UNIT-III Graph Theory fundamentals, Matrix Representation of Graphs, Formulation of Network Response Equations using Incidence Matrix, Duality in Networks. Computation of Ladder and

Non-Ladder Networks, Routh-Hurwitz Stability Criterion, Bode Diagrams.

UNIT-IV Parameters of Two Port Networks, Correlation between Two Port Parameters, Two Port, Relation between Port Parameters, Transfer Functions using Two Port Parameters,

Interconnection of TwoPorts , Reciprocal and Symmetric Networks, Terminated Two Port

Networks, Interconnections of Two Port Networks, Image Impedance, Iterative Impedance.

Harmonics and Dirichlet`s Conditions, Waveform Symmetry and Fourier Coefficients. Filter

Networks.

UNIT-V Active Network Synthesis and Realizability: Elements of Relizability Theory, Hurwitz Polynomial, Positive Real Functions (PRF), Characteristics of PRF, Methodology for Simple

Network Synthesis, Synthesis of Two Element Type One Port Network.

Text Book:

1. Franklin F. Kuo, “Network Analysis and synthesis”, Wiley India Pvt Ltd.

2. M.S. Sukhija, T.K. Nagsarkar, “Circuits and Networks”, Oxford University Publication.

Reference Books: 1. M. E. Van Valkenberg, “Network Analysis”, Prentice Hall of India Ltd. 2. Ghosh, “Network Theory: Analysis and Synthesis”, PHI Learning Pvt. Ltd

Page 92: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

2

REC301: DIGITAL LOGIC DESIGN

UNIT-I Digital System And Binary Numbers: Number System and its arithmetic, Signed binary numbers, Binary codes, Cyclic codes, Hamming Code, the map method up to five variable,

Don’t care conditions, POS simplification, NAND and NOR implementation, Quine Mc-Clusky

method (Tabular method).

UNIT-II Combinational Logic: Combinational Circuits: Analysis Procedure, Design procedure, Binary adder-subtractor, Decimal adder, Binary multiplier, Magnitude comparator, Multiplexers,

Demultiplexers, Decoders, Encoders.

UNIT-III Sequential Logic And Its Applications: Storage elements: latches & flip flops, Characteristic Equations of Flip Flops, Flip Flop Conversion, Shift Registers, Ripple Counters, Synchronous

Counters, Other Counters: Johnson & Ring Counter.

UNIT-IV Synchronous & Asynchronous Sequential Circuits: Analysis of clocked sequential circuits with state machine designing, State reduction and assignments, Design procedure. Analysis

procedure of Asynchronous sequential circuits, circuit with latches, design procedure, Reduction

of state and flow table, Race-free state assignment, Hazards.

UNIT-V Memory & Programmable Logic Devices: Digital Logic Families: DTL, DCTL, TTL, ECL & CMOS etc., Fan Out, Fan in, Noise Margin; RAM, ROM, PLA, PAL; Circuits of Logic Families,

Interfacing of Digital Logic Families, Circuit Implementation using ROM, PLA and PAL; CPLD

and FPGA.

Text Books:

1. M. Morris Mano and M. D. Ciletti, “Digital Design”, Pearson Education.

2. David J. Comer, “Digital Logic & State Machine Design”, Oxford University Press.

3. R. P. Jain, “Modern Digital Electronics”, Tata McGraw Hill Publication.

Reference Books: 1. D.P. Kothari and J.S. Dhillon, “Digital Circuits and Design”, Pearson Education.

2. A. Anand Kumar, “Fundamentals of Digital Circuits”, PHI Learning Pvt. Ltd.

Page 93: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

3

REC302: ELECTRONIC DEVICES AND CIRCUITS

UNIT-I Energy Bands and Charge Carrier in Semiconductor: Bonding forces and energy bands in solids, Charge Carriers in Semiconductors, Carrier Concentrations, Drift Mechanism.

Excess carriers in Semiconductors: Optical Absorption, Carrier Lifetime: Direct

Recombination, Steady State Carrier Generation, Quasi-Fermi Level, Diffusion of carriers and

Einstein relation.

UNIT-II Junctions: Equilibrium Conditions, Forward and Reveres Biased Junctions; Steady State Conditions.

Optoelectronic Devices: Photodiode V-I characteristic, Photodetector, Solar Cells, Light

Emitting Diode.

UNIT-III MOSFET: Device structure and its operation in equilibrium, V-I characteristics. Circuits at DC,

MOSFET as Amplifier and switch, Biasing in MOS amplifier circuits, small-signal operation and

models, single stage MOS amplifier, MOSFET internal capacitances and high frequency model,

frequency response of CS amplifier

UNIT-IV BJT: Review of device structure operation and V-I characteristics, BJT circuits at DC, BJT as amplifier and switch, biasing in BJT amplifier circuit, small-signal operation and models, single

stage BJT amplifier, BJT internal capacitances and high frequency model, frequency response of

CE amplifier.

UNIT-V Feedback: The general feedback structure, properties of negative feedback, the four basic feedback topologies, the series-shunt feedback amplifier, the series-series feedback amplifier, the

shunt-shunt and shunt series feedback amplifier.

Oscillators: Basic principles of sinusoidal oscillators, op-amp RC oscillator circuits, LC

oscillator.

Text Book:

1. AS Sedra and K. C. Smith, “Microelectronic Circuits”, Oxford University Press.

2. Millman Jacob, Christos Halkias , Satyabrata Jit, “Electronic Devices and Circuits”, Tata

McGraw Hill.

3. BG Streetman and S. Banerjee “Solid State Electronics Devices”, Prentice Hall of India.

Reference Books: 1. Donald A. Neamen “Semiconductor Physics & Devices”, Tata McGraw Hill. 2. Alok K. Dutta, “Semiconductor Devices and Circuits”, Oxford University Press.

3. Jacob Millman and Arvin Grabel, “Microelectronics”, Tata McGraw Hill.

Page 94: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

4

REC303: SIGNALS & SYSTEMS

UNIT-I Signals: Representation of Signals, Singularity Functions, Discrete Time Signals, Types of Signals, Time Scaling and Shifting, Convolution and Correlation of LTI Systems, Correlation of

energy and power signals.

UNIT-II Systems and Analysis of System: System Classification, Linearity/Time Invariance, Causal System, Characterization of LTI Systems, Unit Sample Response, Generalization of D.T.

Systems, Concept of Stability, Convolution Integrals/summations, Energy and Power spectral

density, Properties of Power spectral Density, Analysis of First order systems, Analysis of

second order systems.

UNIT-III Fourier Transforms: Properties and Significance of CTFT, CTFT of Common Signals, Inverse CTFT; Introduction to DTFT, DTFT of Common Signals, Theorems and Properties – DTFT,

Inverse DTFT; Continuous Time and Discrete Time Hilbert Transform and its Properties.

Introduction of Gaussian signal and its Fourier transform.

UNIT-IV Laplace Transform and Z Transform: Laplace Transforms- Introduction, Laplace Transforms of common signals, Theorems and properties of Laplace Transforms, Concept of Region of

Convergence, Inverse Laplace Transforms; Z Transforms – Introduction, Z Transforms of

Common Signals, Theorems and properties of Z Transforms, Inverse Z Transforms.

UNIT-V Sampling of Time Signals: Nyquist Criterion, Sampling theorem and frequency domain representation of sampling, Sampling Techniques, Reconstruction of band limited signal from its

samples, Sampling of Sinusoidal and other signals.

Text Book:

1. AV Oppenheim, A.S. Willsky and S. Hamid Nawab, ‘Signals and Systems’, Pearson Education.

2. TK Rawat, “Signals and Systems”, Oxford University Press.

Reference Books: 1. BP Lathi, “Principals of Linear Systems and Signals”, Oxford University Press. 2. P. Ramakrishna Rao, ‘Signal and System’, Tata McGraw Hill, New Delhi.

3. Kishore S. Trivedi, “Probability & Statistics with Reliability Queuing and Computer

Science Applications”, Wiley Publication.

Page 95: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

5

REC351: DIGITAL LOGIC DESIGN LAB 1. Introduction to digital electronics lab- nomenclature of digital ICs, specifications, study

of the data sheet, Concept of Vcc and ground, verification of the truth tables of logic gates

using TTL ICs.

2. Implementation of the given Boolean function using logic gates in both SOP and POS forms.

3. Verification of state tables of RS, JK, T and D flip-flops using NAND & NOR gates.

4. Implementation and verification of Decoder using logic gates.

5. Implementation and verification of Encoder using logic gates.

6. Implementation of 4:1 multiplexer using logic gates.

7. Implementation of 1:4 demultiplexer using logic gates.

8. Implementation of 4-bit parallel adder using 7483 IC.

9. Design, and verify the 4-bit synchronous counter.

10. Design, and verify the 4-bit asynchronous counter.

11. Implementation of Mini Project using digital integrated circuit’s and other components.

Page 96: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

6

REC352: ELECTRONIC DEVICES AND CIRCUITS LAB 1. Study of Lab Equipments and Components: CRO, Multimeter, and Function

Generator, Power supply- Active, Passive Components and Bread Board.

2. P-N Junction diode: Characteristics of PN Junction diode - Static and dynamic

resistance measurement from graph.

3. Applications of PN Junction diode: Half & Full wave rectifier- Measurement of Vrms,

Vdc, and ripple factor.

4. Characteristics of Zener diode: V-I characteristics of zener diode, Graphical

measurement of forward and reverse resistance..

5. Application of Zener diode: Zener diode as voltage regulator. Measurement of

percentage regulation by varying load resistor.

6. Characteristic of BJT: BJT in CE configuration- Graphical measurement of h-

parameters from input and output characteristics. Measurement of Av, AI, Ro and Ri of

CE amplifier with potential divider biasing.

7. Measurement of Operational Amplifier Parameters: Common Mode Gain,

Differential Mode Gain, CMRR, Slew Rate.

8. Applications of Op-amp: Op-amp as summing amplifier, Difference amplifier,

Integrator and differentiator.

9. Field Effect Transistors: Single stage Common source FET amplifier –plot of gain in

dB Vs frequency, Measurement of, bandwidth, input impedance, maximum signal

handling capacity (MSHC) of an amplifier.

10. Oscillators: Sinusoidal Oscillators-

a. Wein’s bridge oscillator

b. phase shift oscillator. 11. Simulation of Amplifier circuits studied in the lab using any available simulation

software and measurement of bandwidth and other parameters with the help of simulation

software.

Page 97: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC353: SIGNALS & SYSTEMS LAB 1. Introduction to MATLAB

a. To define and use variables and functions in MATLAB.

b. To define and use Vectors and Matrices in MATLAB.

c. To study various MATLAB arithmetic operators and mathematical functions.

d. To create and use m-files.

2. Basic plotting of signals

a. To study various MATLAB commands for creating two- and three-dimensional

plots.

b. Write a MATLAB program to plot the following Continuous time and discrete

time signals

1. Step Function

2. Impulse Function

3. Exponential Function

4. Ramp Function

5. Sine Function

3. Time and Amplitude transformations

a. Write a MATLAB program to perform amplitude-scaling, time-scaling and time-

shifting on a given signal.

4. Convolution of given signals

a. Write a MATLAB program to obtain linear convolution of the given sequences.

5. Autocorrelation and Cross-correlation

a. Write a MATLAB program to compute autocorrelation of a sequence x(n) and

verify the property.

b. Write a MATLAB program to compute cross-correlation of sequences x(n) and

y(n) and verify the property.

6. Fourier Series and Gibbs Phenomenon

a. To calculate Fourier Series coefficients associated with Square Wave.

b. To Sum the first 10 terms and plot the Fourier Series as a function of time

c. To Sum the first 50 terms and plot the Fourier Series as a function of time

7. Calculating transforms using MATLAB

a. Calculate and plot Fourier Transform of a given signal

b. Calculate and plot Z-transform of a given signal

8. Impulse response and Step response of a given system

a. Write a MATLAB program to find the impulse response and step response of a

system form its difference equation

b. Compute and plot the response of a given system to a given input

9. Pole-zero diagram and bode diagram

a. Write a MATLAB program to find pole-zero diagram, bode diagram of a given system from the given system function

b. Write a MATLAB program to find, bode diagram of a given system from the

given system function

10. Frequency response of a system

Page 98: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

a. Write a MATLAB program to plot magnitude and phase response of a given

system

11. Checking Linearity/Non-Linearity of a system using SIMULINK

a. Build a system that amplifies a sine wave by a factor of two.

b. Test the linearity of this system using SIMULINK

References: 1. “Digital Signal Processing Using MATLAB” ,Vinay K. Ingle ,John G. Proakis, Cengage

Learning

2. Mathworks Website www.mathworks.com/

3. Virtual Lab Website http://www.vlab.co.in/, http://iitg.vlab.co.in/?sub=59&brch=166

Page 99: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC354: ELECTRONICS WORKSHOP & PCB DESIGN LAB

1. Study of CRO, DMM & Function Generator.

2. Study of various types of Active & Passive Components based on their ratings.

3. Winding shop: Step down transformer winding of less than 5VA.

4. Soldering shop: Fabrication of DC regulated power supply

5. Identification of various types of Printed Circuit Boards (PCB) and soldering Techniques.

6. Introduction to PCB Design software

7. PCB Lab: a. Artwork & printing of a simple PCB.

b. Etching & drilling of PCB.

8. Wiring & fitting shop: Fitting of power supply along with a meter in cabinet.

Page 100: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RCS406: DATA STRUCTURE & ALGORITHMS

UNIT-I Abstract Data Types, Sequences as value definitions, Data types in C, Pointers in C, Data Structures and C, Arrays in C, Array as ADT, One Dimensional Array, Implementing one

Dimensional Array, Array as parameters, Two Dimensional Array, Structures in C,

Implementing Structures, Unions in C, Implementation of unions, Structure Parameters,

Allocation of storage and scope of variables, Recursive Definition and Processes: Factorial

Function, Fibonacci Sequence, Recursion in C, efficiency of Recursion, Hashing: Hash Function,

Open Hashing, Closed Hashing: Linear Probing, Quadratic Probing, Double Hashing,

Rehashing, Extendible Hashing.

UNIT-II Stack, Queue And Linked List: Stack definition and examples, Primitive Operations, Example Representing Stacks in C, Push And Pop Operation Implementation, Queue as ADT, C

Implementation of Queues, Insert Operation, Priority Queue, Array Implementation of Priority

Queue, Inserting and Removing Nodes from a list-linked Implementation of stack, Queue and

Priority Queue, Other List Structures, Circular Lists: Stack and Queue as Circular List -Primitive

Operations on circular lists, Header Nodes, Doubly Linked Lists, Addition of Long Positive

Integers on Circular and Doubly Linked List.

UNIT-III Trees: Binary trees: Operations on Binary Trees, Applications of Binary Trees, Binary Tree Representation, Node Representation of Binary Trees, Implicit Array Representation of Binary

Tree, Binary Tree Traversal in C, Threaded Binary Tree, Representing List as Binary Tree,

Finding the Kth element, Deleting an Element, Trees and their applications: C Representation of

trees, Tree Traversals, Evaluating an Expression Tree, Constructing a Tree.

UNIT-IV Sorting And Searching: General Background of Sorting: Efficiency Considerations, Notations, Efficiency of Sorting, Exchange Sorts: Bubble Sort; Quick Sort; Selection Sort; Binary Tree

Sort; Heap Sort, Heap as a Priority Queue, Sorting Using a Heap, Heap Sort Procedure, Insertion

Sorts: Simple Insertion, Shell Sort, Address Calculation Sort, Merge Sort, Radix Sort, Sequential

Search: Indexed Sequential Search, Binary Search, Interpolation Search.

UNIT-V Graphs: Application of Graph, C Representation of Graphs, Transitive Closure, Warshall's Algorithm, Shortest Path Algorithm, Linked Representation of Graphs, Dijkstra's Algorithm,

Graph Traversal, Traversal Methods for Graphs, Spanning Forests, Undirected Graph and their

Traversals, Depth First Traversal, Application of Depth First Traversal, Efficiency of Depth First

Traversal, Breadth First Traversal, Minimum Spanning Tree, Kruskal's Algorithm, Round Robin

Algorithm.

Page 101: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Text Book: 1. Aaron M. Tenenbaum, Yeedidyah Langsam, Moshe J. Augenstein, “Data structures using

C and C++”, Pearson Education.

2. Reema Theraja, “Data Structure using C”, OUP Publication.

References Books: 1. E. Balagurusamy, “Programming in ANSI C', Second Edition, Tata McGraw Hill

Publication.

2. Robert L. Kruse, Bruce P. Leung Clovis L. Tondo, “Data Structures and Program Design

in C”, Pearson Education.

3. Lipschutz, “Data Structures With C”, Tata McGraw-Hill Education.

4. TH Koreman, “Introduction to Algorithms“, MIT Press.

Page 102: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC401: MICROPROCESSORS & MICROCONTROLLERS

UNIT-I 8085 MICROPROCESSOR: History and Evolution of Microprocessor and their Classification, Architecture of 8085 Microprocessor, Address / Data Bus multiplexing and demultiplexing.

Status and Control signal generation, Instruction set of 8085 Microprocessor, Classification of

instructions, addressing modes, timing diagram of the instructions.

UNIT-II Hardware Interfacing with 8085: Methods of data Transfer and Interrupts of 8085 microprocessor: Classification of interrupts, Programming using interrupts, Direct Memory

Access, Serial and parallel data transfer, Interfacing of Memory Chips with 8085

Microprocessor, Interfacing of 8085 with 8155/8156 (RAM), 8355/8755 (ROM). Interfacing of

Programmable Devices with 8085 Microprocessor, 8279 programmable Keyboard/Display

interface, 8255A programmable Parallel interface, 8254 programmable Interval Timer, 8259A

programmable Interrupt Controller, Assembly language programming.

UNIT-III 16-bit low power MCU MSP430: Introduction to microcontrollers and embedded systems, Von Neumann (Princeton) and Harvard architecture, RISC and CISC machine, Introduction to

MSP430: Architecture, Programming Techniques, Addressing Modes, Programming System

registers and configuration I/O ports pull up/down registers concepts, Low Power aspects of

MSP430: low power modes, Active vs Standby current consumption.

UNIT-IV Configuring Peripherals in MSP430: External interrupts and software interrupt, interrupt programming, Watchdog timer, Clock Tree in MSP430, Timer/ counter interrupt, Programming

MSP430 timer, counter programming, Real Time Clock (RTC), PWM control, timing generation

and measurements. Analog interfacing and data acquisition: ADC and Comparator in MSP430,

data transfer using DMA.

UNIT-V Serial Communication Interfaces in MSP430: Basics of serial communication, mode of serial

communication, RS232, serial communication issue, Serial port programming. Implementing

and programming UART, I2C, SPI interface using MSP430, Interfacing external devices,

external memory, keyboards, display devices, DAC/ADC, DC Motor, Stepper Motor,

Servomotor, power management, Sensor Interfacing and signal conditioning.

Case Study: MSP430 based embedded system application using the interface protocols for

communication with external devices: “A Low-Power Battery less Wireless Temperature and

Humidity Sensor with Passive Low Frequency RFID.

Text Book:

1. Ramesh Gaonkar, “Microprocessor Architecture, Programming, and Applications with the 8085”, Penram International Publication (India) Pvt. Ltd.

2. DV Hall, “Microprocessors Interfacing”, Tata McGraw Hill Publication.

3. N. Senthil Kumar, M. Saravanan, S. Jeevananthan, “Microprocessors and

Page 103: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Microcontrollers”, Oxford University Press Publication.

4. Getting Started with the MSP430 Launchpad by Adrian Fernandez, Dung Dang, Newness

publication ISBN-13: 978-0124115880

5. MSP430 microcontroller basics 1st Edition by John H. Davies (Author), Newnes

Publication ISBN-13: 978-0750682763

Reference Books: 1. http://processors.wiki.ti.com/index.php/MSP430_LaunchPad_Low_Power_Mode

2. http://processors.wiki.ti.com/index.php/MSP430_16-Bit_Ultra-

Low_Power_MCU_Training

3. AK Roy & KM Bhurchandi, “Advance Microprocessor and Peripherals (Architecture,

Programming & Interfacing)”, Tata McGraw Hill Publication.

Page 104: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC402: ELECTROMAGNETIC FIELD THEORY

UNIT-I Coordinate Systems and Transformation : Basics of Vectors: Addition, subtraction and multiplications; Cartesian, Cylindrical, Spherical

transformation.

Vector calculus: Differential length, area and volume, line surface and volume integrals, Del

operator, Gradient, Divergence of a vector, Divergence theorem, Curl of a vector, Stokes’s

theorem, Laplacian of a scalar.

UNIT-II Electrostatic fields: Coulombs law and field intensity, Electric field due to charge distribution, Electric flux density, Gausses’ Law- Maxwell’s equation, Electric dipole and flux line, Energy

density in electrostatic fields, Electric field in material space: Properties of materials, convection

and conduction currents, conductors, polarization in dielectrics, Dielectric-constants, Continuity

equation and relaxation time, boundary conditions, Electrostatic boundary value problems:

Poisson’s and Laplace’s equations., Methods of Images.

UNIT-III

Magneto statics : Magneto-static fields, Biot - Savart’s Law, Ampere’s circuit law, Maxwell’s

equation, Application of ampere’s law, Magnetic flux density- Maxwell’s equation, Maxwell’s

equation for static fields, magnetic scalar and vector potential.

UNIT-IV Magnetic forces: Materials and devices, Forces due to magnetic field, Magnetic torque and

moment, a magnetic dipole. Magnetization in materials, Magnetic boundary conditions,

Inductors and inductances, Magnetic energy.

UNIT-V Waves and Applications: Maxwell’s equation, Faraday’s Law, transformer and motional

electromotive forces, Displacement current, Maxwell’s equation in final form Electromagnetic

wave propagation: Wave propagation in loss dielectrics, Plane waves in lossless dielectrics Plane

wave in free space. Plain waves in good conductors, Power and the pointing vector, Reflection of

a plain wave in a normal incidence. Transmission Lines and Smith Chart.

Text Book:

1. MNO Sadiku, “Elements of Electromagnetic’, Oxford University Press.

Reference Books: 1. WH Hayt and JA Buck, “Engineering Electromagnetic”, McGraw- Hill Education.

Page 105: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC403: ELECTRONIC MEASUREMENT AND INSTRUMENTATION

UNIT-I Unit, dimensions and standards: Scientific notations and metric prefixes. SI electrical units, SI temperature scales, Other unit systems, dimensions and standards.

Measurement Errors: Gross error, systematic error, absolute error and relative error, accuracy,

precision, resolution and significant figures, Measurement error combination, basics of statistical

analysis.

PMMC instrument, Galvanometer, DC ammeter, DC voltmeter, series ohm meter.

UNIT-II Transistor voltmeter circuits, AC electronic voltmeter, current measurement with electronic instruments, probes, Digital voltmeter systems, Digital multimeter, digital frequency meter

System.

UNIT-III Voltmeter and ammeter methods, Wheatstone bridge, low resistance measurements, Low Resistance Measuring Instruments, AC bridge theory, capacitance bridges, Inductance bridges, Q

meter.

UNIT-IV CRO: CRT, Wave Form Display, Time Base, Dual Trace Oscilloscope, measurement of voltage,

frequency and phase by CRO, Oscilloscope probes, Delay time based Oscilloscopes, Sampling

Oscilloscope, DSO, DSO applications.

UNIT-V Instrument calibration: Comparison method, digital multimeter as standard instrument, calibration instrument, Recorders: X-Y recorders, plotters Transducers.

Text Book:

1. David A. Bell, “Electronic Instrumentation and Measurements”, Oxford University Press.

Reference Books: 1. Oliver and Cage, “Electronic Measurements and Instrumentation”, Tata McGraw Hill

Publication.

2. Alan S. Morris, “Measurement and Instrumentation Principles”, Elsevier (Buterworth

Heinmann).

Page 106: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC451: MICROPROCESSORS AND MICROCONTROLLERS LAB 1. To study 8085 microprocessor system.

2. i) Write a program using 8085 Microprocessor for Decimal, Hexadecimal addition and

subtraction of two Numbers.

ii) Write a program using 8085 Microprocessor for addition and subtraction of two

BCD numbers.

iii) To perform multiplication and division of two 8 bit numbers using 8085.

3. Learn and understand how to configure MSP-EXP430G2 Launchpad digital I/O pins.

Write a C program for configuration of GPIO ports for MSP430 (blinking LEDs, push

buttons interface).

Exercises: a) Modify the delay with which the LED blinks. b) Modify the code to make the green LED blink.

c) Modify the code to make the green and red LEDs blink:

i. Together

ii. Alternately

d) Alter the code to turn the LED ON when the button is pressed and OFF when it

is released.

e). Alter the code to make the green LED stay ON for around 1 second every time

the button is pressed.

f). Alter the code to turn the red LED ON when the button is pressed and the

green LED ON when the button is released.

4. Usage of Low Power Modes:

Configure the MSP-EXP430G2 Launchpad for Low Power Mode (LPM3) and

measure current consumption both in active and low power modes. Use

MSPEXP430FR5969 as hardware platform and measure active mode and standby

mode current.

Exercises: a) How many Low power modes are supported by the MSP430G2553 platform?

b) Measure the Active and Standby Current consumption in LPM3 mode for the

same application using MSP430F5529 LaunchPad

5. Learn and understand GPIO based Interrupt programming. Write a C program and

associated GPIO ISR using interrupt programming technique.

Exercises: a) Write the code to enable a Timer interrupt for the pin P1.1.

b) Write the code to turn on interrupts globally

6. Implement Pulse Width Modulation to control the brightness of the on-board, green LED.

This experiment will help you to learn and understand the configuration of PWM and

Timer peripherals of the MSP430G2553.

Exercises:

a) Observe the PWM waveform on a particular pin using CRO.

b) What is the maximum resolution of PWM circuitry in MSP430G2 Launchpad?

c) Change the above code to create a PWM signal of 75% duty cycle on

particular PWM pin.

Page 107: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

7. The main objective of this experiment is to control the on-board, red LED by the analog

input from a potentiometer. This experiment will help you to learn and understand how to

configure an ADC to interface with a potentiometer.

Exercises: a) Alter the threshold to 75% of Vcc for the LED to turn on.

b) Modify the code to change the Reference Voltage from Vcc to 2.5V.

8. Learn and understand how to configure the PWM and ADC modules of the MSP-

EXP430G2 Launchpad to control the DC motor using external analog input.

Exercises:

a) What is the maximum resolution of PWM circuitry in MSP430G2 LaunchPad and how it can be achieved using program?

b) Create a PWM signal of 75% duty cycle on particular PWM pin.

c) Create Switch case code from the example code to run the DC Motor in 3 set of speeds.

9. Understand the ULP Advisor capabilities and usage of ULP Advisor to create optimized,

power-efficient applications on the MSP-EXP430G2 Launchpad.

Exercises:

a) How does the ULP Advisor software help in designing power-optimized code?

b) Which ULP rule violation helps us to detect a loop counting violation?

c) Connect the MSP430 to terminal on PC and echo back the data 10. Configure of Universal Serial Communication Interface (USCI) module of

MSP430G2553 for UART based serial communication. The main objective of this

experiment is to use UART of the MSP430G2553 to communicate with the computer.

Exercise: Modify the above code to transmit the set of strings to the serial terminal via UART as shown below:

char str1[]="MSP430G2 launchpad"

char str2[]= "Ultra low power mixed signal processing applications"

11. Understand and Configure 2 MSP430F5529 Launchpads in master-slave communication mode for SPI protocol.

Exercises: a) Which port pins of MSP430 can be configured for SPI communication?

b) What is the data transfer rate supported by MSP430 for SPI communication?

Page 108: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC452: ELECTRONIC MEASUREMENT & INSTRUMENTATION LAB

1. Study of semiconductor diode voltmeter and its use as DC average responding AC

voltmeter.

2. Study of L.C.R. Bridge and determination of the value of the given components.

3. Study of distortion factor meter and determination of the % distortion of the given

scillator.

4. Study of the transistor tester and determination of the parameters of the given transistors.

5. Study of the following transducer (i) PT-100 transducer (ii) J- type transducer (iii) K-type

transducer (iv) Pressure transducer

6. Measurement of phase difference and frequency using CRO (Lissajous Figure)

7. Measurement of low resistance Kelvin’s double bridge.

8. To measure unknown capacitance of small capacitors by using Schering’s bridge.

9. To measure unknown Inductance using Hay’s bridge.

10. To measure unknown frequency using Wein’s frequency bridge.

Page 109: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC453: ADVANCED ELECTRONICS SYSTEM LAB Transistor Modeling and Circuits

- Metal Oxide Semiconductor Field Effect Transistors (MOSFETs)

*DC biasing of Common Source

*MOSFET Common Source Amplifier

*MOSFET Source Follower

*Current Mirror

- SPICE parameters for MOSFET transistors.

- Step-Down (Buck) DC-DC Converters.

- Step-Up (Boost) DC-DC Converter

- CMOS Amplifier design.

Timing -MOSFET based Ring oscillators

-MOSFET based Relaxation oscillators

- MOSFET based Voltage-controlled oscillators

- Integration of crystal oscillator into circuits

Data Conversion - Analog to Digital Conversion

* Successive Approximation ADC

- Digital to Analog Conversion

* Scaled Resistor Network

System Considerations - System-level stability: decoupling, ground loops

- Basics of EMC and screening

- Examples of complete electronic systems

Page 110: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RCS456: DATA STRUCTURE AND ALGORITHMS LAB

1. Run time analysis of Fibonacci Series

2. Study and Application of various data Structure

3. Study and Implementation of Array Based Program

a. Searching (Linear Search, Binary Search)

b. Sorting (Bubble, Insertion, Selection, Quick, Merge etc)

c. Merging

4. Implementation of Link List

a. Creation of Singly link list, Doubly Linked list

b. Concatenation of Link list

c. Insertion and Deletion of node in link list

d. Splitting the link list into two link list

5. Implementation of STACK and QUEUE with the help of a.

Array

b. Link List

6. Implementation of Binary Tree, Binary Search Tree, Height Balance Tree

7. Write a program to simulate various traversing Technique

8. Representation and Implementation of Graph a.

Depth First Search

b. Breadth First Search c.

Prim`s Algorithm

d. Kruskal`s Algorithms

9. Implementation of Hash Table

Page 111: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

B.TECH. ELECTRONICS ENGINEERING, B.TECH.

ELECTRONICS & COMMUNICATION ENGINEERING, B.TECH. ELECTRONICS &

TELECOMMUNICATION ENGINEERING(2018-2019)

YEAR 3rd

/ SEMESTER V

Sr.

No.

Sub Code

Subject Name

L-T-P

Th/Lab

Marks

Sessional

Total

Credit

ESE

CT

TA

1

RAS501 Managerial Economics

3--0--0

70

20

10

100

3

2

RAS502

/RUC501

Sociology/Cyber Security

3--0--0

70

20

10

100

3

3

REC501

Integrated Circuits

3--0--0

70

20

10

100

3

4

REC502

Principles of

Communication

3--1--0

70

20

10

100

4

5

REC503

Digital Signal Processing

3--0--0

70

20

10

100

3

6

REC051-

055

Deptt. Elective Course 1

3--1--0

70

20

10

100

4

7

REC551

Integrated Circuits Lab

0--0--2

50

50

100

1

8

REC552

Communication Lab – I

0--0--2

50

50

100

1

9

REC553

Digital Signal Processing

Lab

0--0--2

50

50

100

1

10

REC554

CAD of Electronics Lab-I

0--0--2

50

50

100

1

TOTAL

620

120

260

1000

24

DEPTT ELECTIVE COURSE–1

1. REC051 - Antenna & wave propagation

2. REC052 - Computer Architecture and Organization

3. REC053- Real Time Systems

4. REC054- Artificial Neural Networks

5. REC055- Advance Semiconductor devices

DEPTT ELECTIVE COURSE–2

1. REC061 - Industrial Electronics

2. REC062 - Microcontroller for Embedded Systems

3. REC063 - Analog Signal Processing

4. REC064 - Advance Digital Design Using Verilog

5. REC065- RADAR Engineering

Page 112: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

B.Tech. Electronics Engineering, B.Tech. Electronics & Communication Engineering, B.Tech.

Electronics & Telecommunication

Engineering

YEAR 3rd

/ SEMESTER VI

Sr.

No

Sub Code

Subject Name

L-T-P

Th/LAB

Marks

Sessional

Total

Credit

ESE

CT

TA

1

RAS601 Industrial Management

3--0--0

70

20

10

100

3

2

RAS602

/

RUC601

Sociology /Cyber

Security

3--0--0

70

20

10

100

3

3

RIC603

Control System I

3--0--0

70

20

10

100

3

4

REC601

Microwave

Engineering

3--1--0

70

20

10

100

4

5

REC602

Digital Communication

3--0--0

70

20

10

100

3

6

REC061 -

065

Deptt. Elective Course 2

3--1--0

70

20

10

100

4

7

REC-651

Microwave Engg Lab

0--0--2

50

50

100

1

8

REC-652

Communication Lab- II

0--0--2

50

50

100

1

9

RIC-653

Control System Lab-I

0--0--2

50

50

100

1

10

RIC-651

Microcontrollers For

Embedded Systems Lab

0--0--2

50

50

100

1

TOTAL

620

120

260

1000

24

Page 113: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

EC501 INTEGRATED CIRCUITS

Unit Topic Lectures

I

Analog Integrated circuit Design: an overview: Current Mirrors using BJT and MOSFETs, Simple current Mirror, Base current compensated current Mirror, Wilson and Improved Wilson Current Mirrors, Widlar Current source and Cascode current Mirror The 741 IC Op-Amp: Bias circuit, short circuit protection circuitry, the

input stage, the second stage, the output stage, and device parameters; DC

Analysis of 741: Small Signal Analysis of input stage, the second stage, the

output stage; Gain, Frequency Response of 741; a Simplified Model, Slew Rate, Relationship Between ft and SR

10

II

Linear Applications of IC op-amps: An Overview of Op-Amp (ideal and non-ideal) based Circuits V-I and I-V converters, generalized Impedance converter, simulation of inductors. Filters: First and second order LP, HP, BP BS and All pass active filters, KHN.

8

III

Digital Integrated Circuit Design- An Overview: CMOS Logic Gate Circuits:

Basic Structure CMOS realization of Inverters, AND, OR, NAND and NOR Gates

Latches and Flip flops: The Latch, The SR Flip-flop, CMOS Implementation of SR

Flip- flops, A Simpler CMOS Implementation of the Clocked SR Flip-flop, D Flip-

flop Circuits.

8

IV

Non-Linear applications of IC Op-amps: Log–Anti Log Amplifiers, Precision

Rectifiers, Peak Detectors, Simple and Hold Circuits, AnalogMultipliersand their

applications. Op- amp as a comparator, Zero crossing detector, Schmitt Trigger,

Astable multi vibrator, Mono stable multi vibrator, Generation of Triangular Waveforms

7

V

D/A and A/D converters Integrated Circuit Timer: The 555 Circuit, Implementing a Mono stable Multi-vibrator Using the 555 IC, Astable Multi vibrator

Using the 555 IC.

Phase locked loops (PLL): Ex-OR Gates and multipliers as phase detectors, Block Diagram of IC PLL, Working of PLL and Applications of PLL.

7

Text Book:

1. Sedra and Smith, “Microelectronic Circuits”, 6thEdition, Oxford University Press.

2. Michael Jacob, “Applications and Design with Analog Integrated Circuits”, PHI, 2nd

Edition. 3. A. K. Maini, Analog Circuits, Khanna Publishing House, Delhi.

Reference Books:

1. Jacob Millman and Arvin Grabel, “Microelectronics”, 2nd Edition, Tata McGraw Hill.

2. BehzadRazavi, “Fundamentals of Microelectronics”, 2nd Edition, Wiley.

3. Mark N. Horenstein, “Microelectronic Circuits and Devices”, PHI.

4. Paul R. Gray, Paul J. Hurst, Stephen H. Lewis and Robert G. Meyer, “Analysis and Design of Analog Integrated Circuits”, Wiley.

5. Data Sheet: http://www.ti.com/lit/ds/symlink/tl082.pdf 6. Application Note: http://www.ti.com/lit/an/sloa020a/sloa020a.pdf

7. MPY634 Data Sheet: http://www.ti.com/lit/ds/symlink/mpy634.pdf 8. Application Note: http://www.ti.com/lit/an/sbfa006/sbfa006.pdf

9. ASLK Pro Manual: ASLK Manual

Page 114: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC502 PRINCIPLES OF COMMUNICATION

Unit

Topic Lectures

I

Introduction: Overview of Communication system, Communication channels, Need for modulation, Baseband and Pass band signals, Amplitude Modulation: Double sideband with Carrier (DSB-C), Double side band without Carrier DSB-SC, Single Side Band Modulation SSB, Modulators and Demodulators, Vestigial Side Band (VSB),

Quadrature Amplitude Modulator, Radio Transmitter and Receiver

10

II

Angle Modulation, Tone Modulated FM Signal, Arbitrary Modulated FM Signal,

Bandwidth of FM Signals using Bessel’s Function, FM Modulators and

Demodulators, Approximately Compatible SSB Systems, Stereophonic FM

Broadcasting.

7

III

Pulse Modulation, Digital Transmission of Analog Signals: Sampling Theorem and its

applications, Pulse Amplitude Modulation (PAM), Pulse Width Modulation, Pulse

Position Modulation, Their generation and Demodulation, Digital Representation of

Analog Signals Pulse Code Modulation (PCM), PCM System Issues in digital

transmission: Frequency Division Multiplexing Time Division Multiplexing, T1 Digital

System, TDM Hierarchy

9

IV

Differential Pulse Code Modulation, Delta Modulation. Adaptive Delta Modulation,

Voice Coders, Sources of Noises, Frequency domain representation of Noise, Super

position of Noises, Linear filtering of Noises, Mathematical Representation of Noise.

7

V

Noise in Amplitude Modulation: Analysis, Signal to Noise Ratio, Figure of Merit. Noise

in Frequency Modulation: Pre-emphasis, De-Emphasis and SNR Improvement, Phase

Locked Loops Analog and Digital.

7

Text Book: 1. Herbert Taub and Donald L. Schilling, “Principles of Communication Systems”, Tata McGraw Hill.

2. Rishabh Anand, Communication Systems, Khanna Publishing House, Delhi

Reference Books:

1. B.P.Lathi,“ModernDigitalandAnalogcommunicationSystems”,3rd

Edition, Oxford University Press.

2. Simon Haykin, “Communication Systems”, 4th

Edition, Wiley India.

3. H.P.Hsu& D. Mitra “Analog and Digital Communications”, 2nd

Edition, Tata McGraw-Hill.

Page 115: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC503 DIGITAL SIGNAL PROCESSING Unit Topics Lectures

I Realization of Digital Systems: Introduction, direct form realization of IIR

systems, cascade realization of an IIR systems, parallel form realization of an IIR

systems, Ladder structures: continued fraction expansion of H (z), example of

continued fraction, realization of a ladder structure, example of a ladder

realization, FIR Filter Realization: Direct & Cascade, FIR Linear Phase

Realization.

8

II Design of Infinite Impulse Response Digital Filters: Introduction to Filters,

Impulse Invariant Transformation, Bi-Linear Transformation, All- Pole Analog

Filters: Butterworth and Chebyshev, Design of Digital Butterworth and

ChebyshevFilters, Frequency Transformations.

8

III Finite Impulse Response Filter Design: Windowing and the Rectangular Window,

Other Commonly Used Windows, Examples of Filter Designs Using Windows,

The Kaiser Window, Finite Word length effects in digital filters.

8

IV DFT & FFT: Definitions, Properties of the DFT, Circular Convolution, Linear

Convolution using Circular Convolution, Decimation in Time (DIT) Algorithm,

Decimation in Frequency (DIF) Algorithm.

8

V Multirate Digital Signal Processing: Introduction, Decimation, Interpolation,

Sampling rate conversion: Single and Multistage, SubbandCoding of Speech

signals, Quadrature mirror filters.

8

Text Book:

1. Johnny R. Johnson, .Digital Signal Processing., PHI Learning Pvt Ltd., 2009.

Reference Books:

1. John G Prokias, Dimitris G Manolakis, .Digital Signal Processing. Pearson Education.

2. Oppenheim & Schafer, . Digital Signal Processing. PHI

Page 116: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

LABORATORY

REC551 INTEGRATED CIRCUITS LAB

Objective: - To design and implement the circuits to gain knowledge on performance of thecircuit and its

application. These circuits should also be simulated on Pspice and implemented using TL082, LM741,

NE555, ASLK, MPY634 KP connecting wires, Power Supply, function generator and oscilloscope.

1. Design and test a function generator that can generate square wave and triangular wave output for a

given frequency and cascade a multiplier MPY634KP in feedback loop to form VCO

2. Voltage to current and current to voltage convertors.

3. Second order filters using operational amplifier in universal active filter topology for-

a) Low pass filter of specified cut off frequency.

b) High pass filter of specified frequency.

c) Band pass filter with unit gain of specified pass band

d) Design a notch filter to eliminate 50Hz power line frequency.

4. Wien bridge oscillator using operational amplifier.

5. Astable and mono-stable multivibrators using IC 555.

6. Design the following amplifiers:

a) A unity gain amplifier.

b) A non-inverting amplifier with a gain of “A”.

c) An inverting amplifier with a gain of “A”.

d) Log and antilog amplifiers.

e) Voltage comparator and zero crossing detectors.

7. Design and test a PLL to get locked to a given frequency „f‟. Measure the locking range of the

system and also measure the change in phase of the output signal as input frequency is varied within

the lock range.

8. Design and test the integrator for a given time constant.

9. Design and test a high-Q Band pass self-tuned filter for a given center frequency.

10. Design and test an AGC system for a given peak amplitude of sine-wave output.

11. Design and test a Low Dropout regulator using op-amps for a given voltage regulation characteristic

and compare the characteristics with TPS7250IC.

12. Design of a switched mode power supply that can provide a regulated output voltage for a given

input range using the TPS40200 IC.

Note: All listed experiments are compulsory. In addition to it, the Institutes may include more

experiments based on the expertise.

Page 117: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

REC552 COMMUNICATION LAB-I

List of Experiments

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

1. To study DSB/ SSB amplitude modulation & determine its modulation factor & power in side bands.

2. To study amplitude demodulation by linear diode detector.

3. To study frequency modulation and determine its modulation factor.

4. To study PLL 565 as frequency demodulator.

5. To study sampling and reconstruction of Pulse Amplitude modulation system.

6. To study the Sensitivity, Selectivity, and Fidelity characteristics of super heterodyne receiver.

7. To study Pulse Amplitude Modulation.

a) using switching method

b) by sample and hold circuit

8. To demodulate the obtained PAM signal by 2nd order LPF.

9. To study Pulse Width Modulation and Pulse Position Modulation.

10. To study Pulse code modulation and demodulation technique.

11. To study Delta modulation and demodulation technique.

12. Design and implement an FM radio receiver in 88-108 MHz

Page 118: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

REC553 DIGITAL SIGNAL PROCESSING LAB

List of Experiments

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

1. To study about DSP Processors and architecture of TMS320C6713 DSP processor.

2. Introduction to MATLAB and Code Composer Studio or its equivalent open source software.

OR

Introduction to Scilab Open Source Software (Using Spoken Tutorial MOOCs)

3. Write a Program for the generation of basic signals such as unit impulse, unit step, ramp,

exponential, sinusoidal and cosine.

4. To study matrix multiplication using code composer studio.

5. Evaluate 4 point DFT of and IDFT of x(n) = 1, 0 ≤ n ≤ 3; 0 elsewhere.

6. To implement FFT algorithm.

7. Verify Blackman and Hamming windowing techniques.

8. Implement IIR Butterworth analog Low Pass for a 4 KHz cut off frequency.

9. Verify Circular Convolution using code composer studio.

10. Verify Linear convolution of two sequence using code composer studio.

11. To implement Tone Generation.

12. To implement floating point arithmetic.

Spoken Tutorial (MOOCs):

Spoken Tutorial MOOCs, ' Course on Scilab', IIT Bombay (http://spoken-tutorial.org/)

Page 119: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

REC554CAD OF ELECTRONICS LAB- I

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

PSPICE Experiments

1. (a)Transient Analysis of BJT inverter using step input.

(b)DC Analysis (VTC) of BJT inverter with and without parameters.

2. (a)Transient Analysis of NMOS inverter using step input.

(b)Transient Analysis of NMOS inverter using pulse input.

(c)DC Analysis (VTC) of NMOS inverter with and without parameters.

3. (a) Analysis of CMOS inverter using step input.

(b)Transient Analysis of CMOS inverter using step input with parameters.

(c)Transient Analysis of CMOS inverter using pulse input.

(d)Transient Analysis of CMOS inverter using pulse input with parameters.

(e)DC Analysis (VTC) of CMOS inverter with and without parameters.

4. Transient &DC Analysis of NOR Gate inverter.

5. Transient & DC Analysis of NAND Gate.

6. Design and Simulation of a Differential Amplifier (with Resistive Load, Current Source Biasing)

7. Analysis of frequency response of Common Source amplifiers.

8. Analysis of frequency response of Source Follower amplifiers.

9. Analysis of frequency response of Cascode amplifiers.

10. Analysis of frequency response of Differential amplifiers.

Page 120: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

DEPARTMENTAL ELECTIVE COURSE 1

REC051 ANTENNA AND WAVE PROPAGATION

Unit Topic Lectures

I Antennas Basics:Introduction, Basic Antenna Parameters, Patterns, Beam Area (or Beam

Solid Angle) ΩA, Radiation Intensity, Beam Efficiency, Directivity D and Gain G, Directivity and Resolution, Antenna Apertures, Effective Height, The radio

Communication link, Fields from Oscillating Dipole, Single-to-Noise Ratio(SNR), Antenna Temperature, Antenna Impedance.

5

II Application to an Isotropic Source, Radiation Intensity, Arrays of Two Isotropic Point Sources, Non-isotropic but Similar Point Sources and the Principle of Pattern Multiplication, Pattern Synthesis by Pattern Multiplication, Linear Arrays of n Isotropic Point Sources of Equal Amplitude and Spacing, Linear Broadside Arrays with Non-

uniform Amplitude Distributions. General Considerations.

8

III

Electric Dipoles, Thin Liner Antennas and Arrays of Dipoles and Apertures: The Short Electric Dipole, The Fields of a Short Dipole, Radiation Resistance of Short Electric

Dipole, Thin Linear Antenna, Radiation Resistance of λ/2 Antenna, Array of Two Driven λ/2 Elements: Broadside Case and End-Fire Case, Horizontal Antennas Above a Plane

Ground, Vertical Antennas Above a Plane Ground, Yagi-Uda Antenna Design, Long- Wire Antennas, folded Dipole Antennas.

8

IV

The Loop Antenna:Design and its Characteristic Properties, Application of Loop

Antennas, Far Field Patterns of Circular Loop Antennas with Uniform Current, Slot Antennas, Horn Antennas, Helical Antennas, The Log-Periodic Antenna, Micro strip

Antennas. Reflector Antennas: Flat Sheet Reflectors, Corner Reflectors, The Parabola-General

Properties, A Comparison Between Parabolic and Corner Reflectors, The Paraboloidal Reflector, Patterns of Large Circular Apertures with Uniform Illumination, Reflector

Types (summarized), Feed Methods for Parabolic Reflectors.

9

V

Ground Wave Propagation: Plane Earth Reflection, Space Wave and Surface Wave.

Space Wave Propagation: Introduction, Field Strength Relation, Effects of Imperfect Earth, Effects of Curvature of Earth. Sky wave Propagation: Introduction structural Details of the ionosphere, Wave Propagation Mechanism, Refraction and Reflection of Sky Waves by ionosphere, Ray Path, Critical Frequency, MUF, LUF, OF, Virtual Height and Skip Distance, Relation

Between MUF and the Skip Distance, Multi-Hop Propagation, Wave Characteristics

10

Text Book:

1. John D Krauss, Ronald J Marhefka and Ahmad S. Khan, “Antennas and Wave Propagation”, Fourth

Edition, Tata McGraw Hill.

Reference Books:

1. A. R. Harish, M. Sachidananda, “Antennas and Wave Propogation”, Oxford University Press.

2. Edward Conrad Jordan and Keith George Balmain, “Electromagnetic Waves and Radiating

Systems”, PHI. 3. R.L. Yadava, Electromagnetic Waves, Khanna Publishing House, Delhi.

4. A. Das, Sisir K. Das, “Microwave Engineering”, Tata McGraw Hill.

Page 121: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC052 Computer Architecture and Organization Unit Topic Lectures

I Introduction to Design Methodology: System Design - System

representation, Design Process, the gate level (revision), the register level

components and PLD (revision), register level design The Processor Level:

Processor level components, Processor level design.

8

II Processor basics: CPU organization- Fundamentals, Additional features Data

Representation - Basic formats, Fixed point numbers, Floating point numbers.

Instruction sets - Formats, Types, Programming considerations.

8

III Data path Design: Fixed point arithmetic - Addition and subtraction,

Multiplication and Division, Floating point arithmetic, pipelining. 8

IV Control Design: basic concepts - introduction, hardwired control, Micro

programmed control -introduction, multiplier control unit, CPU control unit, Pipeline control- instruction pipelines, pipeline performance.

8

V Memory organization: Multi level memories, Address translation, Memory

allocation, Caches - Main features, Address mapping, structure vs

performance, System Organization: Communication methods- basic concepts, bus control. Introduction to VHDL.

8

TextBooks:

1. John P Hayes "Computer Architecture and Organisation", McGraw Hill Publication.

Reference Books:

1. M Morris Mano, "Computer System Architecture", Pearson Publication.

2. Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Computer Organization and Embedded

Systems", McGraw Hill Publication. 3. David A. Patterson and John L. Hennessy, "Computer Organization and Design: The

Hardware/Software Interface", Elsevier Publication. 4. I. Singh, Computer Organisation and Architecture, Khanna Publishing House, Delhi

Page 122: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC053 REAL TIME SYSTEMS

Units Topic Lectures

I Introduction to Real Time

System Introduction to Real time Embedded System, need for a real-time system, different

kinds (reactive, time driven, deadline driven, etc.,) Embedded system Design cycle, Types of Real

Time systems, Real Time Applications and features, Issues in real time computing, aspects of real-

time systems (timeliness, responsiveness, concurrency, predictability, correctness, robustness, fault

tolerance and safety, resource limitations, RTOS necessity), real-time requirement specifications,

modelling/verifying design tools (UML, state charts, etc.,).

8

II Embedded Hardware for Real Time

System Selection criteria for Real time system - Hardware and Software perspective, need for

partitioning, criteria for partitioning (performance, criticality, development ease,

robustness, fault tolerance and safety, resource limitations, etc.,), System Considerations, Basic

development environment-host vs target concept, CPU features, Architecture, I/O

Ports, on-chip peripherals, Memory, Real time implementation considerations, bus

architecture, Introduction to Interrupts, Interrupt vector table, interrupt programming,

Pipeline and Parallelism concepts.

10

III Embedded Hardware – On chip Peripherals and Communication protocols Role of

peripherals for Real time systems, On-Chip peripherals& hardware accelerators, Peripherals

[Direct Memory Access, Timers, Analog to Digital Conversion (ADC), DAC, Comparator, Pulse

Width Modulation (PWM)], Need of real time Communication, Communication Requirements,

Timeliness, Dependability, Design Issues, Overview of Real time communication, Real time Communication Peripherals – I2C, SPI &UART. Introduction to the CCS IDE: its features, project

options and basic examples Analog-to-Digital Converter Lab: Build a data acquisition system Control

Peripherals Lab: Generate and graph a PWM waveform Direct Memory Access (DMA) Lab: Use DMA to buffer ADC results.

12

IV Embedded Software and RTOS

Software Architecture of real time System, Introduction to RTOS, role of RTOS,

foreground Back ground system, pros and cons, Real time kernel, qualities of good RTOS,

Functionalities of RTOS – Task Management, I/O management, Memory management, Inter

Task Communication, Tasks, Task states, Task control block, attributes of TCB, Context

switching, Interrupts handling, Multiprocessing and multitasking.

8

V Introduction to TI C2000:

Interface with actuators such as motor control enabling real time capabilities of C2000

Program to demonstrate the Task switching Simulation on CCS IDE To demonstrate the blink led

application Using Hwi (Hardware Interrupt: periodically to produce an interrupt

using Timers) of TI RTOS. Programming: demonstrate the Blink led application Using a

Swi (Software interrupt) of TI RTOS To introduce two time-based SYS/BIOS services –

Clock and Timestamp in TI RTOS; demonstrate the Task synchronization using

Semaphores using TI RTOS; demonstrate Inter Task Communication Using of Mailboxes and Queues using TI RTOS; demonstrate the Communication Protocols – I2C, SPI and USART using TI.

10

Text Book: 1. Real-Time Systems by Jane W. S. Liu Prentice Hall Publication

2. Krishna .C.M “Real Time Systems” Mc-Graw Hill Publication.

3. Hamid A. Toliyat and Steven G. Campbell, “DSP based Electromechanical Motion Control” CRC

Press Publication.

4. Jean J Labrosse, “Embedded System Design blocks”, CMP books Publication

5. John H Davies, “MSP430 Microcontroller Basics” Newnes Publication

Reference Book: 1. TMS320C28x CPU and Instruction Set Reference Guide, TI Literature Publication

2. TMS320x28xx, 28xxx DSP Peripheral Reference Guide, TI Literature Publication

3. C2000 Teaching CD ROM from Texas Instruments Publication

4. Introduction to the TI-RTOS Kernel Workshop Lab Manual, by Texas Instruments Publication

Page 123: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC054 Artificial Neural Network

Unit Topic Lectures

I

Introduction to ANN: Features, structure and working of Biological Neural Network

Trends in Computing Comparison of BNN and ANN. Basics of Artificial Neural Networks - History of neural network research, characteristics of neural networks terminology, models of neuron McCulloch - Pitts model, Perceptron, Ada line model,

Basic learning laws, Topology of neural network architecture

8

II

Back propagation networks : (BPN) Architecture of feed forward network, single

layer ANN, multilayer perceptron, back propagation learning, input - hidden and output layer computation, back propagation algorithm, applications, selection of tuning

parameters in BPN, Numbers of hidden nodes, learning.

8

III

Activation & Synaptic Dynamics : Introduction, Activation Dynamics models, synaptic

Dynamics models, stability and convergence, recall in neural networks.

Basic functional units of ANN for pattern recognition tasks: Basic feed forward,

Basic feedback and basic competitive learning neural network. Pattern association, pattern classification and pattern mapping tasks.

8

IV

a)Feedforward neural networks -- Linear responsibility X-OR problem and solution. -

Analysis of pattern mapping networks summary of basic gradient search methods. b) Feedback neural networks Pattern Storage networks, stochastic networks and

simulated annealing, Boltzmann machine and Boltzmann learning.

8

V

Competitive learning neural networks : Components of CL network pattern

clustering and feature. Mapping network, ART networks, Features of ART models,

character recognition using ART network.

Applications of ANN: Pattern classification - Recognition of Olympic games symbols,

Recognition of printed Characters. Neocognitron - Recognition of handwritten

characters. NET Talk: to convert English text to speech. Recognition of consonant

vowel (CV) segments, texture classification and segmentation.

8

Text Book:

1. B. Yegnanarayana, "Artificial neural Networks", PHI Publication.

Reference Books:

1. S. Raj Sekaran ,VijayalakshmiPari," Neural networks, Fuzzy logic and Genetic Algorithms", PHI Publication.

2. Elaine Rich and Kevin Knight, "Artificial Intelligence", TMH Publication.

Page 124: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC055 ADVANCE SEMICONDUCTOR DEVICES Unit Topics Lectures

I

Physics of Semiconductors, P-N Junction Diode and BJT: Introduction, Crystal

Structure, Phonon, Optical, and Thermal Properties,p-n Junctions –Junction Breakdown, Transient Behavior and Noise Terminal Functions.BJT:Static

Characteristics, Microwave Characteristics, Related Device Structures,

Heterojunction Bipolar Transistor.

8

II

MOSFET, Hetero-Junctions and Basics of Nanostructures: MOSFET: Basic Device Characteristics, Nonuniform Doping and Buried Channel

Device, Device Scaling and Short-Channel Effects, MOSFET Structures, Circuit Applications, Single Electron Transistor, JFETs.

Hetero-junctions:Metal-Semiconductor Contacts, Metal-Insulator-Semiconductor

Capacitors. MESFETs and MODFETs. Nanostructures: Basic Equations and Examples.

8

III

TUNNEL Devices and IMPATT Diodes:

TUNNEL DEVICES:Tunnel Diode, Related Tunnel Devices, Resonant Tunneling Diode. IMPATT Diodes: Static Characteristics, Dynamic Characteristics, Power and

Efficiency Noise Behavior, Device Design and Performance, BARITT Diode,

TUNNETT Diode

8

IV

Power devices, Photonic devices:Transferred-Electron and Real-Space-Transfer Devices Thyristors, Power Devices.

Photonic Devices and Sensors: Radiative Transitions, Light-Emitting Diode (LED), Laser Physics, Laser Operating Characteristics, Specialty Lasers

8

V

Photodetectors, Solar Cells and Sensors:Photodiodes, Avalanche Photodiode and

Phototransistor, Charge-Coupled Device (CCD), Metal- Semiconductor-Metal Photodetector, Quantum-Well Infrared Photodetector, Solar Cell

Sensors: Thermal Sensor, Mechanical Sensors, Magnetic Sensors and Chemical Sensors

8

Text Book:

1. S. M. Sze, Kwok K. NG, “Physics of Semiconductor Devices”, 3rd Edition, Wiley Publication

Reference Books:

1. J. P. Colinge and C. A. Colinge, "Physics Of Semiconductor Devices", Kluwer Academic Publishers

2. B. G. Streetman and S. Banerjee “Solid state electronics devices”, 5th Edition, PHI.

3. SupriyoDatta, “Quantum Transport Atom to Transistor”, Cambridge University Press, 2005 4. A.K. Maini, All in One Electronics Simplified, Khanna Publishing House, Delhi

Page 125: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RIC603CONTROL SYSTEM-I

Unit Topic Lectures

I Basic Components of a control system, Feedback and its effect, types of

feedback control systems. Block diagrams Reduction and signal flow graphs,

Modeling of Physical systems: electrical networks, mechanical systems

elements, equations of mechanical systems, sensors and encoders in control

systems, DC motors in control systems, Analogous Systems.

8

II State-Variable Analysis: Vector matrix representation of state equation, state

transition matrix, state-transition equation, relationship between state equations

and high-order differential equations, relationship between state equations and

transfer functions. Similarity Transformation, Decomposition of transfer

functions, Controllability and observability, Eigen Value and Eigen Vector,

Diagonalization.

8

III Time domain Analysis of Control Systems: Time response of continuous data

systems, typical test signals for the time response of control systems, the unit

step response and time-domain specifications, Steady-State error, time

response of a first order system, transient response of a prototype second order

system.

8

IV Stability of Linear Control Systems: Bounded-input bounded-output stability

continuous data systems, zero-input and asymptotic stability of continuous data

systems, Routh Hurwitz criterion. Root-Locus Technique: Introduction,

Properties of the Root Loci, Design aspects of the Root Loci.

8

V Frequency Domain Analysis: Mr (resonant peak) and ωr (resonant frequency)

and bandwidth of the prototype Second order system, effects of adding a zero

to the forward path, effects of adding a pole to the forward path, Polar Plot,

Nyquist stability criterion, relative stability: gain margin and phase margin,

stability analysis with the Bode plot.

8

Text Book:

1. B.C. Kuo&FaridGolnaraghi, “Automatic Control Systems”, 8th Edition, John Wiley India, 2008.

Reference Books:

1. I. J. Nagrath& M. Gopal, “Control System Engineering”, New Age International Publishers

2. A. Ambikapathy, Control Systems, Khanna Publishing House, Delhi.

2. Joseph J. Distefano III, Allen R. Stubberud, Ivan J. Williams, “Control Systems” Schaums Outlines Series, 3rdEdition, Tata McGraw Hill, Special Indian Edition 2010. 3. William A. Wolovich, “Automatic Control Systems”, Oxford University Press, 2010.

Page 126: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC601 MICROWAVE ENGINEERING

Unit Topics Lectures

I Rectangular & circular waveguides:Introduction to microwave

communication and EM spectrum, Rectangular wave guide: Field

Components, TE, TM Modes, Dominant TE10 mode, Field Distribution,

Power, Attenuation. Circular waveguides: TE, TM modes. Wave velocities,

Microstrip transmission line (TL), Coupled TL, Strip TL, Coupled strip line,

Coplanar TL, Microwave cavities

11

II Passive microwave devices: Scattering matrix, Passive microwave devices:

Microwave hybrid circuits, Terminations, Attenuators, Phase Shifters,

Directional couplers: Two-hole directional couplers, S- Matrix of a

directional coupler, Hybrid couplers, Microwave propagation in ferrites,

Faraday rotation, Isolators, Circulators. S-parameter analysis of all

components.

10

III Microwave tubes :Microwave tubes: Limitations of conventional active

devices at microwave frequency, Two cavity Klystron, Reflex Klystron,

Magnetron, Traveling wave tube, Backward wave oscillators, Gyro

Devices: Their schematic, Principle of operation, Performance characteristic

and their applications.

7

IV Solid state amplifiers and oscillators: Transferred electron devices: Gunn-

effect diodes & modes of operation. Avalanche transit – time devices:

IMPATT diode, TRAPPAT diode, BARITT diode.

5

V Microwave Measurements: VSWR meter, Frequency meter, Spectrum

analyser, Network analyser,Tunable detector, Slotted line carriage, Power

meter, Microwave power measurement, Insertion loss and attenuation

measurement, VSWR measurement, Return loss measurement by a

reflectometer, Frequency measurement, measurement of cavity Q,

Dielectric constant measurement of a solid, EM radiation & measurement.

7

Text Books:

1. G. S. Raghuvanshi, Microwave Engineering; Cengage

2. S.Y. Liao, Microwave Devices & Circuits; PHI 3rd Ed.

Reference Books:

1. A Das and S.K. Das, Microwave Engineering; McGraw Hill Education

2. S. Vasuki, D Margaret Helena, R Rajeswari, Microwave Engineering; MHE

3. M.I. Skolnik, Introduction to Radar Engineering ; TMH

4. Om P. Gandhi, Microwave Engineering and Applications; Pergamon Press

Page 127: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC602 DIGITAL COMMUNICATION

Unit Topic Lectures

I

Principles of digital data transmission: Digital Data transmission, Line coding review, Pulse

shaping, Scrambling, Digital receivers, Eye diagram, Digital carrier system. Method of

generation and detection of coherent & non-coherent binary ASK, FSK & PSK, Differential

phase shift keying, Quadrature modulation techniques. (QPSK and MSK), M-ary Digital

carrier Modulation.

08

II

Fundamentals of probability theory & random process : Concept of Probability, Random

variable, Statistical averages, Correlation, Sum of Random Variables, Central Limit

Theorem, Random Process, Classification of Random Processes Power spectral density,

Multiple random Processes.

08

III

Performance Analysis of Digital communication system: Optimum linear Detector for

Binary polar signaling, General Binary Signaling, Coherent Receivers for Digital Carrier

Modulations, Signal Space Analysis of Optimum Detection, Vector Decomposition of

White Noise Random processes, General Expression for Error Probability of optimum

receivers

08

IV

Spread spectrum Communications: Frequency Hopping Spread Spectrum(FHSS) systems,

Direct Sequence Spread Spectrum, Code Division Multiple Access of DSSS, Multiuser

Detection, OFDM Communications Introduction to information theory: Measure of Information, Source Encoding, Error Free

Communication over a Noisy Channel. Capacity of a discrete and Continuous Memory less

channel.

08

V

Error Correcting codes: Hamming sphere, hamming distance and Hamming bound, relation

between minimum distance and error detecting and correcting capability Linear block codes: encoding and syndrome decoding. Cyclic codes: encoder and decoder

for systematic cyclic codes. Convolution codes, code tree and Trellis diagram, Viterbi and

sequential decoding, Burst error correction, Turbo codes.

08

Text Book:

1. B.P. Lathi, “Modern Digital and Analog communication Systems”, 4th Edition, Oxford University Press,

2010. 2. RishabhAnand, Communication Systems, Khanna Publishing House, Delhi.

Reference Books:

1. H. Taub, D L Schilling, GautamSaha, “Principles of Communication”, 3rd Edition, Tata McGraw-Hill

Publishing Company Ltd. 2. John G. Proakis, “Digital Communications”, 4th Edition, McGraw-Hill International.

3. Simon Haykin, “Communication Systems”, 4th Edition, Wiley India.

4. H P HSU & D Mitra, “Analog and Digital Communications”, 2nd Edition, Tata McGraw-Hill Publishing Company Ltd.

Page 128: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

LABORATORY

REC651 MICROWAVE ENGINEERING LAB

List of Experiments

1. To study microwave test bench.

2. To study the characteristics of reflex klystron tube and to determine its electronic tuning range.

3. To determine the frequency and wavelength in a rectangular waveguide working on TE01 mode.

4. To study measurement of reflection coefficient and standing wave ratio using double minima method.

5. To study V-I characteristic of Gunn diode.

6. To measure an unknown impedance with Smith chart.

7. Study of Circulator/Isolator.

8. Study of Attenuator (Fixed and Variable type).

9. To study simple dipole 2 antenna and to calculate beam-width, front / back ratio, and gain of the

antenna.

10. To study folded dipole antenna and to calculate beam-width, front / back ratio, and gain of the antenna.

11. To study 2 phase array end-fire antenna and to calculate beam-width, front / back ratio, and gain of the

antenna.

12. To study broadside array antenna and to calculate beam-width, front / back ratio, and gain of the antenna.

Page 129: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC652 COMMUNICATION LAB – II

List of Experiments

1. To construct a Square wave with the help of Fundamental Frequency and its Harmonic component

2. Study of pulse data coding & decoding techniques for NRZ and RZ formats.

3. Study of Manchester coding and Decoding.

4. Study of Amplitude shift keying modulator and demodulator.

5. Study of Frequency shift keying modulator and demodulator.

6. Study of Phase shift keying modulator and demodulator.

7. Study of single bit error detection and correction using Hamming code.

8. Study of Quadrature Phase shift keying modulator and demodulator.

9. To simulate Differential Phase shift keying technique using MATLAB software.

10. To simulate M-ary Phase shift keying technique using MATLAB software (example8PSK, 16PSK) and

perform BER calculations.

11. To simulate convolutional coding using MATLAB software.

12. Design a front end BPSK modulator and demodulator.

Page 130: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RIC653CONTROL SYSTEM LAB-I

List of Experiments:

1. Different Toolboxes in MATLAB, Introduction to Control Systems Toolboxor its equivalent open source

freeware software like Scilabusing Spoken Tutorial MOOCs.

2. Determine transpose, inverse values of given matrix.

3. Plot the pole-zero configuration in s-plane for the given transfer function.

4. Determine the transfer function for given closed loop system in block diagram representation.

5. Plot unit step response of given transfer function and find delay time, rise time, peak time and peak

overshoot.

6. Determine the time response of the given system subjected to any arbitrary input.

7. Plot root locus of given transfer function, locate closed loop poles for different values of k. Also find out

Wd and Wnat for a given root.

8. Create the state space model of a linear continuous system.

9. Determine the State Space representation of the given transfer function.

10. Plot bode plot of given transfer function. Also determine the relative stability by measuring gain and

phase margins.

11. Determine the steady state errors of a given transfer function.

12. Plot Nyquist plot for given transfer function and to discuss closed loop stability. Also determine the

relative stability by measuring gain and phase margin.

Spoken Tutorial (MOOCs):

Spoken Tutorial MOOCs, ' Course on Scilab', IIT Bombay (http://spoken-tutorial.org/)

Page 131: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

RIC651 MICROCONTROLLERS FOR EMBEDDED SYSTEMS LAB

1. Write a program of Flashing LED connected to port 1 of the 8051 Micro Controller

2. Write a program to generate 10 kHz square wave using 8051.

3. Write a program to show the use of INT0 and INT1 of 8051.

4. Write a program for temperature & to display on intelligent LCD display.

5. Write a program to generate a Ramp waveform using DAC with micro controller.

6. Write a program to Interface GPIO ports in C using MSP430 (blinking LEDs , push buttons)

7. Write a program Interface potentiometer with GPIO.

8. Write a program of PWM based Speed Control of Motor controlled by potentiometer connected to GPIO.

9. Write a program of PWM generation using Timer on MSP430 GPIO.

10. Write a program to Interface an accelerometer.

11. Write a program using USB (Sending data back and forth across a bulk transfer-mode USB connection.)

12. Write a program for Master Slave Communication between 2 MSP430s using SPI

13. Write a program of basic Wi-Fi application – Communication between two MSP430 based sensor nodes.

14. Setting up the CC3100 as a HTTP server.

15. Review of User APIs for TI CC3100 & Initialization and Setting of IP addresses.

Page 132: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

DEPARTMENTAL ELECTIVE COURSE 2

REC061 INDUSTRIAL ELECTRONICS Unit Topics Lectures I Power Semiconductor Devices: Power semiconductor devices their symbols and

static characteristics and specifications of switches, types of power electronic circuits Operation, steady state & switch characteristics & switching limits of Power

Transistor Operation and steady state characteristics of Power MOSFET and IGBT Thyristor – Operation V- I characteristics, two transistor model, methods of turn-on

Operation of GTO, MCT and TRIAC.

8

II Phase Controlled Rectifiers: Phase Angle Control, Single-phase Half-wave

Controlled Rectifier (One quadrant), Single-phase Full-wave Controlled Rectifier

(Two quadrant Converters),Performance Factors of Line-commutated Converters,

The Performance Measures of Two-pulse Converters, Three phase Controlled Converters

Inverters: Introduction Thyristor Inverter Classification, Series Inverters, Parallel

Inverter, Three-phase Bridge Inverters, Three-phase Bridge Inverter with Input-

circuit Commutation.

8

III Choppers: Introduction, Principle of Chopper Operation, Control Strategies, stepup/Down Chopper, Jones Chopper. Introduction to basic Cycloconverters.

Control of D.C. Drives: Introduction, Basic Machine Equations, Breaking Modes,

Schemes for D.C. Motor Speed Control, Single-phase Separately Excited Drives,

Braking Operation of Rectifier Controlled Separately excited Motor, Single-phase Separately Excited Drives, Power Factor Improvement, Three-phase Separately

Excited Drives, D.C. Chopper Drives

8

IV Control of A.C. Drives: Introduction, basic Principle of Operation, Squirrel-cage

Rotor Design, Speed Control of Induction Motors, stator Voltage Control, Variable

Frequency control, Rotor Resistance Control, Slip Power Recovery Scheme, Synchronous Motor Drives

8

V Protection of device and circuits: Introduction, Cooling and heat sinks, Thermal

Modeling of Power Switching devices, Snubber Circuits, Reverse Recovery Transients, Supply- and Load- side Transients, Voltage Protection, Current

Protections, Electromagnetic Interference.

8

Text Books: 1. M. H. Rashid, “Power Electronics”, 3rd Edition, Pearson Education.

2. M. D. Singh & K. Khanchandani, “Power Electronics”, Tata McGraw Hill.

Reference Books: 1. V.R. Moorthy, “Power Electronics: Devices, Circuits and Industrial Applications”, Oxford University

Press,2007.

2. M.S. JamilAsghar, “Power Electronics”,PHI. 3. Chakrabarti&Rai, “Fundamentals of Power Electronics &Drives”DhanpatRai& Sons. 4. Ned Mohan, T.M.Undeland and W.P.Robbins, “Power Electronics:Converters, Applications and Design”,

Wiley India. 5. S.N.Singh, “A Text Book of Power Electronics”,DhanpatRai& Sons.

Page 133: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC602 MICROCONTROLLER FOR EMBEDDED SYSTEMS

Unit Topic Lectures

I

Introduction , Microcontrollers and Embedded systems, Overview of the 8051,

Inside the 8051, Addressing modes, assembly programming, 8051 data types and

directives, Interfacing with 8051, Programming the 8051 timers

6

II

MSP430x5x series block diagram, address space, on-chip peripherals (analog and

digital), and Register sets. Instruction set, instruction formats, and various

addressing modes of 16-bit microcontroller; Sample embedded system on MSP430 microcontroller. Memory Mapped Peripherals, programming System registers, I/O

pin multiplexing, pull up/down registers, GPIO control. Interrupts and interrupt

programming.

III

Watch dog timer, system clocks, Timer & Real Time Clock (RTC), PWM control, timing generation and measurements. Analog interfacing and data acquisition ADC

and Comparator in MSP430, data transfer using DMA.

10

IV

Serial communication basics, Synchronous/Asynchronous interfaces (like UART, USB, SPI, and I2C). UART protocol, I2C protocol, SPI protocol. Implementing

and programming UART, I2C, SPI interface using MSP430, Interfacing external

devices.

10

V

Internet of Things (IoT) overview and architecture, Overview of wireless sensor

networks and design examples. Various wireless connectivity: NFC, ZigBee, Bluetooth, Bluetooth Low Energy, Wi-Fi. Adding Wi-Fi capability to the

Microcontroller, Embedded Wi-Fi, User APIs for Wireless and Networking

applications, Building IoT applications using CC3100 user API for connecting sensors.

6

Text Book:

1. Mazidi Ali Muhammad, MazidiGillispie Janice, and McKinlayRolin D “ The 8051 Microcontroller and Embedded Systems using Assembly and C”, Pearson Publication.

2. John H Davies, “MSP430 Microcontroller Basics” Newnes Publication.

Reference Book:

1. TI MSP430x5xx and MSP430x6xx Family User's Guide.

Page 134: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC063 ANALOG SIGNAL PROCESSING Unit Topics Lectures

I Introduction to domains and the analogue/digital trade off, Introduction to current

conveyor, current feedback amplifier.

Analog signal filtering: introduction to bilinear transfer functions and active

realizations. Second-order filter realization, filter design parameters (Q and ω0),

frequency response, Three op-amp biquad, effect of finite gain of op-amp over filters,

Sallen-Key biquad.

10

II Ideal low-pass filter, Buttreworth and Chebyshev magnitude response, pole locations,

low-pass filter specifications, comparison of Maximally flat and Equal ripple

responses.

8

III Delay equalization: equalization procedures, equalization with first-order and second

order modules, strategies for equalization design. Definition of Bode sensitivity.

7

IV The General Impedance Convertor (GIC), optimal design of the GIC, realization of

simple ladders, Gorski-Popiel’s Embedding Technique, Bruton’s FDNR technique,

creating negative components.

8

V Elementary transconductor building blocks, resistors, integrators, amplifiers,

summers, Gyrator, First and second order filters, Higher order filters

7

Text Book:

1. R. Schaumann and M.E. Valkenberg,“Design of Analog Circuits”, Oxford University Press

Page 135: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC064 ADVANCED DIGITAL DESIGN USING VERILOG

Unit Topic Lectures

I ntroduction to Mixed Logic, Logic Representation and Minimization with cost,

Multiple output minimization, Entered Variable K- Map including don’t care

handling, XOR Pattern Handling.

8

II Combinational Circuit Design, Multiplexers, Decoders, Encoders, Code

Comparators, Adders, Subtractors, Multipliers, Introduction to Verilog, Behavioral

and Structural specification of logic circuits, Boolean function implementation using Verilog, Timing Analysis, Hazard Detection and Elimination

8

III Synchronous Sequential Circuits Design, Mapping Algorithm, Synchronous

StateMachines, ASM Charts, Asynchronous Sequential Circuit Design, Races,

Multi-levelminimization and optimization.

8

IV Factoring, Decomposition, BDD, Ordered BDD, LPDD, Fault Detection and

Analysis incombinational and sequential systems, Path Sensitization method,

Boolean DifferenceMethod, Initial State Method.

8

V Study of programmable logic families, PLD, CPLD, FPGA, ASIC, PLA,

Architectures,Design of Combinational and sequential circuits using CPLD and

FPGA, Design Examples.

8

Text Books: 1. Richard F. Tinder, “Engineering Digital Design”, Academic Press. 2. Parag K. Lala, “Digital system Design Using PLDs”, PHI India Ltd.

3. Stephen Brown and ZvonkoVranesiv, “Fundamental of Digital Logic with Verilog Design”, Tata McGraw Hill.

Reference Books:1. John Williams, “Digital VLSI Design with Verilog”, Springer Publication.

2. Eugene Fabricius, “Modern Digital Design and Switching Theory”, CRC Press. 3. Samuel C. Lee, “Digital Circuit and Logic Design”, PHI India Ltd.

4. Alexander Miczo, “Digital Logic Testing and Simulation”,WileyInterscience.

Page 136: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

REC065 RADAR ENGINEERING

Unit Topics Lectures I Introduction to Radar: Basic radar, The simple form of radar equation, Radar block

diagram, Radar frequencies, Applications to radar. 5

II Radar Equation: Introduction, Detection of signal in noise, Receiver noise and the signal

to noise ratio, Probability density functions, Probabilities of detection and false alarm, Integration of Radar pluses, Radar cross section of targets, Radar cross section

fluctuations, Transmitter power, Pulse repetition frequency, antenna parameters, system

losses, Other Radar equation considerations.

9

III MTI and Pulse Doppler Radar: Introduction to Doppler and MTI Radar, Delay-Line

cancelers, Staggered pulse repetition frequencies, Doppler filter banks, Digital MTI

processing, Moving target detector, Limitation of MTI performance, MTI from a moving platform, Pulse Doppler Radar, CW Radar.

9

IV Tracking Radar: Tracking with Radar, Mono-pulse tracking, Conical scan and sequential

lobbing, Limitation to tracking accuracy, Low-angle tracking, Tracking in range,

Comparison of trackers, Automatic tracking with Surveillance Radar (ADT)

8

V Information from Radar signals: Basic Radar measurements, Ambiguity diagram, Pulse

compression, Target recognition.

Radar Clutter: Land clutter, Sea clutter, Weather clutter and detection of targets in clutter.

9

Text Book: 1. Merrill I. Skolnik“ Introduction to Radar Systems” Third Edition.

Reference Book:

1 J.C. Toomay , Paul J. Hannen “ Principles of Radar” Third Edition. 2 GottapuSasibhusanaRao, “Microwave and Radar Engineering, Pearson.

3 Bernard Davis,George Kennedy, Electronic Communication Systems, Tata McGraw-Hill Education Pvt.

Ltd.

Page 137: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

B. TECH. FINAL YEAR

ON

CHOICE BASED CREDIT SYSTEM (CBCS)

[Effective from the Session: 2019-20]

YEAR 4rd/ SEMESTER VII

Sr.

No.

Sub Code

Subject Name

Dept.

L-T-P Th/Lab

Marks Sessional

Subject

Total

Credit

ESE CT TA

1

Open Elective-I** Other

Dept. 3--0--0 70 20 10 100 3

2

Departmental Elective-III Core

Deptt. 3--0--0 70 20 10 100 3

3

Departmental Elective-IV Core

Deptt. 3--1--0 70 20 10 100 4

4 REC 701 Data Communication

Networks

Core

Deptt. 3--1--0 70 20 10 100 4

5 REC 702 VLSI Design Core

Deptt. 3--0--0 70 20 10 100 3

6 REC 751 Optical Communication &

Networking Lab

Core

Deptt. 0--0--2 50 - 50 100 1

7 REC 752 Electronics Circuit Design

Lab

Core

Deptt. 0--0—2

50 - 50 100 1

8 REC 753 Industrial Training Viva-

Voce

Core

Deptt. 0--0—3 - - 100 100 2

9 REC 754 Project-I Core

Deptt. 0--0--6 - - 200 200 3

TOTAL

450 100 450 1000 24

LIST OF DEPTT. ELECTIVES:

Elective – III REC 07* Departmental Elective III

1. REC 070 Optical Network (NPTEL: https://nptel.ac.in/courses/117102011/)

2. REC 071 Information Theory & Coding (NPTEL : https://nptel.ac.in/courses/117101053/)

3. REC 072 Digital Image Processing (NPTEL : https://nptel.ac.in/courses/117105079/ )

4. REC 073 Advance Programming in Engineering(NPTEL: https://nptel.ac.in/courses/103106118/2)

Elective – IV REC 07* Departmental Elective IV

1. REC 075 Optical Communication(NPTEL : https://nptel.ac.in/courses/117101054/, https://nptel.ac.in/courses/117104127/ )

2. REC 076 Filter Design 3. REC 077 Applied Fuzzy Electronic Systems(NPTEL : https://nptel.ac.in/courses/106105173/2) 4. REC 078 Computerized Process Control

Page 138: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

B.Tech. Electronics Engineering, B.Tech. Electronics & Communication Engineering, B.Tech.

Electronics & Telecommunication

Engineering YEAR 4rd/ SEMESTER VIII

LIST OF

DEPTT.

ELECTIVE

S:

Elective – IV

REC 08*

Department

al Elective V

1. REC 080 Electronic Switching

2. REC081 Analytical Instrumentation

3. REC 082 Advanced Display Technologies & Systems 4. REC 083 Satellite & RADAR systems (NPTEL: https://nptel.ac.in/courses/117105131/ )

Elective – VI REC 08* Departmental Elective VI

1. REC 085 Wireless & Mobile Communication (NPTEL :https://nptel.ac.in/courses/117102062/ )

2. REC 086 Voice Over IP 3. REC 087 Speech Processing

4. REC 088 Micro and Smart Systems(NPTEL: https://nptel.ac.in/courses/112108092/)

Sr.

No

Sub

Code

Subject Name

Dept.

L-T-P

Th/LAB

Marks

Sessional Subject

Total

Credit

ESE CT TA

1 Open Elective-II** Other

Dept. 3-0-0 70 20 10 100 3

2 Departmental Elective-V

Core

Deptt. 3-1-0 70 20 10 100 4

3 Departmental

Elective-VI

Core

Deptt. 3-0-0 70 20 10 100 3

4 REC 851 GD &Seminar Core

Deptt. 0-0-3

100 100 2

5 REC 852 Project Core

Deptt. 0-0-12 350 - 250 600 12

TOTAL

560 60 380 1000 24

Page 139: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

DATA COMMUNICATION NETWORKS

COURSE OBJECTIVE: After completion of the course student will be able to:

1. Understand basic terminology of networking.

2. Evaluate the functions of various layers and their roles.

COURSE OUTCOME: After completion of the course student will be able to

CO1 Identify the issues and challenges in the architecture of a network.

CO2 Understand the ISO/OSI seven layers in a network.

CO3 Realize protocols at different layers of a network hierarchy

CO4 Recognize security issues in a network.

DATA COMMUNICATION NETWORKS 3 1 0

Unit Topic Lectures

I Introduction to Networks and Data Communications, Goals and Applications of

Networks, Network structure and architecture, The Internet, Protocols and

Standards, Layered Tasks, The OSI reference model, TCP / IP, Addressing, Line

Coding Review.

8

II Physical Layer, Transmission Media: Guided and unguided, Network Topology

Design, Data Link Layer: Error detection and Correction, Framing, Flow and

Error Control Protocols, Networking devices.

8

III Multiple Access: Random Access Protocols, CDMA, CSMA/CD, CSMA/CA,

Controlled Access, Channelization Wired LANs: IEEE Standards, Fast Ethernet,

Gigabit Ethernet, Wireless LAN IEEE 802.11, Bluetooth IEEE 802.16

8

IV Network Layer: Point - to Pont Networks routing, Congestion control

Internetworking -TCP / IP, IP packet, IPV4, IPv6, Transport Layer Protocol: UDP

and TCP, ATM, session Layer-Design issues

8

V Application Layer: File Transfer, Electronic mail, Virtual Terminals,

Cryptography, Network Security

8

Text Book:

1. Forouzan, Data Communication & Networking, McGrawhill Education

2. Lathi, B. P. & Ding, Z., (2010), Modern Digital and Analog Communication Systems,Oxford University Press

3. Stallings, W., (2010), Data and Computer Communications, Pearson.

4. Andrew S. Tanenbaum, “Computer Networks” Pearson.

5. Ajit Pal, “Data Communication and Computer Networks”, PHI

6. Dimitri Bertsekas, Robert G. Gallager, “Data Networks”, Prentice Hall, 1992

Page 140: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

VLSI DESIGN

COURSE OBJECTIVE: 1. To learn basic CMOS Circuits. 2. To learn CMOS process technology. 3. To learn techniques of chip design using programmable devices.

4. To learn the concepts of designing VLSI Subsystems. 5. To learn the concepts of modelling a digital system using Hardware Description Language.

COURSE OUTCOME: After completion of the course student will be able to:

CO1 Model the behaviour of a MOS Transistor

CO2 Design combinational and sequential circuits using CMOS gates

CO3 Identify the sources of power dissipation in a CMOS circuit.

CO4 Analyse SRAM cell and memory arrays

VLSI DESIGN 3 0 0

Unit Topics Lectures

I Introduction: A Brief History, Preview, MOS Transistors, CMOS Logic, CMOS

Fabrication and Layout, Design Partitioning, Logic Design, Circuit Design, Physical

Design, Design Verification, Fabrication, Packaging and Testing.

8

II Delay: Introduction, Transient Response, RC delay model, Linear Delay Model,

Logical Effort of Paths, Timing Analysis Delay Models.

Power: Introduction, Dynamic Power, Static Power

8

III Energy – Delay Optimization, Low Power Architectures. Interconnect: Introduction, Interconnect Modelling, Interconnect Impact,

Interconnect Engineering, Logical Effort with Wires

8

IV Dynamic logic circuits: Introduction, basic principle of pass transistor circuits,

synchronous dynamic circuit techniques, dynamic CMOS circuit techniques, domino

CMOS logic.

Semiconductor memories: Introduction, DRAM, SRAM, ROM, flash memory.

8

V Low – Power CMOS Logic Circuits: Introduction, Overview of Power Consumption,

Low – Power Design through voltage scaling, Estimation and Optimization of

switching activity, Reduction of Switched Capacitance and Adiabatic Logic Circuits.

Design for Testability: Introduction, Fault Types and Models, Controllability and

Observability, Ad Hoc Testable Design Techniques, Scan Based and BIST

Techniques

8

Text Book:

1. Sung-Mo Kang & Yosuf Leblebici, “CMOS Digital Integrated Circuits: Analysis & Design”,Mcgraw Hill, 4th Edition. 2. Neil H.E.Weste, David Money Harris, “CMOS VLSI Design – A circuits and SystemsPerspective” Pearson, 4th Edition

Reference Books:

1. D. A. Pucknell and K. Eshraghian, “Basic VLSI Design: Systems and Circuits”, PHI, 3rd Ed.,1994.

2. W.Wolf, Modern VLSI Design: System on Chip, Third Edition, Pearson, 2002.

Page 141: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

DEPARTMENT ELECTIVES - III

OPTICAL NETWORK

COURSE OBJECTIVES:

1. To make students familiar with Optical Network. 2. To choose system components. 3. To identify the networks. 4. To identify the WDM Network Design. 5. As a prerequisite for the course in Wireless LANs Optical Switching.

COURSE OUTCOME: After completion of the course student will be able to

CO1 Familiarize with multiplexing techniques, second generation optical networks, The optical layer, optical packet switching.

CO2 Understand the concept of Principles of operation, Conservation of energy, Isolators and

circulators: Principles of operation.

CO3 Understand the basics of Multiplexing, SONET/SDH layers, SONET Frame structure, SONET/SDH physical layer, Elements of a SONET/SDH infrastructure.

CO4 To gain knowledge of Routing and wavelength assignment problems, Dimensioning Wavelength Routing Networks, Network Survivability.

CO5 To gain knowledge of working of OTDM, Synchronization, Header Processing, Buffering, Burst Switching, Deployment Considerations- SONET/SDH core Network.

OPTICAL NETWORK 3 0 0

Unit Topic Lectures

I Introduction to Optical Network:- Optical Networks: multiplexing techniques,

second generation optical networks. The optical layer, optical packet switching.

Transmission Basics: wavelength, frequencies and channel spacing, wavelength

standards.

Non linear Effects: Effective length and area, stimulated brillouin scattering,

stimulated raman scattering, Propagation in a non linear medium, self phase

modulation, cross phase modulation Four wave mixing

8

II Components:-Couplers: Principles of operation, Conservation of energy, Isolators

and circulators: Principles of operation

Multiplexers and filters: Gratings, diffraction pattern, Bragg grating, Fiber gratings,

Fabry-perot filters, multilayers dielectric thin – film filters,

Mach-Zehnder interferometers, Arrayed waveguide grating, Acousto-optic tunable

filter, High channel count multiplexer Architecture.

Switching : large optical switches, Optical switch Technologies, large electronic

switches wavelength converters: Optoelectronic Approch , optical grating,

interferometric techniques wave mixing. Crosstalk: Intra-channel crosstalk, inter-

channel crosstalk, crosstalk in Networks, Bidirectional system crosstalk reduction.

8

III Networks- SONET/SDH: Multiplexing, SONET/SDH layers, SONET Frame

structure, SONET/SDH physical layer, Elements of a SONET/SDH

infrastructure. ATM: Function of ATM, Adaptation layers, Quality of service.

8

Page 142: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

IP: Routing and forwarding, QOS, WDM Network elements: Optical line

terminals, Optical line amplifiers,.

Optical add/Drop multiplexers: Architecture, reconfigurable OADMS, Optical

cross connects: All optical OXC configuration

IV WDM Network Design Cost Trade-offs, Light path Topology Design, and

Routing and wavelength assignment problems, Dimensioning Wavelength

Routing Networks, Network Survivability, Basic Concepts, Protection in

SONET/SDH, Protection in client layer, Optical Layer Protection, Different

Schemes, Interworking between Layers, Access Networks, Network Architecture Overview, Enhanced HFC, FTTC, PON evolution

8

V Optical Switching, OTDM, Synchronization, Header Processing, Buffering, Burst Switching, Deployment Considerations- SONET/SDH core

Network

8

Text Books: 1. R. Ramaswami, & K. N. Sivarajan, “Optical Networks a Practical perspective”,Morgan Kaufmann

Publishers, 3rd Ed. 2. U. Black, “Optical Networks: Third Generation Transport Systems”/ PearsonEducations

Reference Books:

1. Biswanath Mukherjee “Optical WDM Networks” Springer Pub 2006

Page 143: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

INFORMATION THEORY & CODING

COURSE OBJECTIVE: 1. To learn basic of Entropy. 2. To learn Asymptotic Equipartition Property.

3. To learn Channel Capacity. 4. To learn the implementation of Block Codes 5. To learn the Convolution codes

COURSE OUTCOME: After completion of the course student will be able to:

CO1 Model the Entropy, Joint Entropy and Conditional Entropy, Relative Entropy and Mutual

Information, Relationship Between Entropy and Mutual Information

CO2 Design Data Compression, Examples of Codes, Kraft Inequality, Optimal Codes, Bounds on the Optimal Code Length

CO3 Identify the Examples of Channel Capacity, Symmetric Channels, Properties of Channel Capacity, Preview of the Channel Coding Theorem.

CO4 Analyse Introduction to block codes, Single-parity-check codes, Product codes, Repetition codes,

Hamming codes

CO5 Design Generator matrices for convolutional codes, Generator polynomials for convolutional codes

INFORMATION THEORY & CODING 3 0 0

Unit Topics Lectures

I Entropy: Entropy, Joint Entropy and Conditional Entropy, Relative Entropy

and Mutual Information, Relationship Between Entropy and Mutual

Information, Chain Rules for Entropy, Relative Entropy, and Mutual

Information, Jensen’s Inequality and Its Consequences, Log Sum Inequality

and Its Applications, Data-Processing Inequality, Sufficient Statistics, Fano’s

Inequality

8

II Asymptotic Equipartition Property: Asymptotic Equipartition Property

Theorem,

Consequences of the AEP: Data Compression, High-Probability Sets and the

Typical Set

Data Compression: Examples of Codes, Kraft Inequality, Optimal Codes,

Bounds on the Optimal Code Length, Kraft Inequality for Uniquely

Decodable Codes, Huffman Codes, Some Comments on Huffman Codes,

Optimality of Huffman Codes, Shannon–Fano–Elias Coding

8

III Channel Capacity: Examples of Channel Capacity, Symmetric Channels,

Properties of Channel Capacity, Preview of the Channel Coding Theorem,

Definitions, Jointly Typical Sequences, Channel Coding Theorem

8

IV Block Codes Digital communication channel, Introduction to block codes, Single-parity-

check codes, Product codes, Repetition codes, Hamming codes, Minimum

distance of block codes, Soft-decision decoding, Automatic-repeat-request

8

Page 144: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

schemes

Linear codes

Definition of linear codes, Generator matrices, Standard array, Parity-check

matrices, Error

V Convolution codes

Encoding convolutional codes, Generator matrices for convolutional codes,

Generator polynomials for convolutional codes, Graphical representation of

convolutional codes, Viterbi decoder

8

Text Books: 1. Bose, Inforrmation Theory, Coding and Cryptography, Mcgrawhill Education

2. Joy A. Thomas, Thomas M. Cover, “Elements of information theory”, Wiley-Interscience; 2edition (July 18, 2006)

3. S. Gravano, “Introduction to Error Control Codes” OUP Oxford (24 May 2001)

4. Robert B. Ash, “Information Theory”, Dover Publications (November 1, 1990)

5. Todd k Moon, “Error Correction Coding: Mathematical Methods and Algorithms ” Wiley,2005

Page 145: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

DIGITAL IMAGE PROCESSING

COURSE OBJECTIVE: 1. To study the image fundamentals and mathematical transforms necessary for image processing. 2. To study the image enhancement techniques 3. To study image restoration procedures.

4. To study the image compression procedures. 5. To study the image segmentation and representation techniques

COURSE OUTCOME: After completion of the course student will be able to:

CO1 Understand the need for image transforms and their properties

CO2 Choose appropriate technique for image enhancement both in spatial and frequency Domains.

CO3 Identify causes for image degradation and apply restoration techniques.

CO4 Compare the image compression techniques in spatial and frequency domains.

CO5 Select feature extraction techniques for image analysis and recognition.

DIGITAL IMAGE PROCESSING 3 0 0

Unit Topics Lectures

I Introduction: Overview of Image Processing, Nature of Image Processing,

Application area of image processing, Digital Image Representation, Types of

images, Digital Image Processing Operations, Fundamental steps in DIP, Overview

of Digital Image Systems, Physical Aspect of Image Acquisition, biological Aspect

of Image Acquisition, sampling & quantization, Digital Halftone Process, Image

storage and File formats.

8

II Image Transforms: Need for image transforms, Properties of Fourier transform,

Discrete cosine transform, Discrete sine transform, Hadamard transform, Haar

transform, Slant transform, SVD and KL transforms, Comparison between

transforms.

Image Enhancement: Image Quality and Need for image enhancement, Image

enhancement operations, Image enhancement in spatial domain, histogram based

techniques, Spatial Filtering concepts, Image smoothing spatial filters, Image

Sharpening spatial filters, Image smoothing in frequency domain filtering, Image

sharpening in frequency domain, Homomorphism filtering.

8

III Image Restoration: Introduction to degradation, Types of Image degradations,

image degradation models, noise modeling, Estimation of degradation functions,

Image restoration in presence of noise only, Periodic noise and band – pass and

band reject filtering, difference between enhancement & restoration, Image

restoration techniques

8

IV Image Compression: Image compression model, Compression algorithms and its types, Type of redundancy, lossless compression algorithms, Lossy

8

Page 146: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

compression algorithms, Image and video compression standards

V Image Segmentation: Introduction, Detection of Discontinuities, Edge Detection,

Hough Transforms and Shape Detection, corner detection, Principle of thresholding,

Principle of region - growing.

8

Text Books:

1. Rafael C. Gonzalez Richard E woods Steven L. Eddins, ‘‘Digital Image Processing UsingMATLAB’’, Mc Graw Hill, 2nd Edition

2. Jayaraman, Digital Image Processing, McGrawhill Education

3. S. Sridhar, “Digital Image Processing”, OXFORD University Press, Second Edition.

4. Rafael C. Gonzalez Richard E woods Steven L. Eddins, ‘‘Digital Image’’, Pearson.

5. Anil K Jain, ‘’Fundamentals of Digital Image Processing”, Pearson.

Page 147: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

ADVANCE PROGRAMMING IN ENGINEERING

COURSE OBJECTIVE:Students undergoing this course are expected:

1. To understand interactive computation techniques and learn algorithm development in Matlab.

2. To apply Matlab programming skills in communication engineering applications.

3. To apply Matlab programming skills in control system applications.

4. To apply Matlab application in neural networks and fuzzy logic.

5. To apply Matlab programming skills in digital signal processing applications.

COURSE OUTCOME: After completion of the course student will be able to:

CO1 Understand the fundamentals of Matlab programming as well as understand and apply

advance level programming techniques for solving problems using numerical methods.

CO2 Learn, apply, and investigate Matlab applications in advance communication systems.

CO3

Apply and investigate stability of systems and processes using time domain and

frequency domain stability criterions like Routh-Hurwitz, State-space representation,

Bode plots and Root Locus techniques.

CO4 Learn, apply, and investigate Matlab applications in neural networks and fuzzy logic.

CO5 Learn, apply, and investigate Matlab applications in digital signal processing including multi-rate DSP algorithms.

Advance Programming in Engineering 3 0 0

Unit Topics Lectures

I Introduction of MATLAB, MATLAB fundamental, Interactive Computation:

Logical vectors, logical operations, logical functions, Matrix and Arrays, matrices,

matrix operations, MATLAB Graphics: Basics 2-D plots, 3-D plots, handle

graphics, Saving and printing graphs, Linear equations. Loops, Error and Pitfalls.

Program design and algorithm development, MATLAB scripts and

functions and data import-export utilities.

8

II MATLAB Applications in Communication Systems: Introduction, Generation and

detection of AM, FM, and PM signals, Sampling of signals, Pulse modulation

techniques (PAM, PWM, PPM), PCM, Digital modulation

techniques (ASK, PSK, FSK, M-ary), OFDM, Spread-spectrum techniques

8

III MATLAB Applications in control system: Introduction, Laplace and Inverse

Laplace Transform, Transfer function, Zero, Poles and Pole – Zero map of a

transfer function, State-Space representation, series/cascade, parallel and feedback

Connections, Time response of control systems Routh Hurwitz Criteria. Root

Locus, Frequency response Representation: Bode plots, Gain

Margin, Phase Margin, Polar Plot, Nyquist Plot.

8

Page 148: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

IV MATLAB Application in Neural Networks: Introduction, salient features of

artificial neural networks, ANN Architectures, Application using multilayer

perceptron, ANN based control. MATLAB Application in Fuzzy Logic Systems:

Introduction, Linguistic variables and membership functions, fuzzy

operations, rule matrix, fuzzy inference systems, washing machine problem,

8

fuzzy controller example (Water Bath).

V MATLAB Application in Digital Signal Processing: Introduction, signal and

systems classification, operations on discrete-time signals, Multirate signal

processing functions, convolution, Z- Transform, Discrete Fourier Transform,

Fast Fourier Transform, Discrete Cosine Transform, Digital Filtrer Design.

8

Text Books: 1. Raj Kumar Bansal, Ashok Kumar Goel and Manoj Kumar Sharma, “MATLAB and its Applications in

Engineering ”, Pearson 14th impression,2014.

2. Brian H. Hahn and Daniel T. Valentine, “Essential MATLAB for Engineering and Scientists”,

Academic Press, Elsevier, 5th edition, 2013.

3. Rudra Pratap, “MATLAB- A quick introduction for Scientists and Engineers”, Oxford University Press, 2013.

4. www.mathworks.com

Page 149: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

DEPARTMENT ELECTIVES -IV

OPTICAL COMMUNICATION

COURSE OBJECTIVE: 1. To learn the basic elements of optical fiber transmission link, fiber modes configurations and structures. 2. To understand the different kind of losses, signal distortion, SM fibers. 3. To learn the various optical sources, materials and fiber splicing.

4. To learn the fiber optical receivers and noise performance in photo detector.

5. To learn link budget, WDM, solitons and SONET/SDH network.

COURSE OUTCOME: After completion of the course student will be able to:

CO1 Familiarize with basic concepts and theory of Optical Communication

CO2 Demonstrate OPCOMM components, assemble them and solve problems on Optical Communication system

CO3 Able to design, implements, analyse and maintains optical communication system

CO4 Gain knowledge of different source of light as well as receiver and their comparative study

CO5 To get idea about power budget and ultimately be an engineer with adequate knowledge in optical domain

OPTICAL COMMUNICATION 3 1 0

Unit Topic Lectures

I

Overview of optical fiber communication: The general system, Advantages of optical

fiber communication. Optical spectral band.

Optical Fiber waveguides: Introduction, Ray theory transmission

Total internal reflection, acceptance angle, numerical aperture, skew rays.

Electromagnetic mode theory for optical propagation: Electromagnetic waves, modes

in a planar guide, phase and group velocity, phase shift with total internal reflection

and the evanescent field, goos hanchen shift.

10

II Cylindrical Fiber: modes, mode coupling, step index fibers Graded index fibers, Single

mode Fiber: Cut-off wavelength, Mode field diameter and spot size, effective refractive

index, Group delay and mode delay factor, The Gaussian approximation, equivalent

step index methods.

Signal distortion in optical fibers - Attenuation, Material Absorption, losses in silica

glass fibers; Intrinsic absorption, Extrinsic absorption. Linear scattering losses; Ray

light scattering, Mie scattering.

Non linear Scattering losses: fiber bending losses;

Dispersion, Chromatic dispersion: material dispersion, waveguide dispersion.

Intermodal dispersion: Multimode step index fiber, Multimode graded index

fiber. Overall fiber dispersion Multimode fiber, Dispersion modified single mode fibers

,Dispersion–shifted fiber, dispersion flatted fibers, nonzero-dispersion-shifted fibers

(MZ-DSF), Polarization: Fiber birefringence, polarization mode dispersion,

polarization-maintaining fibers, Non-linear effects: Scattering effects, Kerr

effects.

10

III

Optical sources - Light Emitting Diodes (LEDs): Structures, light source materials,

Quantum Efficiency on LED Power Modulation of a LED,

Laser Diodes- models and threshold conditions, laser diode rate equations, External

6

Page 150: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

quantum efficiency, resonant frequency, laser diode structures and radiation patterns,

single mode lasers modulation of laser diodes, laser lines.

IV Source to fiber power launching, Source Output patterns, Power coupling calculation,

Power launching versus wavelength, equilibrium numerical aperture.

Photo detectors: Physical principles of photodiodes: The PIN photo detector,

Avalanche photodiodes.

Photo detector Noise: Noise sources, signal to noise ration.

Detector Response time: Depletion layer photocurrent, response time structure of in

GaAs APDs, Temperature effect on Avalanche gain, comparison of photo detectors

6

V Optical receiver operation: Fundamental receiver operation: Digital signal

transmission, error sources, front end amplifier.

Digital receiver performance: Probability of error receiver sensitivity, The Quantum

Unit.

Eye Diagram: Eye Pattern Features, BER and Q Factor Measurement Coherent

Detection: Fundamental concepts, Homodyne detection, heterodyne detection, IBER

comparisons.

Digital links: Point to point links, power penalties.

8

Text Book: 1. Gerd Keiser, “Optical Fiber Communications”, McGraw Hill , 5th Edition, 2013.

2. John M. Senior, “Optical Fiber Communications”, PEARSON, 3rd Edition, 2010. Reference Books:

1. Sanjay Kumar Raghuwanshi, Santosh Kumar, “Fiber Optical Communications”, University Press, 2018.

2. Govind P. Agrawal, “Fiber Optic Communication Systems”, John Wiley, 3rd Edition, 2004. 3. Oseph C. Plais, “Fiber Optic Communication”, Pearson Education, 4th Ed, 2004.

Page 151: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

FILTER DESIGN

COURSE OBJECTIVE: Students undergoing this course are expected to:

1. Understand about the characteristics of different filters. 2. Understand the concept of Approximation Theory. 3. Learn about the switched capacitor filter.

COURSE OUTCOME: After completion of the course student will be able to:

CO1 Choose an appropriate transform for the given signal.

CO2 Choose appropriate decimation and interpolation factors for high performance filters.

CO3 Model and design an AR system.

CO4 Implement filter algorithms on a given DSP processor platform.

FILTER DESIGN 3 1 0

Unit Topics Lectures

I Introduction: Fundamentals, Types of filters and descriptive terminology, why we

use Analog Filters, Circuit elements and scaling, Circuit simulation and modelling.

Operational amplifiers: Op-amp models, Op-amp slew rate, Operational amplifiers

with resistive feedback: Noninverting and Inverting, Analysing Op-amp circuits,

Block diagrams and feedback, The Voltage follower, Addition and subtraction,

Application of Op-amp resistor circuits.

8

II First order filter: Bilinear transfer functions and frequency response – Bilinear transfer function and its parts, realization of passive elements, Bode

plots, Active realization, The effect of A(s), cascade design.

8

III Second order low pass and band pass filters: Design parameters, Second order

circuit, frequency response of low pass and band pass circuits, Integrators and

others biquads.

8

IV Second order filters with arbitrary transmission zeros: By using summing, By

voltage feed forward, cascade design revisited.

Low pass filters with maximally flat magnitude: the ideal low pass filter,

Butterworth response, Butterworth pole locations, low pass filter specifications,

arbitrary transmission zeros.

8

V Low pass filter with equal ripple (Chebyshev) magnitude response: The chebyshev

polynomial ,The chebyshev magnitude response, Location of chebyshev poles,

Comparison of maximally flat & equal–ripple responses, Chebyshev filter design

Inverse chebyshev and cauer filters: Inverse chebyshev response, From

specifications to pole and zero locations, Cauer magnitude response, Chebyshev

rational functions, Cauer filter design.

8

Page 152: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Text Book: 1. 1. Rolf. Schaumann, Haiqiao Xiao, Mac. E. Van Valkenburg, “Analog Filter Design”, 2ndIndian

Edition, Oxford University Press.

Reference Books:

2. J. Michael Jacob, “Applications and Design with Analog Integrated Circuits”,Second edition, Pearson.

3. T. Deliyannis, Yichuang Sun, J.K. Fidler, “Continuous-Time Active Filter Design”,CRC Press.

Page 153: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

APPLIED FUZZY ELECTRONIC SYSTEMS

COURSE OBJECTIVE:Students undergoing this course are expected:

1. To understand Fuzzy Sets, Possibility Distributions.

2. To analysis Fuzzy Rule.

3. To Be aware of uncertainty in information.

4. To learn approximate method of Extension.

5. Analysis Fuzzy Logic in Control Engineering.

COURSE OUTCOME: After completion of the course student will be able to:

CO1

Understand the Operations of Fuzzy Sets, Properties of Fuzzy Sets, Geometric Interpretations of

Fuzzy Sets, Possibility Theory.

CO2

Design Fuzzy Mapping Rule, Fuzzy Implication Rule, Fuzzy Rule Based Models for

Function Approximations, Theoretical Foundation of Fuzzy Mapping Rules, Types of

Fuzzy Rule Based Models.

CO3 Realization of Fuzzy Sets and their properties; Cardinality of Classical Relations and their

properties.

CO4 Aware Principle of Vertex Method, DSW Algorithm, and Restricted DSW Algorithm and

their comparison, Classical Predicate Logic; Fuzzy Logic.

CO5

Understand Fundamental Issues in Control Engineering, Control Design Process,

Semiformal Aspects of Design Process, Mamdani Architecture of Fuzzy Control, The

Sugeno-Takagi Architecture.

APPLIED FUZZY ELECTRONIC SYSTEMS 3 1 0

Unit Topics Lectures

I History of Fuzzy Logic, Fuzzy Sets, Possibility Distributions, Fuzzy Rules,

Fuzzy Sets, Operations of Fuzzy Sets, Properties of Fuzzy Sets, Geometric

Interpretations of Fuzzy Sets, Possibility Theory, Fuzzy Relations and their

Compositions, Fuzzy Graphs, Fuzzy Numbers, Functions with Fuzzy

Arguments, Arithmetic Operations of Fuzzy Numbers.

8

II Fuzzy Rules: Fuzzy Mapping Rule, Fuzzy Implication Rule, Fuzzy Rule Based

Models for Function Approximations, Theoretical Foundation of Fuzzy

Mapping Rules, Types of Fuzzy Rule Based Models: Mamdani Model, TSK

Model, Standard Additive Model, Fuzzy Implications and Approximate

Reasoning: Propositional Logic, First Order Predicate Calculus, Fuzzy

Implications, Approximate Reasoning, Criteria and Family of Fuzzy

Implications, Possibility vs. Probability, Probability of Fuzzy Event,

Probabilistic Interpretations of Fuzzy Sets, Fuzzy Measure.

8

Page 154: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

III Uncertainty in information; Classical Sets, Fuzzy Sets and their properties;

Cardinality of Classical Relations and their properties, The a- Level Set,

Cardinality of Fuzzy Relations and their properties; Composition; Tolerance

and Equivalence relationship; Membership Functions; Fuzzification and

Defuzzification process; Fuzzy to Crisp Conversions; Lambda cuts; Extension

8

Principle, Crisp functions and its mapping, Fuzzy functions and its mapping;

Fuzzy Numbers; Internal Analysis in Arithmetic

IV Approximate method of Extension, Vertex Method, DSW Algorithm, and

Restricted DSW Algorithm and their comparison, Classical Predicate Logic;

Fuzzy Logic; Approximate Reasoning; Fuzzy Tautologies, Contradictions,

Equivalence, and Logical Proof; Fuzzy Rule Based Systems, Models of Fuzzy

AND, OR, and Inverter; Fuzzy Algebra; Truth Tables; Fuzzy Functions;

Concept of Fuzzy Logic Circuits; Fuzzy Flip- Flop; Fuzzy Logic Circuits in

Current Mode, Furry Numbers.

8

V Fuzzy Logic in Control Engineering: Fundamental Issues in Control

Engineering, Control Design Process, Semiformal Aspects of Design Process,

Mamdani Architecture of Fuzzy Control, The Sugeno-Takagi Architecture.

Fuzzy Logic in Hierarchical Control Architecture, Historical Overview and

Reflections on Mamdani`s Approach, Analysis of Fuzzy Control System via

Lyapunov`s Direct Method, Linguistic Approach to the analysis of Fuzzy

Control System, Parameter Plane Theory of Stability, Takagi-Sugeno-Kang

Model Of Stability Analysis.

8

Text Book:

1. John Yen, Reza Langari, “Fuzzy Logic: Intellegent Control andInformation”, PearsonPublication.

2. Ahmad M. Ibrahim, “Introduction to Applied Fuzzy Electronics”, Prentice Hall Publication.

3. Ahmad M. Ibrahim, “Fuzzy Logic for Embedded Systems Applications”, NewnesPublications.

4. Witold Pedrycz, Fernando Gomide, “Fuzzy Systems Engineering: Toward Human- CentricComputing”, John Wiley Publications.

Page 155: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

COMPUTERISED PROCESS CONTROL

COURSE OBJECTIVE: Students undergoing this course are expected to:

1. Understand Basics of Computer-Aided Process Control.

2. Analyse Industrial communication System.

3. Design Process Modelling for computerized Process control.

4. Design Advanced Strategies For Computerised Process control.

5. Analyse Computerized Process Control.

COURSE OUTCOME: After completion of the course student will be able to:

CO1 Understand the Role of computers in process control, Elements of a computer aided Process control

System, Classification of a Computer.

CO2 Design Phase Locked Local Loop, Mixers. Time Division Multiplexed System – TDM/PAM system

CO3 Realize Process model, Physical model, Control Model. Modelling Procedure.

CO4 Formulate of Cascade Control, Predictive control, Adaptive Control, Inferential control, Intelligent

Control, Statistical control.

CO5 Design Electric Oven Temperature Control, Reheat Furnace Temperature control.

COMPUTERISED PROCESS CONTROL 3 1 0

Unit Topic Lectures

I

Basics of Computer-Aided Process Control: Role of computers in process control,

Elements of a computer aided Process control System, Classification of a

Computer –Aided Process Control System Computer Aided Process–control Architecture:

Centralized Control Systems, Distributed control Systems, Hierarchical Computer

control Systems. Economics of Computer-Aided Process control. Benefits of using

Computers in a Process control. Process related Interfaces: Analog Interfaces, Digital

Interfaces, Pulse Interfaces, Standard Interfaces.

8

II

Industrial communication System: Communication Networking, Industrial communication

Systems, Data Transfer Techniques, Computer Aided Process control software, Types

of Computer control Process Software, Real Time Operating System

8

III

Process Modelling for computerized Process control: Process model, Physical model,

Control Model, Process modelling. Modelling Procedure: Goals Definition, Information

Preparation, Model Formulation, Solution Finding, Results Analysis, Model Validation

8

IV

Advanced Strategies For Computerised Process control: Cascade Control, Predictive

control, Adaptive Control, Inferential control, Intelligent Control, Statistical control.

8

V

Examples of Computerized Process Control: Electric Oven Temperature Control, Reheat

Furnace Temperature control, Thickness and Flatness control System for metal

Rolling, Computer-Aided control of Electric Power Generation Plant.

8

Text Books: 1. S. K. Singh, “Computer Aided Process control”, PHI.

Page 156: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Reference Books: 1. C. L. Smith, “Digital computer Process Control”, Ident Educational Publishers. 2. C. D. Johnson, “Process Control Instrumentation Technology”, PHI. 3. Krishan Kant, “Computer Based Industrial Control”

4. Pradeep B. Deshpande & Raymond H. Ash, “ Element of Computer Process Control withAdvance Control Applications”, Instrument Society of America, 1981.

5. C. M. Houpis & G. B. Lamond, “Digital Control System Theory”, Tata McGraw Hill.

Page 157: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

ELECTRONICS CIRCUIT DESIGN LAB

COURSE OBJECTIVE: Students undergoing this course are expected:

1. To understand the concept ofuniversal op-amp based biquad.

2. To analyseamplitude control or stabilization applied to any sinusoidal oscillators and

Op-amp/ OTA based function generator.

3. To design log/antilog circuits and find applications of analog multiplier/ divider.

4. To learn digital system design and its hardware implementation using TTL/ CMOS ICs and Any

circuit idea using 555 Timer.

5. To design the circuit, Make hardware and measure various parameters and Simulation in Spice of the

designed circuit.

COURSE OUTCOME: After completion of the course student will be able to:

CO1 Understand Universal op-amp based biquad.

CO2 Identify amplitude control or stabilization applied to any sinusoidal oscillators and Op-amp/ OTA

based function generator.

CO3 Design log/antilog circuits and identify applications of analog multiplier/ divider.

CO4 Understand digital system design and its hardware implementation using TTL/ CMOS ICs and any

circuit idea (not studied in the course) using 555 Timer in conjunction with any otherICs.

CO5 Design the circuit, Make hardware and measure various parameters and Simulation in Spice of the

designed circuit.

In this practical course students will carry out a design oriented project work using various analog/ digital building blocks which they have already studied in their analog electronic/ digital electronic courses such as Electronic circuits, integrated circuits and filter design.

The project may include but not restricted to any of the following:

1. Universal op-amp based biquad.

2. Universal OTA biquad.

3. Amplitude control or stabilization applied to any sinusoidal oscillators.

4. Op-amp/ OTA based function generator.

5. Any application of log/antilog circuits.

6. Any applications of analog multiplier/ divider.

7. Any digital system design and its hardware implementation using TTL/ CMOS ICs.

8. Any circuit idea (not studied in the course) using 555 Timer in conjunction with any otherICs.

The above must include:

1. Design the circuit.

2. Make hardware and measure various parameters.

3. Simulation in Spice of the designed circuit.

4. Comparison of measured and simulated results.A report is to be made for evaluation.

Page 158: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

DEPARTMENT ELECTIVES -V

ELECTRONIC SWITCHING

COURSE OBJECTIVE: Student will be able to:

1. Attain knowledge about analog and digital electronic switching.

2. Estimate traffic congestion in any telecom network.

3. Learn about call processing functions and various signalling schemes.

4. Gain the knowledge of packet switching, ATM and Banyan network switch.

COURSE OUTCOMES:

CO1 Describe and apply fundamentals of telecommunication systems and associated technologies.

CO2 Solve problems and design simple systems related to tele-traffic and trunking efficiency.

CO3 Understand and explain the reasons for switching, and the relative merits of the possible switching modes, e.g. packet and circuit switching.

CO4 Understand the principles of the internal design and operation of telecommunication switches, and

the essence of the key signalling systems that are used in telecommunication networks.

ELECTRONIC SWITCHING 3 1 0

Units Topic Lectures

I Evolution of switching systems: Introduction, Message switching, Circuits switching,

Functions of a switching system, Register-transistor-senders, Distribution frames,

Crossbar switch, A general trucking, Electronic switching, Reed- electronic system,

Digital switching systems.

8

II Digital Switching: Switching functions, Space Division Switching, Time Division

Switching, Two-Dimensional Switching, Digital Cross-Connect Systems , Digital

Switching in an Analog Environment

8

III Telecom Engineering: Network Traffic Load and Parameters, Grade of Service and

Blocking Probability, Modeling Switching Systems, Incoming Traffic and Service

Time Characterization, Blocking models and Loss Estimates, Delay Systems

8

IV Control of switching systems: Introduction, Call-processing functions, Common

control, Reliability, availability and security; Stored-program control.

Signalling: Introduction, Customer line signalling, Audio-frequency junctions and

trunk circuits, FDM carrier systems, PCM signalling, Inter-register signalling,

Common-channel signalling principles, CCITT signalling system no. 6 and 7, Digital

customer line signalling.

8

V Packet Switching: Packet Switching, Statistical Multiplexing, Routing Control

(dynamic routing, virtual circuit routing and fixed-path routing), Flow Control, X.25,

Frame Relay, TCP/IP

ATM Cells, ATM Service Categories, ATM Switching (ATM Memory Switch,

Space-Memory Switch, Memory-Space Switch, Memory-Space-Memory switch,

Banyan Network Switch).

8

Page 159: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Text Books:

1. Thiagarajan Viswanathan & Manav Bhatnagar, “Telecommunication Switching Systems

andNetworks”, PHI. 2. J.E. Flood, “Telecommunication Switching, Traffic and Networks”, Pearson Education. 3. John C. Bellamy, “Digital Telephony”, John Wiley, 3rd Ed.

Page 160: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

ANALYTICAL INSTRUMENTATION

COURSE OBJECTIVE: Students undergoing this course are expected to:

1. Understand UV – Visible Spectroscopy.

2. Understand Infrared Spectroscopy.

3. Learn working of flame photometers.

4. Interpret working of mass Spectrometers.

5. Be aware of Nuclear Magnetic Resonance (NMR) Spectroscopy.

COURSE OUTCOME: After completion of the course student will be able to:

CO1

Understand the Electromagnetic Radiation, Laws relating to absorption radiation, Absorption

Instruments, Ultraviolet and visible absorption spectroscopy, Calorimeters.

CO2 Design basic components of IR Spectrophotometers, Type of Infrared Spectrophotometers, Sample Handling Techniques.

CO3 Learnprinciple, constructional details of flame photometers, types of flame photometers, types of flame photometers.

CO4 Be aware of Basic Mass Spectrometer, Principle of operation, Type of Mass Spectrometers,

components of Mass Spectrometers, inductively coupled plasma-mass spectrometer.

CO5 Understand the Principle of NMR, types of NMR spectrometers, constructional details of NMR

spectrometer

ANALYTICAL INSTRUMENTATION 3 1 0

Unit Topics Lectures

I UV – Visible Spectroscopy: Introduction, Electromagnetic Radiation, Laws relating

to absorption radiation, Absorption Instruments, Ultraviolet and visible absorption

spectroscopy, Calorimeters, Double Beam spectrophotometer (Optical Diagram &

Block Diagram) Microprocessor based Spectrophotometer (Block Diagram)

8

II Infrared Spectroscopy, Basic Components of IR Spectrophotometers, Type of

Infrared Spectrophotometers, Sample Handling Techniques

8

III Flame photometers: principle, constructional details of flame photometers, types

of flame photometers, types of flame photometers, clinical flame photometers,

accessories for flame photometer, expression for concentration, interferences in flame

photometry, procedure for determinations. Atomic Absorption Spectrometers:

Atomic Absorption Spectroscopy, Atomic Absorption Instrumentation, Sources of

interferences, meter scale.

8

IV Mass Spectrometers: Basic Mass Spectrometer, Principle of operation, Type of Mass

Spectrometers, components of Mass Spectrometers, inductively coupled plasma-mass

spectrometer, trapped ion analyzers, ion cyclotron resonance (ICR) mass

spectrometer, quadruple ion trap mass spectrometer, applications of mass

spectrometry, gas chromatograph-mass spectrometer, liquid chromatograph-mass

spectrometer, tandem mass spectrometry (MS/MS)

8

Page 161: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

V Nuclear Magnetic Resonance (NMR) Spectroscopy, Principle of NMR, types of

NMR spectrometers, constructional details of NMR spectrometer, variation T-60A

NMR spectrometer, sensitivity enhancement for analytical NMR-spectroscopy,

Fourier transform NMR spectroscopy.

8

Text Books: 1. DA Skoog, “Principles of Instrumental Analysis,” 6th Ed. Cengage 2. R. S. Kandpur, “Handbook Of Analytical Instruments”, Mc Graw Hill 3rdEdition, 3. Willard, Merritt, Dean and Settle, “Instrumental Methods of Analysis”, 7thEdition, CBS

Publishers.

Page 162: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

ADVANCED DISPLAY TECHNOLOGIES & SYSTEMS

COURSE OBJECTIVE: Students undergoing this course are expected:

1. To understand properties of light.

2. To analyse Display Glasses, Inorganic Semiconductor TFT Technology.

3. To compare Inorganic Phosphors, Cathode Ray Tubes, Vacuum Florescent Displays.

4. To differentiate between Paper like and Low Power Displays.

5. To analyse Micro-display Technologies.

COURSE OUTCOME : After completion of the course student will be able to:

CO1 Understand Anatomy of Eye, Light Detection and Sensitivity, Spatial Vision and Pattern

Perception, Binocular Vision and Depth Perception.

CO2 Understand Photolithography for Thin Film LCD, Wet Etching, Dry Etching; Flexible Displays.

CO3 Understand Thin Film Electroluminescent Displays, AC Powder Electroluminescent Displays; Organic Electroluminescent Displays: OLEDs, Active Matrix for OLED Displays

CO4 Be aware ofColorant Transposition Displays, MEMs Based Displays, 3-D Displays, 3-D

Cinema Technology, Autostereoscopic 3-D Technology

CO5 Understand Liquid Crystals on Silicon Reflective Micro-display, Trans missive Liquid Crystal

Micro-display, MEMs Micro-display, DLP Projection Technology.

ADVANCED DISPLAY TECHNOLOGIES & SYSTEMS 3 1 0

Unit Topic Lectures

I Properties of Light, Geometric Optics, Optical Modulation; Vision and

Perception: Anatomy of Eye, Light Detection and Sensitivity, Spatial Vision

and Pattern Perception, Binocular Vision and Depth Perception; Driving

Displays: Direct Drive, Multiplex and Passive Matrix, Active Matrix Driving,

Panel Interfaces, Graphic Controllers, Signal Processing Mechanism; Power

Supply: Fundamentals, Power Supply Sequencing.

8

II Display Glasses, Inorganic Semiconductor TFT Technology, Organic TFT

Technology; Transparent Conductors, Patterning Processes: Photolithography

for Thin Film LCD, Wet Etching, Dry Etching; Flexible Displays: Attributes,

Technologies Compatible with Flexible Substrate and Applications, TFT

Signal Processing Techniques; Touch Screen Technologies: Introduction,

Coatings, Adhesive, Interfaces with Computer Mechanism.

8

III Inorganic Phosphors, Cathode Ray Tubes, Vacuum Florescent Displays,

Filed Emission Displays; Plasma Display Panels, LED Display Panels;

Inorganic Electroluminescent Displays: Thin Film Electroluminescent

Displays, AC Powder Electroluminescent Displays; Organic

Electroluminescent Displays: OLEDs, Active Matrix for OLED Displays;

Liquid Crystal Displays: Fundamentals and Materials, Properties of Liquid

8

Page 163: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Crystals, Optics and Modeling of Liquid Crystals; LCD Device Technology:

Twisted Numeric and Super twisted Numeric Displays, Smectic LCD Modes,

In-Plane Switching Technology, Vertical Aligned Nematic LCD Technology,

Bi-stable LCDs, Cholesteric Reflective Displays; LCD Addressing, LCD

Backlight and Films, LCD Production, Flexoelectro-Optic LCDs.

IV Paper like and Low Power Displays: Colorant Transposition Displays, MEMs

Based Displays, 3-D Displays, 3-D Cinema Technology, Auto- stereoscopic

3-D Technology, Volumetric and 3-D Volumetric Display Technology,

Holographic 3-D Technology; Mobile Displays: Trans- reflective Displays

for Mobile Devices, Liquid Crystal Optics for Mobile Displays, Energy

Aspects of Mobile Display Technology.

8

V Micro display Technologies: Liquid Crystals on Silicon Reflective Micro-

display, Trans missive Liquid Crystal Micro-display, MEMs Micro- display,

DLP Projection Technology; Micro-display Applications: Projection

Systems, Head Worn Displays; Electronic View Finders, Multi- focus

Displays, Occlusion Displays, Cognitive Engineering and Information

Displays; Display Metrology, Standard Measurement Procedures, Advanced

Measurement Procedures: Spatial Effects, Temporal Effects, Viewing Angle,

Ambient Light; Display Technology Dependent Issues, Standards and

Patterns, Green Technologies in Display Engineering.

8

Text Book:

1. Janglin Chen, Wayne Cranton, Mark Fihn , “Handbook of Visual Display

Technology”,Springer Publication.

Page 164: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

SATELLITE & RADAR SYSTEMS

COURSE OBJECTIVE: After completion of the course student will be able to:

1. Become familiar with satellites and satellite services.

2. Understand satellite orbits and launching.

3. Identify earth segment and space segment components. 4. Identify satellite access by various users. 5. Study DTH and compression standards.

COURSE OUTCOME: After completion of the course student will be able to:

CO1 Understand the orbital and functional principles of satellite communication systems

CO2 Architect, interpret, and select appropriate technologies for implementation of specified

satellite communication systems

CO3 Analyse and evaluate a satellite link and suggest enhancements to improve the link

performance.

CO4 Select an appropriate modulation, multiplexing, coding and multiple access schemes for a given satellite communication link.

CO5 Specify, design, prototype and test analog and digital satellite communication systems as per

given specifications.

SATELLITE & RADAR SYSTEMS 3 1 0

Unit Topics Lectures

I Elements of Satellite Communication, Orbital mechanics, look angle and

orbit determination, launches and lauch vehicle, orbital effects, Introduction

to geo-synchronous and geo-stationary satellites.

8

II Satellite sub-systems: Attitude and Orbit control systems, Telemetry,

Tracking and command control system, Power supply system, Introduction

to satellite link design, basic transmission theory, system noise temperature

and G/T ratio, design of down link and uplink, design of satellite links for specified C/N, satellite data communication protocols.

8

III Direct broadcast satellite television and radio, satellite navigation and the

global positioning systems, GPS position location principle, GPS receivers

and codes, Satellite Signal Acquisition, GPS navigation Message, GPS

Signal Levels, Timing Accuracy, GPS Receiver Operation.

8

IV Introduction to radar, radar block diagram and operation, radar frequencies,

Applications of radar, Radar Equation, MTI and Pulse Doppler Radar:

Introduction to Doppler and MTI Radar, Delay Line cancellers, Staggered

Pulse Reception Frequencies, Doppler Filter Banks, Digital MTI Processing,

Moving Target Detector, Limitations to MTI Performance.

8

V Tracking Radar: sequential lobbing, conical scan, mono-pulse Tracking, low

angle tracking, tracking in range. Elements of Satellite Communications,

Orbital mechanics, look angle and orbit determination, launches and launch

vehicle, orbital effects. Introduction to geo-synchronous and geo-stationary

satellites.

8

Text / Reference Books: 1. Merrill I. Skolnik “Introduction to Radar Systems”, Mc Graw- Hill.

2. J.C.Toomay, Paul J. Hannen “Principles of Radar”, PHI Learning.

3. B.Pratt, A.Bostian, “Satellite Communications”, Wiley India.

4. D. Roddy, “Satellite Communications”, McGrawhill Education.

Page 165: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

DEPARTMENT ELECTIVES –VI

WIRELESS & MOBILE COMMUNICATION

COURSE OBJECTIVES:

1. To make students familiar with fundamentals of mobile communication systems.

2. To choose system (TDMA/FDMA/CDMA) according to the complexity, installation cost, speed of transmission, channel properties etc.

3. To identify the requirements of mobile communication as compared to static communication.

4. To identify the limitations of 2G and 2.5G wireless mobile communication and use design of 3G and beyond mobile communication systems.

5. To identify various modern wireless technologies.

COURSE OUTCOME: After completion of the course student will be able to

CO1 Familiarize with various generations of mobile communications.

CO2 Understand the concept of cellular communication.

CO3 Understand the basics of wireless communication.

CO4 Understand GSM mobile communication standard, its architecture, logical channels, advantages

and limitations.

CO5 Gain knowledge of IS-95 CDMA mobile communication standard, its architecture, logical channels, advantages and limitations.

CO6 Gain knowledge of 3G mobile standards and their comparison with 2G technologies.

Wireless & Mobile Communication 3 0 0

Unit Topic Lectures

I Evolution of mobile radio communication fundamentals. General Model of

Wireless Communication Link, Types of Signals, Cellular Infrastructure,

Cellular System Components, Antennas for Cellular Systems, Operation of

Cellular Systems, Channel Assignment, Frequency reuse, Channel Assignment

strategies, Handoff Strategies Cellular Interferences, Sectorization; Wireless

Channel and Radio Communication, Free Space Propagation Model, Channel

Noise and Losses, Fading in Land Mobile Systems, Multipath Fading, Fading

Effects on Signal and Frequency, Shadowing.

8

II Wireless Channel Modeling: AWGN Channel, Rayleigh Channel, Rician

Fading Channel, Nakagami Fading Channel, Ocumura and Hata Path Loss

Model; Channel Modelling: Stochastic, Flat Fading, Wideband Time-

Dispersive Channel Modelling.

.

8

Page 166: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

III Theory of Vocoders, Types of Vocoders; Spread Spectrum Modulation, Pseudo-

Noise Codes with Properties and Code Generation Mechanisms, DSSS and

FHSS Systems, Time Hopping and Hybrid Spread Systems; Multicarrier

Modulation Techniques. Zero Inter Symbol Interference Communication

Techniques, Detection Strategies, Diversity Combining Techniques: Selection Combining, Threshold Combining, Equal Gain Combining, Maximum Ratio

8

Combining; Spatial Diversity and Multiplexing in MIMO Systems, Channel

Estimation.

Equalization Techniques: Transversal Filters, Adaptive Equalizers, Zero

Forcing Equalizers, Decision Feedback Equalizers, and related algorithms.

IV Multiplexing and Multiple Access: FDMA, TDMA, CDMA, OFDMA, SC-

FDMA, IDMA Schemes and Hybrid Method of Multiple Access Schemes,

RAKE Receiver; Multiple Access for Radio Packet Systems: Pure ALOHA,

Slotted ALOHA, CSMA and their versions; Packet and Pooling Reservation

Based Multiple Access Schemes.

8

V GSM system for mobile Telecommunication, General Packet Radio Service,

Edge Technology; CDMA 2000, Wireless Local Loop, IMT 2000 and UMTS,

Long Term Evolution (LTE), Mobile Satellite Communication, Introduction to

Mobile Adhoc Networks, Li-Fi Communication, Ultra-Wideband

Communication, Mobile data networks, Wireless Standards IMT 2000,

Introduction to 4G and concept of NGN.

8

Text Book: 1. T.S. Rappaport, “Wireless Communication-Principles and practice”, Pearson

Publications,Second Edition.

2. Misra, Wireless Communication & Network: 3G & Beyond, McGraw Hill Education

3. Jaganathan, Principles of Modern Wireless Communication System, McGraw Hill Education

4. Upena Dalal, “Wireless Communication and Networks”, Oxford Press Publications.

5. T L Singal ,“Wireless Communications ”, McGraw Hill Education.

Reference Books:

1. Andrea Goldsmith, “Wireless Communications”, Cambridge University Press.

2. S. Haykin & M. Moher, “Modern wireless communication”, Pearson, 2005.

Page 167: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

VOICE OVER IP

COURSE OBJECTIVE: Students undergoing this course are expected to :

1. Understand the basic principle of VoIP.

2. Understand the different signalling protocols. 3. Learn about how to improve the quality of service (VoIP).

COURSE OUTCOME: After completion of the course student will be able to:

CO1 Understand the characteristics of the Call signalling systems.

CO2 Design SIP Architecture.

CO3 Model and estimate media gateways.

CO4 Understand the network synchronization and management.

CO5 Evaluate the quality of service that need for QoS.

VOICE OVER IP 3 0 0

Unit Topics Lectures

I Introduction: Carrier-Grade, VoIP, VoIP Challenges, Overview of the IP Protocol Suite,

The Internet Protocol, IP Version 6, IP Multicast, The Transmission Control Protocol, The

User Datagram Protocol, The Stream Control Transmission Protocol, The Real-Time

Transport Protocol, The RTP Control Protocol, Security and Performance Optimization

Speech-Coding Techniques

A Little about Speech, Audio, and Music, Voice Sampling, Voice Quality, Types of

Speech Coders, Waveform Coders, Analysis-by-Synthesis Codes, G.722–Wideband Audio

8

II Signaling Protocols: H.323: Multimedia Conferencing over IP The H.323 Architecture, RAS Signaling, Call

Signaling, Call Scenarios, H.245 Control Signaling, Conference Calls, Securing an

H.323 Network.

The Session Initiation Protocol The SIP Architecture, Overview of SIP Messaging

Syntax, Examples of SIP Message Sequences, Redirect and Proxy Servers, The Session

Description Protocol, Usage of SDP with SIP, SIP Extensions and Enhancements,

Usage of SIP for Features and Services, Interworking

8

III Distributed Gateways and the Softswitch Architecture

Separation of Media and Call Control, Softswitch Architecture, Protocol Requirements for

Controlling Media Gateways, Protocols for Controlling Media Gateways, MGCP,

MEGACOP/H.248.1.

8

IV VoIP and SS7

The SS7 Protocol Suite, SS7 Network Architecture, ISUP, Performance Requirements

for SS7, SIGTRAN, Interworking SS7 and VoIP Architectures

8

V Quality of Service

The Need for QoS, Overview of QoS Solutions, The Resource Reservation Protocol,

DiffServ, Multiprotocol Label Switching, Combining QoS Solutions

8

Text Books:

1. Richard Swale, Daniel Collins,“ Carrier-Grade VoIP”, McGraw-Hill Education 3rdEdition,2014.

2. Olivier Hersent, Jean Pierre Petit, David Gurle, “IP Telephony – Deploying Voice Over-IPProtocols”, John Wiley & Sons Ltd, 2005

Page 168: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

SPEECH PROCESSING

COURSE OBJECTIVE: Students undergoing this course are expected:

1. To understand digital models for speech signals.

2. To analyse time domain methods of speech sampling.

3. To evaluate short time Fourier analysis.

4. To learn homomorphic speech processing.

5. To understand Linear Predictive Coding of Speech.

COURSE OUTCOME: After completion of the course student will be able to:

CO1

Understand the mechanism of speech production & acoustic phonetics, the acoustic theory of speech

production, lossless tube models.

CO2 Understand time dependent processing of speech, short time energy and average magnitude, short time average zero crossing rate.

CO3 Design of filter banks, implementation of filter bank summation method using FFT.

CO4 Evaluate homomorphic system for convolution, complex cepstrum of speech, pitch detection using

Homomorphic processing.

CO5 Understand basic principles of linear predictive analysis, the autocorrelation method, computation of the gain for the model, solution of LPC equations.

SPEECH PROCESSING 3 0 0

Unit Topics Lectures

I Digital models for speech signals: Mechanism of speech production & acoustic

phonetics, the acoustic theory of speech production, lossless tube models, and digital

models for speech signals.

6

II

Time Domain methods of speech sampling: Time dependent processing of speech,

short time energy and average magnitude, short time average zero crossing rate,

discrimination between speech& silence, pitch period estimation using parallel

processing, short time autocorrelation function & AMDF, pitch period estimation

using autocorrelation function

10

III

Short time Fourier Analysis: Definition and properties, design of filter banks,

implementation of filter bank summation method using FFT, spectrographic

displays, pitch detection, analysis by synthesis phase, vocoder and channel vocoder.

8

IV Homomorphic speech processing: Homomorphic system for convolution, complex

cepstrum of speech, pitch detection using Homomorphic processing, formant

estimation, Homomorphic vocoder

6

V

Linear Predictive Coding of Speech: Basic principles of linear predictive analysis,

the autocorrelation method, computation of the gain for the model, solution of LPC

equations for auto correlation method, prediction error and normalized mean square

error, frequency domain interpretation of mean squared prediction error relation of

linear predictive analysis to lossless tube models, relation between various speech

parameters, synthesis of speech from linear predictive parameters, application of

LPC parameters.

10

Text Book: 1. R. L. Rabiner & R.W. Schafer, “Digital Processing of speech signals”, Pearson Education.

2. B. Gold and Nelson Morgon, “Speech and audio signal processing”, Wiley India Edition,2006.

Page 169: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

MICRO AND SMART SYSTEMS

COURSE OBJECTIVE: Students undergoing this course are expected to:

1. Understand Microsystems versus MEMS 2. Analyse micro sensors, actuators, systems and smart materials.

3. Evaluate Micromachining technologies.

4. To learn Modeling of solids in Microsystems.

5. Analysis Integration of micro and smart systems.

6.

COURSE OUTCOME : After completion of the course student will be able to:

CO1 Understand the Why miniaturization?, Microsystems versus MEMS, Why micro fabrication.

CO2 Design Silicon capacitive accelerometer, piezo-resistive pressure sensor, conductometric gas sensor.

CO3 Realizesilicon as a material for micro machining, thin film deposition, lithography, etching, silicon micromachining.

CO4

Understand bar, beam, energy methods for elastic bodies, heterogeneous layered beams,

bimorph effect, residual stress and stress gradients, poisson effect and the anticlastic curvature

of beams

CO5 Understand integration of Microsystems and microelectronics, microsystems packaging, case studies of integrated Microsystems

MICRO AND SMART SYSTEMS 3 0 0

Unit Topics Lectures

I Introduction, Why miniaturization?, Microsystems versus MEMS, Why micro

fabrication?, smart materials, structures and systems, integrated Microsystems,

applications of smart materials and Microsystems,.

8

II Micro sensors, actuators, systems and smart materials: Silicon capacitive

accelerometer, piezo-resistive pressure sensor, conductometric gas sensor, an

electrostatic combo -drive, a magnetic micro-relay, portable blood analyzer,

piezoelectric inkjet print head, micro-mirror array for video projection, smart

materials and systems.

8

III Micromachining technologies: silicon as a material for micro machining, thin film

deposition, lithography, etching, silicon micromachining, specialized materials for

Microsystems, advanced processes for micro fabrication.

8

IV Modeling of solids in Microsystems: Bar, beam, energy methods for elastic bodies,

heterogeneous layered beams, bimorph effect, residual stress and stress gradients,

poisson effect and the anticlastic curvature of beams, torsion of beams and shear

stresses, dealing with large displacements, In-plane stresses. Modelling of coupled

electromechanical systems: electrostatics, Coupled Electro-mechanics: statics,

stability and pull-in phenomenon, dynamics. Squeezed film effects in electro-

mechanics.

8

V Integration of micro and smart systems: integration of Microsystems and 8

Page 170: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

microelectronics, microsystems packaging, case studies of integrated Microsystems,

case study of a smart-structure in vibration control. Scaling effects in Microsystems:

scaling in: mechanical domain, electrostatic domain, magnetic domain, diffusion,

effects in the optical domain, biochemical phenomena.

Text book: 1. G. K. Ananthasuresh, K. J. Vinoy, S. Gopalakrishnan, K. N. Bhat and V. K. Atre, “Micro and smart

systems”, Wiley India, 2010.

Page 171: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

OLD SYLLABUS ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

INTITUTE OF ENGINEERING AND TECHNOLOGY , LUCKNOW

Page 172: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC CODE

SYLLABUS

FOR

1ST YEAR (2013-14)

2ND YEAR(2014-15)

3RD YEAR(2015-16)

4TH YEAR(TILL 2018-19)

Page 173: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

B.Tech. Electronics & Communication Engineering,

[Effective from Session 2014-15]

YEAR 2ND SEMESTER-III

S.No. Subject

Code Name of Subject

Periods Evaluation Scheme Subject

Total Credit

L T P CT TA Total ESC

1. AS-301/OE-

031-OE-038

Engg. Mathematics-

III/Science based Electives* 3 1 0 30 20 50 100 150 4

2. EC-301 Fundamental of Electronic

Devices 3 1 0 30 20 50 100 150 4

3. EC-302 Switching Theory & Logic

Design 3 1 0 30 20 50 100 150 4

4. EC-303 Signals and Systems 3 1 0 30 20 50 100 150 4

5. HU-301/HU-

302

Industrial

Psychology/Industrial

Sociology

2 0 0 15 10 25 50 75 2

6. EC-304 Network Analysis &

Synthesis 2 1 0 15 10 25 50 75 3

Human Values &

Professional Ethics/Cyber

Security

2 0 0 15 10 25 50 75 --

PRACTICAL/DESIGN/DRAWING

7. EC-351 Electronic Device Lab 0 0 3 10 10 20 30 50 1

8. EC-352 Logic Design Lab. 0 0 3 10 10 20 30 50 1

9. EC-353 Electronics Workshop &

PCB Design 0 0 2 10 10 20 30 50 1

10. EC-354 Network Analysis &

Synthesis Lab. 0 0 2 10 10 20 30 50 1

11. GP-301 GP 50 50 --

Total 18 5 10 1000 25

*Science based Elective

Introduction to soft computing (Neural network, Fuzzy logic and Genetic algorithm)

Nano-sciences Laser systems and applications

Space sciences

Polymer science and technology

Nuclear science

Material science

Discrete Mathematics

Page 174: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

B.Tech. Electronics & Communication Engineering, B.Tech.

[Effective from Session 2014-15]

YEAR 2ND SEMESTER-IV

S.No. Subject

Code Name of Subject

Periods Evaluation Scheme Subject

Total Credit

L T P CT TA Total ESC

1.

OE-031

OE-038

ES-301

Science based

Elective/Engg.

Mathematics-III

3 1 0 30 20 50 100 150 4

2. EC-401 Data Structure 3 1 0 30 20 50 100 150 4

3. EC-402 Electronic Circuits 3 1 0 30 20 50 100 150 4

4.

EC-403

Electronic Measurements

& Instrumentation 3 1 0 30 20 50 100 150 4

5. HU-401/

HU-402

Industrial Sociology/

Industrial Psychology 2 0 0 15 10 25 50 75 2

6. EC-404 Electromagnetic Field

Theory (EMFT) 2 1 0 15 10 25 50 75 3

7.

Human Values &

Professional

Ethics/Cyber Security

2 0 0 15 10 25 50 75 --

PRACTICAL/DESIGN/DRAWING

8. EC-451 Data Structure Lab. 0 0 3 10 10 20 30 50 1

9. EC-452 Electronic Circuits Lab. 0 0 3 10 10 20 30 50 1

10. EC-453 Signals and Systems lab 0 0 2 10 10 20 30 50 1

11. EC-454 Electronics Measurement

Lab. 0 0 2 10 10 20 30 50 1

12. GP-401 GP 50 50 --

Total 40 1000 25

*Science based Elective

Introduction to soft computing (Neural network, Fuzzy logic and Genetic algorithm)

Nano-sciences Laser systems and applications

Space sciences

Polymer science and technology Nuclear science

Material science

Discrete Mathematics

Page 175: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

Syllabus Third semester

THEORY

EC-301 FUNDAMENTAL OF ELECTRONIC DEVICES 3 1 0

Crystal Properties and charge Carriers in Semiconductors:

Elemental and compound semiconductor materials, crystal lattice structure,

Bonding forces and energy bands in solids, charge carriers in semiconductors, carrier

concentrations, drift of carriers in electric and magnetic fields.

Excess Carriers in Semiconductors: Optical absorption, luminescence, carrier life time and photo

conductivity, diffusion of carriers.

Junction Properties: Equilibrium conditions, biased junctions, steady state conditions, reverse

bias break down, transient and AC conditions. Metal semiconductor junctions.

Transistors: Metal-semiconductor-field-effect-transistors (MESFET), Metal-insulator-

semiconductor-field-effect-transistors (MISFET), Metal oxide semiconductor field effect transistor (MOSFET): Construction, Operation and characteristics of above devices.

Bipolar junction transistors: Fundamentals of BJT operation, amplification with BJTs

Some special devices:

Photodiodes, photo detectors, solar cell, light emitting diodes, light emitting materials.

Tunnel Diode: degenerate semiconductors;

The transferred electron mechanism: The GUNN diode. P-N-P-N diode, semiconductor controlled rectifier (SCR).

Text Book: B.G Streetman and S.Banerjee “Solid State electronics devices”, 5th Edition, PHI.

Reference Books: Donald a Neaman, “Semiconductor Physics and Devices Basic Principles”, 3rd Ed TMH India.

Page 176: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC-302 SWITCHING THEORY AND LOGIC DESIGN 2 1 0

Digital system and binary numbers: Signed binary numbers, binary codes.

Gate-level minimization: The map method up to four variable, don’t care conditions, POS

simplification, NAND and NOR implementation,

Quine Mc-Clusky method (Tabular method).

Combinational Logic: Combinational circuits, analysis procedure, design procedure, Binary

Adder-Subtractor, Decimal adder, Binary Multiplier, Magnitude Comparator, Decoders, Encoders, Multiplexers.

Synchronous Sequential logic: Sequential circuits, storage elements: latches, flip flops, analysis of clocked sequential circuits, state reduction and assignments, design procedure.

Asynchronous Sequential logic: Analysis procedure, circuit with latches, design

procedure, reduction of state and flow table, race free state assignment, hazards.

Registers and counters: Shift registers, Ripple counter, Synchronous Counter, other counters.

Memory and Programmable Logic: RAM, ROM, PLA, PAL.

Introduction to RTL.

Text Book: M. Morris Mano and M. D. Ciletti, “Digital Design”, 5th Edition, Pearson Education.

Reference Books: 1. Hill & Peterson, “Switching Circuit & Logic Design”, Wiley.

2. Mohammad A. Karim and Xinghao Chen, “Digital Design-Basic concepts and

Principles”, CRC Press Taylor & Francis group, 2010.

Page 177: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC-303 SIGNALS AND SYSTEMS 3 1 0

Signals: Definition, types of signals and their representations: continuous-time/discrete-time,

periodic/non-periodic, even/odd, energy/power, deterministic/ random, one-dimensional/

multidimensional; commonly used signals (in continuous-time as well as in discrete-time): unit impulse, unit step, unit ramp (and their interrelationships), exponential, rectangular pulse, sinusoidal; operations

on continuous-time and discrete-time signals (including transformations of independent variables).

Laplace-Transform (LT) and Z-transform (ZT):

(i) One-sided LT of some common signals, important theorems and properties of LT, inverse LT,

solutions of differential equations using LT, Bilateral LT, Regions of convergence (ROC)

(ii) One sided and Bilateral Z-transforms, ZT of some common signals, ROC, Properties and theorems,

solution of difference equations using one-sided ZT, s- to z-plane mapping

Fourier Transforms (FT):

(i) Definition, conditions of existence of FT, properties, magnitude and phase spectra, Some important

FT theorems, Parseval’s theorem, Inverse FT, relation between LT and FT (ii) Discrete time Fourier transform (DTFT), inverse DTFT, convergence, properties and theorems,

Comparison between continuous time FT and DTFT

Systems: Classification, linearity, time-invariance and causality, impulse response, characterization of

linear time-invariant (LTI) systems, unit sample response, convolution summation, step response of

discrete time systems, stability.

Convolution integral, co-relations, signal energy and energy spectral density, signal power and power

spectral density, properties of power spectral density.

Time and frequency domain analysis of systems

Analysis of first order and second order systems, continuous-time (CT) system analysis using LT, system functions of CT systems, poles and zeros, block diagram representations; discrete-time system functions,

block diagram representation, illustration of the concepts of system bandwidth and rise time through the

analysis of a first order CT low pass filter

Text Book: P. Ramakrishna Rao, `Signal and Systems’ 2008 Ed., Tata McGraw Hill, New Delhi

Reference Books: Chi-Tsong Chen, `Signals and Systems’, 3rd Ed., Oxford University Press, 2004

V. Oppenheim, A.S. Willsky & S. Hamid Nawab, ‘Signals & System’, Pearson Education, 2nd Ed., 2003.

Page 178: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC-304 NETWORK ANALYSIS & SYNTHESIS 3 1 0

Signal analysis, complex frequency, network analysis, network synthesis, General characteristics and descriptions of signals, step function and associated wave forms, The unit impulse

Introduction to network analysis, network elements, initial and final conditions, step and impulse

response, solution of network equations,

Review of Laplace transform, poles and zeroes, initial and final value theorems, The transform

circuit, Thevenin’s and Norton’s theorems, the system function, step and impulse responses, the convolution integral. Amplitude and phase responses.

Network functions, relation between port parameters, transfer functions using two port

parameters, interconnection of two ports.

Hurwitz polynomials, positive real functions.

Properties of real immitance functions, synthesis of LC driving point immittances, properties of

RC driving point impedances, synthesis of RC impedances or RL admittances, properties of RL impedances and RC admittances.

Properties of transfer functions, zeroes of transmission, synthesis of Y21 and Z21 with 1Ω terminations.

Introduction to active network synthesis, Active Network Synthesis. (8.7 of Text book 2.)

Text Book:

1. Franklin F. Kuo, “Network Analysis and synthesis”, 2nd Edition, Wiley India Pvt Ltd. 2. Behrouz Peikari, “Fundamentals of Network Analysis & synthesis”, Jaico Publishing House, 2006.

Reference Books: M. E. Van Valkenberg, “Network Analysis”, 2nd Edition, Prentice Hall of India Ltd. Ghosh-Network Theory: Analysis and Synthesis, PHI Learning Pvt. Ltd

Page 179: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC- 351 ELECTRONIC DEVICES LAB.

Objective: To attain expertise in lab equipment handling and understanding the basic devices, their properties, Characteristics in

detail. Along with their practical usage in the circuit

1. Study of lab equipments and components: CRO, Multimeter, Function Generator,

2. P-N Junction Diode: Characteristics of PN Junction diode-Static and dynamic resistance measurement from graph.

3. Applications of PN junction diode: Half & Full wave rectifier- Measurement of Vrms, Vdc, and ripple factor-use of filter- ripple reduction (RC Filter)-

4. Applications of PN junction diode as Clipper & Clamper

5. Zener Diode :Characteristics of Zener diode

6. Application of Zener diode: Zener diode as voltage regulator.

7. Characteristic of BJT: BJT in CB and CE configuration- input and output characteristics.

8. Characteristic of FET: FET in common source configuration. Graphical measurement of its parameters gm, rd & m from

input and output characteristics.

9. Study and to plot theCharacteristic of silicon-controlled rectifier (SCR).

10. Study and to plot V-I Characteristics of DIAC.

EC- 352 LOGIC DESIGN LAB Objective: To understand the digital logic and create various systems by using these logics.

1. Introduction to Digital Electronics lab- nomenclature of digital ICs, specifications,

2. Study of the data sheet concept of Vcc and ground, verification of the truth tables of logic gates using 74 series TTL

ICs.

3. Implementation of the given Boolean function using logic gates in both SOP and POS forms.

4. Implementation of Half Adder and Half Subtractor using logic gate.

5. Verification of state tables of RS, JK, T and D flip-flops using Logic gates & using 74 series TTL ICs.

6. Implementation and verification of Decoder/De-multiplexer and Encoder using logic gates.

7. Implementation of 4x1 Multiplexer using logic gates.

8. Implementation of 4-bit Parallel Adder using 7483 IC.

9. Design, and verify the 4-bit UP Down, Ripple, Mod 3 & Mod 5 Synchronous counter.

10. Design, and verify the 4-bit Universal Shift Registrar, Ring Counter & Johnson counter.

LABORATORY

EC- 353 ELECTRONIC WORKSHOP & PCB LAB

Objective: To create interest in Hardware Technology.

1. Study of CRO, DMM & Function Generator

2. Identification of Active & Passive Components

3. Winding shop: Step down transformer winding of less than 5VA.

4. Soldering shop: Fabrication of DC regulated power supply

5. Artwork & printing of a simple PCB.

6. Etching & drilling of PCB.

7. Wiring & fitting shop: Fitting of power supply along with a meter in cabinet. 8. Testing of regulated power supply fabricated.

EC- 354 NETWORK ANALYSIS & SYNTHESIS LAB

1. Study and verification of network theorems with input signal of 1 kHz, 10kHz and 100kHz.

2. Verification of two port network parameters

3. Step and Ramp response of series and parallel RC circuits

4. Verification of properties of RC circuits

5. Verification of properties of RL circuits

6. Verification of properties of LC circuits

7. Verification of inverting, non-inverting and voltage follower VCVS circuits using 741 op-amp

8. Verification of inverting integrator using 741 op-amp

Page 180: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

Syllabus fourth semester

THEORY

EC-401 DATA STRUCTURE 3 1 0

Introduction: Basic Terminology, Elementary Data Organization, Algorithm, Efficiency of an

Algorithm, Time and Space Complexity, Asymptotic notations: Big-Oh, Time-Space trade-off.

Abstract Data Types (ADT) Arrays: Definition, Single and Multidimensional Arrays, Representation of Arrays: Row Major Order, and Column Major Order, Application of arrays, Sparse Matrices and

their representations. Linked lists: Array Implementation and Dynamic Implementation of Singly

Linked Lists, Doubly Linked List, Circularly Linked List, Operations on a Linked List. Insertion,

Deletion, Traversal, Polynomial Representation and Addition, Generalized Linked List

Stacks: Abstract Data Type, Primitive Stack operations: Push & Pop, Array and Linked

Implementation of Stack in C, Application of stack: Prefix and Postfix Expressions, Evaluation of postfix expression, Recursion, Tower of Hanoi Problem, Simulating Recursion, Principles of

recursion, Tail recursion, Removal of recursion

Queues, Operations on Queue: Create, Add, Delete, Full and Empty, Circular queues, Array and linked implementation of queues in C, Dequeue and Priority Queue.

Trees: Basic terminology, Binary Trees, Binary Tree Representation: Array Representation and

Dynamic Representation, Complete Binary Tree, Algebraic Expressions, Extended Binary Trees, Array and Linked Representation of Binary trees, Tree Traversal algorithms: In order, Preorder and

Post order, Threaded Binary trees, Traversing Threaded Binary trees, Huffman algorithm.

Graphs: Terminology, Sequential and linked Representations of Graphs: Adjacency Matrices,

Adjacency List, Adjacency Multi list, Graph Traversal : Depth First Search and Breadth First Search,

Connected Component, Spanning Trees, Minimum Cost Spanning Trees: Prims and Kruskal algorithm. Transistive Closure and Shortest Path algorithm: Warshal Algorithm and Dijikstra

Algorithm, Introduction to Activity Networks.

Searching : Sequential search, Binary Search, Comparison and Analysis Internal Sorting: Insertion Sort, Selection, Bubble Sort, Quick Sort, Two Way Merge Sort, Heap Sort,

Radix Sort

Text book: 1. Aaron M. Tenenbaum, Yedidyah Langsam and Moshe J. Augenstein “Data Structures Using C and C++” , PHI

References 1. Horowitz and Sahani, “Fundamentals of Data Structures”, Galgotia Publication 2. Jean Paul Trembley and Paul G. Sorenson, “An Introduction to Data Structures with applications”, McGraw Hill

3. R. Kruse etal, “Data Structures and Program Design in C”, Pearson Education

4. Lipschutz, “Data Structures” Schaum’s Outline Series, TMH

5. G A V Pai, “Data Structures and Algorithms”, TMH

Page 181: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC-402 ELECTRONIC CIRCUITS 3 1 0

Operational Amplifier: Inverting and non-inverting configurations, difference amplifier, Effect of finite

open loop gain and bandwidth on circuit performance, Large signal operation of op-amp.

MOSFET: Review of device structure operation and V-I characteristics. Circuits at DC, MOSFET as

Amplifier and switch, Biasing in MOS amplifier circuits, small-signal operation and models, single stage

MOS amplifier, MOSFET internal capacitances and high frequency model, frequency response of CS

amplifier

BJT: Review of device structure operation and V-I characteristics, BJT circuits at DC, BJT as amplifier and

switch, biasing in BJT amplifier circuit, small-signal operation and models, single stage BJT amplifier, BJT

internal capacitances and high frequency model, frequency response of CE amplifier.

Differential Amplifier: MOS differential pair, small signal operation of the MOS differential pair, BJT

differential pair, other non-ideal characteristic of the Differential amplifier (DA), DA with active load.

Feedback: The general feedback structure, properties of negative feedback, the four basic feedback topologies, the series-shunt feedback amplifier, the series-series feedback amplifier, the shunt-shunt and

shunt-series feedback amplifier.

Oscillators: Basic principles of sinusoidal oscillators, op-amp RC oscillator circuits, LC oscillator.

Text Book: A. S. Sedra and K. C. Smith, “Microelectronic Circuits”, Oxford University Press, 5th Ed.

Reference Books: Jacob Millman and Arvin Grabel, “Microelectronics”, 2nd Ed TMH.

Page 182: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC-403 ELECTRONIC MEASUREMENTS AND INSTRUMENTATION 3 1 0

Unit, dimensions and standards: Scientific notations and metric prefixes.

SI electrical units, SI temperature scales, Other unit systems, dimension and standards.

Measurements and Measurement System : Significance of Measurements, Classification of Instruments.

Measurement Errors: Gross error, systematic error, absolute error and relative error, accuracy,

precision, resolution and significant figures, Measurement error combination, basics of statistical

analysis.

PMMC instrument, galvanometer, DC ammeter, DC voltmeter, series ohm meter.

Transistor voltmeter circuits, AC electronic voltmeter, current

measurement with electronic instruments, probes

Digital voltmeter systems, digital multimeters, digital frequency meter system, Electro dynamic

Instrument.

Voltmeter and ammeter methods, Wheatstone bridge, low resistance measurements, low resistance measuring instruments

AC bridge theory, capacitance bridges, Inductance bridges, Q meter.

CRO: CRT, wave form display, time base, dual trace oscilloscope,

measurement of voltage, frequency and phase by CRO, Oscilloscope probes, Oscilloscope

specifications and performance.

Delay time based Oscilloscopes, Sampling Oscilloscope, DSO, DSO applications, Function

Generator.

Instrument calibration: Comparison method, digital multimeters as

standard instrument, calibration instrument Recorders: X-Y recorders, plotters.

Text Book:

1. David A. Bell, “Electronic Instrumentation and Measurements”, 3rd Ed., Oxford University press, 2011.

2. A. K. Sawhney, “ Electrical and Electronic Measurements and Instrumentation” 19th Ed., Dhanpat Rai, 2011.

Reference Books:

1. Oliver and Cage, “Electronic Measurements and Instrumentation”, TMH, 2009.

2. Alan S. Morris, “Measurement and Instrumentation Principles”, Elsevier (Buterworth Heinmann), 2008.

Page 183: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC-404 ELECTROMAGNETIC FIELD THEORY 2 1 0

Coordinate systems and transformation: Cartesian coordinates, circular cylindrical coordinates, spherical

coordinates

Vector calculus: Differential length, area and volume, line surface and volume integrals, del operator, gradient

of a scalar, divergence of a vector and divergence theorem, curl of a vector and Stoke’s theorem, Laplacian of

a scalar.

Electrostatics: Electrostatic fields, Coulombs law and field intensity, Electric field due to charge distribution,

Electric flux density, Gausses’s Law – Maxwell’s equation, Electric dipole and flux lines, energy density in

electrostatic fields. Electric field in material space: Properties of materials, convection and conduction currents, conductors,

polarization in dielectrics, dielectric constants, continuity equation and relaxation time, boundary condition.

Electrostatic boundary value problems: Poission’s and Laplace’s equations, general procedures for soling

Poission’s or Laplace’s equations, resistance and capacitance, method of images.

Magnetostatics: Magneto-static fields, Biot-Savart’s Law, Ampere’s circuit law, Maxwell’s equation,

application of ampere’s law, magnetic flux density- Maxwell’s equation, Maxwell’s equation for static fields,

magnetic scalar and vector potential.

Magnetic forces, materials and devices: Forces due to magnetic field, magnetic torque and moment, a

magnetic dipole, magnetization in materials, magnetic boundary conditions, inductors and inductances,

magnetic energy.

Waves and applications: Maxwell’s equation, Faraday’s Law, transformer and motional electromotive forces,

displacement current, Maxwell’s equation in final form.

Electromagnetic wave propagation: Wave propagation in lossy dielectrics, plane waves in lossless dielectrics,

plane wave in free space, plain waves in good conductors, power and the pointing vector, reflection of a plain

wave in a normal incidence.

Text Book: M. N. O. Sadiku, “Elements of Electromagnetics”, 4th Ed, Oxford University Press.

Reference Books: W. H. Hayt and J. A. Buck, “Electromagnetic field theory”, 7th Ed., TMH.

Pramanik-Electromagnetism: Vol.1-Theory, PHI Learning Pvt. Ltd.

Page 184: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

LABOROTARY

EC- 451 DATA STRUCTURE LAB

Program in C or C++ for following:

1. To implement addition and multiplication of two 2D arrays.

2. To transpose a 2D array.

3. To implement stack using array. 4. To implement queue using array.

5. To implement circular queue using array.

6. To implement stack using linked list.

7. To implement queue using linked list.

8. To implement circular queue using linked list.

9. To implement binary tree using linked list.

10. To implement binary search tree using linked list.

11. To implement tree traversals using linked list.

12. To implement BFS using linked list.

13. To implement DFS using linked list.

14. To implement Linear Search. 15. To implement Binary Search.

16. To implement Bubble Sorting.

17. To implement Selection Sorting.

18. To implement Insertion Sorting.

19. To implement Merge Sorting.

20. To implement Heap Sorting.

EC- 452 ELECTRONIC CIRCUITS LAB

Objective - To design and implement the circuits to gain knowledge on performance of the circuits and its applications.

Measurement of Operational Amplifier Parameters-Common Mode Gain, Differential Mode Gain,

CMRR, Slew Rate. Applications of Op-amp- Op-amp as summing amplifier, Difference amplifier, Integrator and differentiator

Field Effect Transistors-Single stage Common source FET amplifier –plot of gain in dB Vs frequency,

Measurement of, bandwidth, input impedance, maximum signal handling capacity (MSHC) of an amplifier

Bipolar Transistors- Design of single stage RC coupled amplifier –design of DC biasing circuit using

potential divider arrangement –Plot of frequency versus gain in dB. Measurement of bandwidth of an

amplifier, input impedance and Maximum Signal Handling Capacity of an amplifier.

Two stage Amplifier. Plot of frequency Vs gain. Estimation of Q factor, bandwidth of an amplifier

Common Collector Configuration-Emitter Follower (using Darlington pair)-Gain and input impedance

measurement of the circuit.

Power Amplifiers-Push pull amplifier in class B mode of operation –measurement of gain.

Differential Amplifier –Implementation of transistor differential amplifier .Non ideal characteristics of differential amplifier

Oscillators -Sinusoidal Oscillators- (a) Wein bridge oscillator (b) phase shift oscillator

Simulation of Amplifier circuits studied in the lab using any available simulation software and

measurement of bandwidth and other parameters with the help of simulation software.

Page 185: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC- 453 SIGNAL & SYSTEM LAB

EC- 454 ELECTRONIC MEASUREMENT LAB

1. Study of semiconductor diode voltmeter and its us as DC average responding AC voltmeter . 2. Study of L.C.R. bridge and determination of the value of the given components.

3. Study of distortion factor meter and determination of the % distortion of the given oscillator.

4. Study of the transistor tester and determination of the parameters of the given transistors.

5. Study of the following transducer (i) PT-100 trans (ii) J- type trans. (iii) K-type trans (iv) Presser trans

6. Measurement of phase difference and frequency using CRO (lissajous figure)

7. Measurement of low resistance Kelvin’s double bridge.

8. Radio Receiver Measurements

3rd Year

[Effective from Session 2015-16]

SEMESTER - V

No. Subject

Code Name of the Subject

Periods Evaluation Scheme Subject

Total Credit

L T P Sessional Assessment

ESE CT TA Total

THEORY SUBJECTS

1 EC 501 Integrated Circuits 3 1 0 30 20 50 100 150 4

2 EC 502 Principles of Communication 3 1 0 30 20 50 100 150 4

3 EC 503 Microprocessors 3 1 0 30 20 50 100 150 4

4 IC 501 Control System – I 3 1 0 30 20 50 100 150 4

5 EC 504 Antenna and Wave

Propagation 2 1 0 15 10 25 50 75 3

6 HU 501 Engineering and Managerial

Economics 2 0 0 15 10 25 50 75 2

PRACTICAL/ DESIGN/ DRAWING

7 EC 551 Integrated Circuits Lab 0 0 2 10 10 20 30 50 1

8 IC 551 Control System Lab 0 0 2 10 10 20 30 50 1

9 EC 552 Communication Lab – 1 0 0 2 10 10 20 30 50 1

10 EC 553 Microprocessors Lab 0 0 2 10 10 20 30 50 1

11 GP 501 GP 50 50

TOTAL 16 5 8 1000 25

Page 186: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

SEMESTER - VI

No. Subject

Code Name of the Subject

Periods Evaluation Scheme Subject

Total Credit

L T P Sessional Assessment

ESE CT TA Total

THEORY SUBJECTS

1 EC 601 Microwave Engineering 3 1 0 30 20 50 100 150 4

2 EC 602 Digital Communication 3 1 0 30 20 50 100 150 4

3 EC 603 Integrated Circuit

Technology 3 1 0 30 20 50 100 150 4

4 EC 0__ Elective – I 3 1 0 30 20 50 100 150 4

5 EC 0__ Elective – II 2 1 0 15 10 25 50 75 3

6 HU 601 Industrial Management 2 0 0 15 10 25 50 75 2

PRACTICAL/ DESIGN/ DRAWING

7 EC 651 Antenna and Microwave Lab 0 0 2 10 10 20 30 50 1

8 EC 652 Communication Lab – II 0 0 2 10 10 20 30 50 1

9 EC 653 CAD of Electronics Lab 0 0 2 10 10 20 30 50 1

10 EC 654 Seminar 0 0 2 10 10 20 30 50 1

11 GP 601 GP 50 50

TOTAL 16 5 8 1000 25

Departmental Elective – I

1. EC 011 Digital Signal Processing

2. EC 012 Computer Architecture and Organization

3. EC 013 Artificial Neural Network

4. EC 014 Advance Semiconductor Devices

Departmental Elective – II

1. EC 021 Industrial Electronics

2. EC 022 Microcontroller and its Applications

3. EC 023 Analog Signal Processing

4. EC 024 Advance Digital Design and Verilog

Page 187: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC 501 Integrated Circuits

Unit Topic

Proposed

number of

Lectures

I

Analog Integrated circuit Design: an overview: Current Mirrors using BJT and MOSFETs, Simple current Mirror, Base current compensated current Mirror, Wilson and

Improved Wilson Current Mirrors, Widlar Current source and Cascode current Mirror

The 741 IC Op-Amp: Bias circuit, short circuit protection circuitry, the input stage, the

second stage, the output stage, and device parameters; DC Analysis of 741: Small Signal

Analysis of input stage, the second stage, the output stage; Gain, Frequency Response of

741; a Simplified Model, Slew Rate, Relationship Between ft and SR

10

II

Linear Applications of IC op-amps: An Overview of Op-Amp (ideal and non-ideal) based

Circuits V-I and I-V converters, generalized Impedance converter, simulation of inductors

Filters: First and second order LP, HP, BP BS and All pass active filters, KHN.

8

III

Digital Integrated Circuit Design-An Overview: CMOS Logic Gate Circuits: Basic

Structure CMOS realization of Inverters, AND, OR, NAND and NOR Gates

Latches and Flip flops: The Latch, The SR Flip-flop, CMOS Implementation of SR Flip-

flops, A Simpler CMOS Implementation of the Clocked SR Flip-flop, D Flip-flop Circuits.

8

IV

Non-Linear applications of IC Op-amps: Log–Anti Log Amplifiers, Precision Rectifiers, Peak Detectors, Simple and Hold Circuits, Analog Multipliers and their applications. Op-

amp as a comparator, Zero crossing detector, Schmitt Trigger, Astablemultivibrator,

Monostable multivibrator, Generation of Triangular Waveforms

7

V

D/A and A/D converters

Integrated Circuit Timer: The 555 Circuit, Implementing a Monostable Multivibrator

Using the 555 IC, Astable Multivibrator Using the 555 IC.

Phase locked loops (PLL): Ex-OR Gates and multipliers as phase detectors,

Block Diagram of IC PLL, Working of PLL and Applications of PLL.

7

Text Books:

1. Sedra and Smith, “Microelectronic Circuits”, 6th Edition, Oxford University Press.

2. Michael Jacob, “Applications and Design with Analog Integrated Circuits”, PHI, 2nd Edition.

Reference Books:

1. Jacob Millman and Arvin Grabel, “Microelectronics”, 2nd Edition, Tata McGraw Hill.

2. Behzad Razavi, “Fundamentals of Microelectronics”, 2nd Edition, Wiley.

3. Mark N. Horenstein, “Microelectronic Circuits and Devices”, PHI.

4. Paul R. Gray, Paul J. Hurst, Stephen H. Lewis and Robert G. Meyer, “Analysis and Design of Analog Integrated Circuits”,

Wiley.

Page 188: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC 502 Principles of Communication

Unit Topic

Proposed

number of

Lectures

I

Introduction: Overview of Communication system, Communication channels, Need for

modulation, Baseband and Pass band signals, Amplitude Modulation: Double side band

with Carrier (DSB-C), Double side band without Carrier, Single Side Band Modulation,

DSB-SC, DSB-C, SSB Modulators and Demodulators, Vestigial Side Band (VSB),

Quadrature Amplitude Modulator, Radio Transmitter and Receiver.

10

II Angle Modulation, Tone Modulated FM Signal, Arbitrary Modulated FM Signal, FM Modulators and Demodulators, Approximately Compatible SSB Systems,

Stereophonic FM Broadcasting, Examples Based on Mat Lab.

8

III

Pulse Modulation, Digital Transmission of Analog Signals: Sampling Theorem and its

applications, Pulse Amplitude Modulation (PAM), Pulse Width Modulation, Pulse

Position Modulation. Their generation and Demodulation, Digital Representation of

Analog Signals, Pulse Code Modulation (PCM), PCM System, Issues in digital

transmission: Frequency Division Multiplexing, Time Division Multiplexing, Line Coding

and their Power Spectral density, T1 Digital System, TDM Hierarchy.

8

IV

Differential Pulse Code Modulation, Delta Modulation. Adaptive Delta

Modulation, Voice Coders, Sources of Noises, Frequency domain representation of Noise,

Super position of Noises, Linear filtering of Noises, Mathematical Representation of

Noise.

7

V

Noise in Amplitude Modulation: Analysis, Signal to Noise Ratio, Figure of Merit.

Noise in Frequency Modulation: Pre emphasis, De Emphasis and SNR Improvement, Phase Locked Loops Analog and Digital.

7

Text Book:

1. Herbert Taub and Donald L. Schilling, “Principles of Communication Systems”, Tata McGraw Hill.

Reference Books:

1. B. P. Lathi, “Modern Digital and Analog communication Systems”, 3rd Edition, Oxford University Press.

2. Simon Haykin, “Communication Systems”, 4th Edition, Wiley India.

3. H. P. Hsu & D. Mitra, “Analog and Digital Communications”, 2nd Edition, Tata McGraw-Hill.

Page 189: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC 503 MICROPROCESSORS

Unit Topic No. of

Lectures

I

Evolution of microprocessors, Microprocessor architecture and its operations, 8085

pins description, programming model, basic interfacing concepts, input and output

devices, logic devices and memory interfacing, addressing modes, Concept of

instruction cycle, machine cycle and T-states, Concept of interrupts, Classification of

8085 instructions.

8

II

8086 architecture-functional diagram, register organization, memory segmentation,

programming model, memory address, physical memory organization, pins

description, clock generator 8284A, maximum mode and minimum mode signal descriptions, timing diagrams, introduction to DOS and BIOS interrupts.

8

III

Instruction formats, addressing modes, classification of instruction set, assembler

directives (debug, TASM & MASM), macros, Programs techniques and assembly

language programs: simple programs involves data transfer operation, arithmetic

operation, logical operation, branch operation, machine control operation, string

manipulations, stack and subroutine operations.

8

IV

8255 Programmable peripheral interfacing various mode of operation to 8086,

interfacing keyboard and seven segment display, stepper motor interfacing, D/A and

A/D converter, 8254 (8253) programmable interval timer, Direct Memory Access and

8237 DMA controller.

8

V

Memory interfacing to 8086. Interrupt structure of 8086, interrupt handling, vector

interrupt table and interrupt Service routine. Interfacing interrupt controller 8259 and

DMA Controller 8257 to 8086. Serial communication standards, Serial data transfer

schemes.

8

Text Book:

1. Ramesh Gaonkar, “Microprocessor architecture, programming and applications with the 8085”, 5th Edition, Penram

International Publication (India) Pvt. Ltd.

2. Douglas V. Hall, “Microprocessors and Interfacing”, 2nd Edition, Tata McGraw Hill.

Reference Books:

1. Sivarama P. Dandamudi, “Introduction to Assembly Language Programing From 8086 to Pentium Processors”, Springer.

2. Walter A. Triebel and Avtar Singh, “The 8088 and 8086 Microprocessors: Programming, Interfacing Software, Hardware and

Applications”, Pearson.

3. A. K. Ray and K. M. Bhurchandi, “Advance microprocessors and Peripherals” Tata McGraw Hill.

4. Lyla B. Das, “The X86 Microprocessors, Architecture, Programming and Interfacing (8086 to Pentium)”, Pearson.

Page 190: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

IC 501 Control System – I

Unit Topic

Proposed

number of

Lectures

I

Basic Components of a control system, Feedback and its effect, types of feedback control

systems. Block diagrams Reduction and signal flow graphs, Modeling of Physical systems:

electrical networks, mechanical systems elements, equations of mechanical systems, sensors

and encoders in control systems, DC motors in control systems.

8

II

State-Variable Analysis: Vector matrix representation of state equation, state transition

matrix, state-transition equation, relationship between state equations and high-order differential equations, relationship between state equations and transfer functions. Similarity

Transformation, Decomposition of transfer functions, Controllability and observability.

8

III

Time domain Analysis of Control Systems: Time response of continuous data systems,

typical test signals for the time response of control systems, the unit step response and time-

domain specifications, Steady-State error, time response of a first order system, transient

response of a prototype second order system.

8

IV

Stability of Linear Control Systems: Bounded-input bounded-output stability continuous

data systems, zero-input and asymptotic stability of continuous data systems, methods of

determining stability, Routh Hurwitz criterion.

Root-Locus Technique: Introduction, Properties of the Root Loci, Design aspects of the

Root Loci

8

V

Frequency Domain Analysis: Mr (resonant peak) and ωr (resonant frequency) and bandwidth

of the prototype Second order system, effects of adding a zero to the forward path, effects of

adding a pole to the forward path, Nyquist stability criterion, relative stability: gain margin and phase margin, stability analysis with The Bode plot.

8

Text Book:

1. B. C. Kuo & Farid Golnaraghi, “Automatic Control Systems”, 8th Edition, John Wiley India.

Reference Books:

1. William A. Wolovich, “Automatic Control Systems”, Oxford University Press.

2. Joseph J. Distefano III, Allen R. Stubberud, Ivan J. Williams, “Feedback and Control Systems” Schaums Outlines Series, 3rd

Edition, Tata McGraw Hill.

3. I. J. Nagrath & M. Gopal, “Control System Engineering”, New Age International Publishers.

Page 191: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC 504 Antenna and Wave Propagation

Unit Topic

Proposed

number of

Lectures

I

Antennas Basics: Introduction, Basic Antenna Parameters, Patterns, Beam Area (or Beam

Solid Angle) ΩA, Radiation Intensity, Beam Efficiency, Directivity D and Gain G,

Directivity and Resolution, Antenna Apertures, Effective Height, The radio Communication

link, Fields from Oscillating Dipole, Single-to-Noise Ratio(SNR), Antenna Temperature,

Antenna Impedance.

8

II

Point Sources and Their Arrays: Introduction, Point Source ,Power Theorem and its Application to an Isotropic Source, Radiation Intensity, Arrays of Two Isotropic Point

Sources, Non-isotropic but Similar Point Sources and the Principle of Pattern

Multiplication, Pattern Synthesis by Pattern Multiplication, Linear Arrays of n Isotropic

Point Sources of Equal Amplitude and Spacing, Linear Broadside Arrays with Non- uniform

Amplitude Distributions. General Considerations.

Electric Dipoles, Thin Liner Antennas and Arrays of Dipoles and Apertures: The Short

Electric Dipole, The Fields of a Short Dipole, Radiation Resistance of Short Electric Dipole,

Thin Linear Antenna, Radiation Resistance of λ/2 Antenna, Array of Two Driven λ/2

Elements: Broadside Case and End-Fire Case, Horizontal Antennas Above a Plane

Ground, Vertical Antennas Above a Plane Ground, Yagi-Uda Antenna Design, Long-

Wire Antennas, folded Dipole Antennas.

8

III

The Loop Antenna: Design and its Characteristic Properties, Application of Loop Antennas, Far Field Patterns of Circular Loop Antennas with Uniform Current, Slot

Antennas, Horn Antennas, Helical Antennas, The Log-Periodic Antenna, Micro strip

Antennas.

Reflector Antennas: Flat Sheet Reflectors, Corner Reflectors, The Parabola-General

Properties, A Comparison Between Parabolic and Corner Reflectors, The

Paraboloidal Reflector, Patterns of Large Circular Apertures with Uniform Illumination,

Reflector Types (summarized), Feed Methods for Parabolic Reflectors.

8

IV

Ground Wave Propagation: Plane Earth Reflection, Space Wave and Surface Wave.

Space Wave Propagation: Introduction, Field Strength Relation, Effects of Imperfect

Earth, Effects of Curvature of Earth.

Sky wave Propagation: Introduction structural Details of the ionosphere, Wave

Propagation Mechanism, Refraction and Reflection of Sky Waves by ionosphere, Ray Path, Critical Frequency, MUF, LUF, OF, Virtual Height and Skip Distance, Relation

Between MUF and the Skip Distance, Multi-Hop Propagation, Wave Characteristics

8

Text Book:

1. John D Krauss, Ronald J Marhefka and Ahmad S. Khan, “Antennas and Wave Propagation”, Fourth Edition, Tata McGraw

Hill.

Reference Books:

1. A. R. Harish, M. Sachidananda, “Antennas and Wave Propogation”, Oxford University Press.

2. Edward Conrad Jordan and Keith George Balmain, “Electromagnetic Waves and Radiating Systems”, PHI.

3. A. Das, Sisir K. Das, “Microwave Engineering”, Tata McGraw Hill.

Page 192: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

LABOROTARY

EC 551: Integrated Circuit Lab

Objective: - To design and implement the circuits to gain knowledge on performance of the circuit and its application. These circuits should also be simulated on Pspice.

1. Log and antilog amplifiers.

2. Voltage comparator and zero crossing detectors.

3. Second order filters using operational amplifier for–

a. Low pass filter of cutoff frequency 1 KHz.

b. High pass filter of frequency 12 KHz.

c. Band pass filter with unit gain of pass band from 1 KHz to 12 KHz.

4. Wien bridge oscillator using operational amplifier.

5. Determine capture range; lock in range and free running frequency of PLL.

6. Voltage regulator using operational amplifier to produce output of 12V with maximum load current of 50mA.

7. A/D and D/A convertor. 8. Voltage to current and current to voltage convertors.

9. Function generator using operational amplifier (sine, triangular & square wave)

10. Astable and monostable multivibrator using IC 555.

IC 551: Control System Lab

1. Different Toolboxes in MATLAB, Introduction to Control Systems Toolbox. 2. Determine transpose, inverse values of given matrix. 3. Plot the pole-zero configuration in s-plane for the given transfer function. 4. Determine the transfer function for given closed loop system in block diagram representation. 5. Plot unit step response of given transfer function and find peak overshoot, peak time. 6. Plot unit step response and to find rise time and delay time. 7. Plot locus of given transfer function, locate closed loop poles for different values of k. 8. Plot root locus of given transfer function and to find out S, Wd, Wn at given root & to discuss stability. 9. Plot bode plot of given transfer function. 10. Plot bode plot of given transfer function and find gain and phase margins 11. Plot Nyquist plot for given transfer function and to compare their relative stability 12. Plot the Nyquist plot for given transfer function and to discuss closed loop stability, gain and phase margin. Note :-In addition, Institutes may include more experiments based on the expertise.

EC 552: Communication Lab – 1

1. To study DSB/ SSB amplitude modulation & determine its modulation factor & power in side bands.

2. To study amplitude demodulation by linear diode detector

3. To study frequency modulation and determine its modulation factor

4. To study PLL 565 as frequency demodulator.

5. To study sampling and reconstruction of Pulse Amplitude modulation system.

6. To study the Sensitivity, Selectivity, and Fidelity characteristics of super heterodyne receiver.

7. To study Pulse Amplitude Modulation

a. using switching method

b. by sample and hold circuit

8. To demodulate the obtained PAM signal by 2nd order LPF.

9. To study Pulse Width Modulation and Pulse Position Modulation.

10. To plot the radiation pattern of a Dipole, Yagi-uda and calculate its beam width. 11. To plot the radiation pattern of Horn, Parabolic & helical antenna. Also calculate beam width & element current.

12. Design and implement an FM radio receiver in 88-108 MHz.

EC 553: Microprocessors Lab

Page 193: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

1. Write a program using 8085/ 8086 Microprocessor for Decimal, Hexadecimal addition and subtraction of two Numbers.

2. Write a program using 8085/ 8086 Microprocessor for addition and subtraction of two BCD numbers.

3. To perform multiplication and division of two 8 bit numbers using 8085/ 8086.

4. To find the largest and smallest number in an array of data using 8085/8086 instruction set.

5. To write a program to arrange an array of data in ascending and descending order using 8085/ 8086.

6. To convert given Hexadecimal number into its equivalent ASCII number and vice versa using 8085/ 8086 instruction set. 7. To write a program to initiate 8251 and to check the transmission and reception of character.

8. To interface 8253 programmable interval timer to 8085/ 8086 and verify the operation of 8253 in six different modes.

9. To interface DAC with 8085/ 8086 to demonstrate the generation of square, saw tooth and triangular wave.

10. Serial communication between two 8085/8086 through RS-232 C port.

Note:- In addition, Institutes may include two more experiments based on the expertise.

Page 194: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC 601 Microwave Engineering

Unit Topic

Proposed

number of

Lectures

I

Rectangular Wave Guide: Field Components, TE, TM Modes, Dominant TE10 mode, Field Distribution, Power, Attenuation. Circular Waveguides: TE, TM modes. Wave Velocities, Micro strip Transmission line (TL), Coupled TL, Strip TL, Coupled Strip Line, Coplanar TL, Microwave Cavities,

8

II

Scattering Matrix, Passive microwave devices: Microwave Hybrid Circuits, Terminations, Attenuators, Phase Shifters, Directional Couplers: Two Hole directional couplers, S

Matrix of a Directional coupler, Hybrid Couplers, Microwave Propagation in ferrites, Faraday Rotation, Isolators, Circulators. S parameter analysis of all components.

8

III

Microwave Tubes: Limitation of Conventional Active Devices at Microwave frequency, Two Cavity Klystron, Reflex Klystron, Magnetron, Traveling Wave Tube, Backward Wave Oscillators: Their Schematic, Principle of Operation, Performance Characteristic and their applications.

8

IV Solid state amplifiers and oscillators: Microwave Bipolar Transistor, Microwave tunnel diode, Microwave Field-effect Transistor, Transferred electron devices, Avalanche Transit –time devices: IMPATT Diode, TRAPPAT Diode,

8

V

Microwave Measurements: General set up of a microwave test bench, Slotted line carriage, VSWR Meter, microwave power measurements techniques, Crystal Detector, frequency measurement, wavelength measurements, Impedance and Refection coefficient, VSWR, Insertion and attenuation loss measurements, measurement of antenna characteristics, microwave link design.

8

Text Book:

1. Samuel Y. Liao, “Microwave Devices and Circuits”, 3rd Edition, Pearson Education.

Reference Books:

1. R. E Collin, “Foundation for Microwave Engineering “, 2nd Edition, John Wiley India.

2. A. Das and S. K. Das, “Microwave Engineering”, Tata McGraw Hill.

Page 195: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC 602 Digital Communication

Unit Topic

Proposed

number of

Lectures

I

Digital Data transmission, Line coding review, Pulse shaping, Scrambling, Digital

receivers, Eye diagram, Digital carrier system, Method of generation and detection of

coherent & non-coherent binary ASK, FSK & PSK, Differential phase shift

keying, quadrature modulation techniques. (QPSK and MSK ),M-ary Digital carrier

Modulation.

8

II Concept of Probability, Random variable, Statistical averages, Correlation, Sum of Random Variables, Central Limit Theorem, Random Process, Classification of Random Processes, Power spectral density, Multiple random processes,

8

III

Performance Analysis of Digital communication system: Optimum linear Detector for Binary polar signaling, General Binary Signaling, Coherent Receivers for Digital Carrier Modulations, Signal Space Analysis of Optimum Detection, Vector Decomposition of White Noise Random processes, General Expression for Error Probability of optimum receivers,

8

IV Spread spectrum Communications: Frequency Hopping Spread Spectrum

(FHSS) systems, Direct Sequence Spread Spectrum, Code Division Multiple Access of DSSS, Multiuser Detection, OFDM Communications

8

V

Measure of Information, Source Encoding, Error Free Communication over a Noisy Channel capacity of a discrete and Continuous Memory less channel Error Correcting codes: Hamming sphere, hamming distance and Hamming bound, relation between

minimum distance and error detecting and correcting capability , Linear block codes, encoding & syndrome decoding; Cyclic codes, encoder and decoders for systematic cycle codes; convolution codes, code tree & Trellis diagram, Viterbi and sequential

decoding, burst error correction, Turbo codes.

8

Text Book:

1. B.P. Lathi, “Modern Digital and Analog communication Systems”, 4th Edition, Oxford University Press.

Reference Books:

1. H. Taub, D. L. Schilling, G. Saha, “Principles of Communication”, 3rd Edition, Tata McGraw-Hill.

2. John G. Proakis, “Digital Communications”, 4th Edition, McGraw-Hill International.

3. Simon Haykin, “Communication Systems”, 4th Edition, Wiley India.

4. H. P. HSU and D. Mitra, “Analog and Digital Communications”, 2nd

Edition, Tata McGraw-Hill.

Page 196: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC 603 Integrated Circuit Technology

Unit Topic

Proposed

number of

Lectures

I

Introduction To IC Technology: SSI, MSI, LSI, VLSI Integrated Circuits Crystal Growth

and Wafer Preparation: Electronic Grade Silicon, Czochralski Crystal Growth, Silicon

Shaping, Processing Considerations.

Epitaxy: Vapor –Phase Epitaxy, Molecular Beam Epitaxy, Silicon on Insulators, Epitaxial

Evaluation.

8

II

Oxidation: Growth Kinetics, Thin Oxides, Oxidation Techniques and Systems, Oxides Properties.

Lithography: Optical Lithography. Photo masks, Wet Chemical Etching.

Dielectric and Polysilicon Film Deposition: Deposition Processes, Polysilicon, Silicon

Dioxide, Silicon Nitride.

8

III

Diffusion: Diffusion of Impurities in Silicon and Silicon Dioxide, Diffusion Equations,

Diffusion Profiles, Diffusion Furnace, Solid, Liquid and Gaseous Sources, Sheet Resistance

and its Measurement.

Ion-Implantation: Ion-Implantation Technique, Range Theory, Implantation Equipment.

8

IV

Metallization: Metallization Application, Metallization Choices, Physical Vapor Deposition,

Vacuum Deposition, Sputtering Apparatus.

Packaging of VLSI devices: Package Types, Packaging Design Consideration, VLSI

Assembly Technologies, Package Fabrication Technologies.

8

V

VLSI Process Integration: Fundamental Considerations For IC Processing, NMOS IC

Technology, CMOS IC Technology, Bipolar IC Technology, Monolithic and Hybrid Integrated Circuits, IC Fabrication

8

Text Books:

1. S. M. Sze, “VLSI Technology”, 2nd Edition, McGraw –Hill Publication.

2. S.K. Ghandhi, “VLSI Fabrication Principles”, 2nd Edition, Willy-India Pvt. Ltd.

Reference Books:

1. J. D. Plummer, M. D. Deal and Peter B. Griffin, “Silicon VLSI Technology: Fundamentals, practice and modelling”, Pearson

Education.

2. Stephen A. Campbell, “Fabrication Engineering at the micro and nano scale”, Oxford University Press.

Page 197: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

Laboratory

EC 651 Antenna and Microwave Lab

1. Study of Reflex Klystron Characteristics.

2. Measurement of guide wavelength and frequency of the signal in a rectangular Waveguide using slotted line carriage in a

Micro wave Bench.

3. Measurement of impedance of an unknown load connected at the output end of the slotted line carriage in a Micro wave Bench.

4. Determine the S-parameter of any Three port Tee.

5. Determine the S-parameter of a Magic Tee.

6. Study various parameters of Isolator .

7. Measurement of attenuation of a attenuator and isolation, insertion loss, cross coupling of a circulator.

8. Determine coupling coefficient, Insertion loss, Directivity and Isolation coefficient of anty Multi-Hole directional coupler.

9. To study working of MIC Components like Micro strip Line, Filter, Directional Coupler, Wilkinson Power Divider, Ring

resonator & coupler, antennas & amplifies.

10. Study of waveguide horn and its radiation pattern and determination of the beam width.

11. Study radiation pattern of any two types of linear antenna.

EC 652 COMMUNICATION LAB – II

1. To construct a triangular wave with the help of Fundamental Frequency and its Harmonic component.

2. To construct a Square wave with the help of Fundamental Frequency and its Harmonic component.

3. Study of Pulse code modulation (PCM) and its demodulation using Bread Board.

4. Study of delta modulation and demodulation and observe effect of slope overload.

5. Study of pulse data coding techniques for NRZ formats.

6. Study of Data decoding techniques for NRZ formats.

7. Study of Manchester coding and Decoding.

8. Study of Amplitude shift keying modulator and demodulator.

9. Study of Frequency shift keying modulator and demodulator.

10. Study of Phase shift keying modulator and demodulator

11. Study of single bit error detection and correction using Hamming code.

12. Measuring the input impedance and Attenuation of a given Transmission Line

EC-653 CAD OF ELECTRONICS LAB

PSPICE Experiments

1. (a)Transient Analysis of BJT inverter using step input.

(b)DC Analysis (VTC) of BJT inverter with and without parameters.

2. (a)Transient Analysis of NMOS inverter using step input.

(b)Transient Analysis of NMOS inverter using pulse input.

(c)DC Analysis (VTC) of NMOS inverter with and without parameters.

3. (a)Analysis of CMOS inverter using step input.

(b)Transient Analysis of CMOS inverter using step input with parameters. (c)Transient Analysis of CMOS inverter using pulse input.

(d)Transient Analysis of CMOS inverter using pulse input with parameters.

(e)DC Analysis (VTC) of CMOS inverter with and without parameters.

4. Transient & DC Analysis of NOR Gate inverter.

5. Transient & DC Analysis of NAND Gate.

6. VHDL Experiments

a. Synthesis and simulation of Full Adder.

b. Synthesis and Simulation of Full Subtractor.

c. Synthesis and Simulation of 3 X 8 Decoder.

d. Synthesis and Simulation of 8 X 1 Multiplexer.

e. Synthesis and Simulation of 9 bit odd parity generator. f. Synthesis and Simulation of Flip Flop (D, and T).

Page 198: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

Electives

EC 011 Digital Signal Processing

Unit Topic

Proposed

number of

Lectures

I

Realization of Digital Systems: Introduction, direct form realization of IIR systems,

cascade realization of an IIR systems, parallel form realization of an IIR systems, Ladder

structures: continued fraction expansion of H (z), example of continued fraction, realization of a ladder structure, example of a ladder realization.

8

II

Design of Infinite Impulse Response Digital Filters: Introduction to Filters, Impulse

Invariant Transformation, Bi-Linear Transformation, All- Pole Analog Filters:

Butterworth and Chebyshev, Design of Digital Butterworth and Chebyshev Filters.

8

III

Finite Impulse Response Filter Design: Windowing and the Rectangular Window, Other

Commonly Used Windows, Examples of Filter Designs Using Windows, The Kaiser

Window.

8

IV Discrete Fourier Transforms: Definitions, Properties of the DFT, Circular Convolution,

Linear Convolution.

8

V Fast Fourier Transform Algorithms: Introduction, Decimation –In Time(DIT)

Algorithm, Computational Efficiency, Decimation in Frequency (DIF) Algorithm.

8

Text Book:

1. Johnny R. Johnson, “Digital Signal Processing”, PHI.

Reference Books:

1. John G Prokias, Dimitris G Manolakis, “Digital Signal Processing”, Pearson Education.

2. Oppenheim & Schafer, “Digital Signal Processing” PHI.

3. Sanjit K. Mitra, “Digital Signal Processing: A Computer-Based Approach”, 4th Edition, McGraw Hill.

4. Monson Hayes, “Digital Signal Processing”, 2nd Edition, McGraw Hill Education

Page 199: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC 012 Computer Architecture and Organization

Unit Topic

Proposed

number of

Lectures

I

Introduction to Design Methodology: System Design – System representation, Design

Process, the gate level (revision), the register level components and PLD (revision), register

level design The Processor Level: Processor level components, Processor level design.

8

II

Processor basics: CPU organization- Fundamentals, Additional features Data Representation

– Basic formats, Fixed point numbers, Floating point numbers.

Instruction sets – Formats, Types, Programming considerations.

8

III Datapath Design: Fixed point arithmetic – Addition and subtraction, Multiplication and Division, Floating point arithmetic, pipelining.

8

IV

Control Design: basic concepts – introduction, hardwired control, Micro programmed

control – introduction, multiplier control unit, CPU control unit, Pipeline control- instruction

pipelines, pipeline performance.

8

V

Memory organization: Multi level memories, Address translation, Memory allocation,

Caches – Main features, Address mapping, structure vs performance, System Organisation:

Communication methods- basic concepts, bus control.

Introduction to VHDL.

8

Text Books:

1. John P Hayes “Computer Architecture and Organisation”, 3rd Edition, McGraw Hill.

Reference Books:

1. M Morris Mano, “Computer System Architecture”, 3rd Edition, Pearson.

2. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, “Computer Organization and Embedded Systems”, McGraw Hill. 3. David A. Patterson and John L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface",

Elsevier.

Page 200: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC 013 Artificial Neural Network

Unit Topic

Proposed

number of

Lectures

I

Introduction to ANN

Features , structure and working of Biological Neural Network

Trends in Computing Comparison of BNN and ANN.

Basics of Artificial Neural Networks -

History of neural network research, characteristics of neural networks terminology,

models of neuron Mc Culloch – Pitts model, Perceptron, Adaline model, Basic learning

laws, Topology of neural network architecture.

8

II

Backpropagation networks : (BPN)

Architecture of feed forward network, single layer ANN, multilayer perceptron, back

propagation learning, input - hidden and output layer computation, backpropagation

algorithm, applications, selection of tuning parameters in BPN, Numbers of hidden

nodes, learning.

8

III

Activation & Synaptic Dynamics :

Introduction, Activation Dynamics models, synaptic Dynamics models, stability and

convergence, recall in neural networks.

Basic functional units of ANN for pattern recognition tasks: Basic feed forward,

Basic feedback and basic competitive learning neural network. Pattern association,

pattern classification and pattern mapping tasks.

8

IV

a) Feedforward neural networks –

- Linear responsibility X-OR problem and solution.

- Analysis of pattern mapping networks summary of basic gradient search methods.

b) Feedback neural networks Pattern storage networks, stochastic networks and

simulated annealing, Boltzmann machine and Boltzmann learning.

8

V

Competitive learning neural networks :

Components of CL network pattern clustering and feature.

Mapping network, ART networks, Features of ART models, character recognition using

ART network.

Applications of ANN :

Pattern classification – Recognition of Olympic games symbols, Recognition of printed

Characters. Neocognitron – Recognition of handwritten characters.

NET Talk: to convert English text to speech. Recognition of consonant vowel (CV)

segments, texture classification and segmentation.

8

Text Book:

1. B. Yegnanarayana, “Artificial neural Networks”, PHI.

Reference Books:

1. S. Raj Sekaran , Vijayalakshmi Pari,” Neural networks, Fuzzy logic and Genetic Algorithms”, PHI.

2. Elaine Rich and Kevin Knight, “Artificial Intelligence”, TMH.

Page 201: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC 014 Advance Semiconductor Devices

Unit Topic

Proposed

number of

Lectures

I

Physics and Properties of Semiconductors: Introduction, Crystal Structure,

Energy Bands and Energy Gap, Carrier Concentration at Thermal Equilibrium,

Carrier-Transport Phenomena. Phonon, Optical, and Thermal Properties,

Heterojunctions and Nanostructures, Basic Equations and Examples.

p-n Junctions, Introduction, Depletion Region, Current-Voltage Characteristics, Junction Breakdown, Transient Behavior and Noise, Terminal Functions,

Heterojunctions.

Metal-Semiconductor Contacts, Metal-Insulator-Semiconductor Capacitors.

8

II

Bipolar Transistors: Static Characteristics, Microwave Characteristics, Related

Device Structures, Heterojunction Bipolar Transistor.

MOSFETs: Basic Device Characteristics, Nonuniform Doping and Buried-Channel

Device, Device Scaling and Short-Channel Effects, MOSFET Structures, Circuit

Applications, Nonvolatile Memory Devices, Single-Electron Transistor.

JFETs, MESFETs, and MODFETs

8

III

Tunnel Devices: Tunnel Diode, Related Tunnel Devices, Resonant-Tunneling

Diode.

IMPATT Diodes: Static Characteristics, Dynamic Characteristics, Power and

Efficiency, Noise Behavior, Device Design and Performance, BARITT Diode,

TUNNETT Diode.

8

IV Transferred-Electron and Real-Space-Transfer Devices Thyristors and Power Devices

Photonic Devices and Sensors: Radiative Transitions, Light-Emitting Diode (LED), Laser Physics, Laser Operating Characteristics, Specialty Lasers.

8

V

Photodetectors and Solar Cells: Photoconductor, Photodiodes, Avalanche

Photodiode, Phototransistor, Charge-Coupled Device (CCD), Metal-

Semiconductor-Metal Photodetector, Quantum-Well Infrared Photodetector, Solar

Cell.

Sensors: Thermal Sensors, Mechanical Sensors, Magnetic Sensors, Chemical

Sensors.

8

Text Book:

1. S. M. Sze, Kwok K. NG, “Physics of Semiconductor Devices”, 3rd Edition, Wiley Publication.

Reference Books:

1. J. P. Colinge and C. A. Colinge, "Physics Of Semiconductor Devices", Kluwer Academic Publishers

Page 202: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC 021 Industrial Electronics

Unit Topic

Proposed

number of

Lectures

I

Power Semiconductor Devices: Power semiconductor devices their symbols and static

characteristics and specifications of switches, types of power electronic circuits

Operation, steady state & switch characteristics & switching limits of Power Transistor

Operation and steady state characteristics of Power MOSFET and IGBT Thyristor –

Operation V- I characteristics, two transistor model, methods of turn-on Operation of GTO, MCT and TRIAC.

8

II

Phase Controlled Rectifiers: Phase Angle Control, Single-phase Half-wave Controlled

Rectifier (One quadrant), Single-phase Full-wave Controlled Rectifier (Two quadrant

Converters),Performance Factors of Line-commutated Converters, The Performance

Measures of Two-pulse Converters, Three phase Controlled Converters

Inverters: Introduction Thyristor Inverter Classification, Series Inverters, Parallel Inverter,

Three-phase Bridge Inverters, Three-phase Bridge Inverter with Input-circuit Commutation.

8

III

Choppers: Introduction, Principle of Chopper Operation, Control Strategies, step-up/Down

Chopper, Jones Chopper. Introduction to basic Cycloconverters.

Control of D.C. Drives: Introduction, Basic Machine Equations, Breaking Modes, Schemes

for D.C. Motor Speed Control, Single-phase Separately Excited Drives, Braking Operation

of Rectifier Controlled Separately excited Motor, Single-phase Separately Excited Drives,

Power Factor Improvement, Three-phase Separately Excited Drives, D.C. Chopper Drives

8

IV

Control of A.C. Drives: Introduction, basic Principle of Operation, Squirrel-cage Rotor Design, Speed Control of Induction Motors, stator Voltage Control, Variable Frequency

control, Rotor Resistance Control, Slip Power Recovery Scheme, Synchronous Motor

Drives

8

Text Books:

1. M. H. Rashid, “Power Electronics”, 3rd Edition, Pearson Education.

Reference Books:

1. M. D. Singh & K. Khanchandani, “Power Electronics”, Tata McGraw Hill.

2. V. R. Moorthy, “Power Electronics: Devices, Circuits and Industrial Applications”, Oxford University Press, 2007.

3. M. S. Jamil Asghar, “Power Electronics”, PHI.

4. Ned Mohan, T. M. Undeland and W. P. Robbins, “Power Electronics: Converters, Applications and Design”, Wiley India.

Page 203: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC 022 Microcontroller and it Applications

Unit Topic

Proposed

number of

Lectures

I

Introduction to microcontrollers and embedded systems, Von Neumann (Princetone) and

Harvard architecture, RISC and CISC machine, overview of the 8051 family, general

architecture (pins and signals, internal architecture, program memory and data memory

organization, system clock, reset, programming technique), input/ output ports and special

function registers, addressing mode.

8

II

Instruction groups of MCS-51: data transfer operation, arithmetic operations, branch operation, logical operation, Boolean variable manipulation, subroutine & stack operation

and advance instructions. Assembler data type and directives, introduction to assembly

programming and programming in C.

8

III

External interrupts and software interrupt, timer/ counter interrupt, interrupt service routine,

programming 8051 timer, counter programming, Basic of serial communication, mode of

serial communication, RS232, serial communication issue, serial port programming,

8

IV

Interfacing with 8051: external memory, 8255, keyboards, display devices, DAC/ADC, DC

Motor, Stepper Motor, Servomotor, power management, Sensor interfacing and signal

conditioning.

8

Text Book:

1. Mazidi Ali Muhammad, Mazidi Gillispie Janice, and McKinlay Rolin D., “The 8051 Microcontroller and Embedded Systems

using Assembly and C”, Pearson, 2nd Edition.

2. Chhabra Bhupendra Singh, “Microcontrollers & its Applications” Dhanpat Rai Publishing Company, New Delhi

Reference Book:

1. Shah Satish, “8051 Microcontrollers MCS 51 Family and its variants”, Oxford

2. Subrata Ghoshal, “8051 Microcontroller Internals, Instructions, Programming and Interfacing” Pearson

3. V. Udayashankara, M.S. Mallikajunaswamy, “8051 Microcontroller Hardware, Software and Applications”, McGraw-Hill.

4. Dogan Brahim, “Microcontroller Projects in C for the 8051”, Newnes

5. Subrata Ghoshal, “Embedded System & Robots Projects using the 8051 Microcontroller”, Cengage Lerning

Page 204: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC 023 Analog Signal Processing

Unit Topic

Proposed

number of

Lectures

I

Introduction to domains and the analogue/digital trade off, Introduction to basic

building blocks: nullor, voltage feedback amplifier, operation transconductance

amplifier, current conveyor, current feedback amplifier.

Analog signal filtering: introduction to bilinear transfer functions and active

realizations. First-order and second-order filter realization, filter design parameters (Q and ω0), frequency response, effect of finite gain of op-amp, realization of Single-

Amplifier Biquad and General Impedance Convertor circuit.

8

II Ideal low-pass filter, Buttreworth and Chebyshev magnitude response, pole locations,

low-pass filter specifications.

8

III Delay equalization: equalization procedures, equalization with first-order and second-

order modules, strategies for equalization design. Definition of Bode sensitivity.

8

IV

Properties of Lossless ladders, the general impedance convertor (GIC), optimal design

of the GIC, realization of simple ladders, Gorski-Popiel’s Embedding Technique,

Bruton’s FDNR technique, creating negative components.

8

Text Books:

1. R. Schaumann and M. E. Valkenberg, “Design of Analog Circuits”, Oxford University Press.

Page 205: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EC 024 Advanced Digital Design and Verilog

Unit Topic

Proposed

number of

Lectures

I

Introduction to Mixed Logic, Logic Representation and Minimization with cost, Multiple

output minimization, Entered Variable K- Map including don’t care handling, XOR-

Pattern Handling.

8

II Combinational Circuit Design, Multiplexers, Decoders, Encoders, Code Comparators,

Adders, Subtractors, Multipliers, Timing Analysis, Hazard Detection and Elimination.

8

III

Synchronous Sequential Circuits Design, Mapping Algorithm, Synchronous State

Machines, ASM Charts, Asynchronous Sequential Circuit Design, Races, Multi level minimization and optimization.

8

IV

Factoring, Decomposition, BDD, Ordered BDD, LPDD, Fault Detection and Analysis in

combinational and sequential systems, Path Sensitization method, Boolean Difference

Method, Initial State Method.

8

V Study of programmable logic families, PLD, CPLD, FPGA, ASIC, PLA, Architectures,

Design of Combinational and sequential circuits using CPLD and FPGA, Design Examples.

8

Text Books:

1. Richard F. Tinder, “Engineering Digital Design”, Academic Press.

2. Parag K. Lala, “Digital system Design Using PLDs”, PHI India Ltd.

Reference Books:

1. John Williams, “Digital VLSI Design with Verilog”, Springer Publication.

2. Eugene Fabricius, “Modern Digital Design and Switching Theory”, CRC Press.

3. Samuel C. Lee, “Digital Circuit and Logic Design”, PHI India Ltd.

4. Alexander Miczo, “Digital Logic Testing and Simulation”, Wiley Interscience.

5. Stephen Brown and Zvonko Vranesiv, “Fundamental of Digital Logic with Verilog Design”, Tata McGraw Hill.

4th Year

Page 206: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

[Effective from Session 2016-17]

SEMESTER - VII

No. Subject

Code Name of the Subject

Periods Evaluation Scheme Subject

Total Credit

L T P Sessional Assessment

ESE CT TA Total

THEORY SUBJECTS

1 OE07** Open Elective-I 3 1 0 30 20 50 100 150 4

2 EC 02* Departmental Elective-II 3 1 0 30 20 50 100 150 4

3 EC701 Optical Fiber

Communication 3 1 0 30 20 50 100 150 4

4 EC702 Data Communication

Network 3 1 0 30 20 50 100 150 4

5 EC703 VLSI Design 3 1 0 30 20 50 100 150 4

6 AUC 001 Human Values and

Professional Ethics 2 0 0 15 10 25 50 75 -

PRACTICAL/ DESIGN/ DRAWING

7 EC751 Advance Communication

Lab 0 0 2 10 10 20 30 50 1

8 EC752 Electronic Circuit Design

Lab 0 0 3 10 10 20 30 50 2

9 EC753 Industrial Training Viva

Voce 0 0 2 10 10 20 30 50 1

10 EC754 Minor Project 0 0 2 10 10 20 30 50 1

11 GP 701 General Proficiency 50 50 -

TOTAL 14 5 9 1000 25

** Open Electives-I

1. EOE071 Entrepreneurship Development

2. EOE072 Quality Management

3. EOE073 Operation Research

4. EOE074 Introduction to Biotechnology

Elective-II

EC021 Analog Signal Processing

EC022 Data Structure

EC023advanced Semiconductor Devices

EC024 Microcontrollers

Page 207: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

SEMESTER - VIII

No. Subject

Code Name of the Subject

Periods Evaluation Scheme Subject

Total Credit

L T P Sessional Assessment

ESE CT TA Total

THEORY SUBJECTS

1 OE08* Open Elective-II 3 1 0 30 20 50 100 150 4

2 EC 03* Department Elective-III 3 1 0 30 20 50 100 150 4

3 EC 801 Wireless and mobile

communication 3 1 0 30 20 50 100 150 4

4 EC 802 Electronics Switching 3 1 0 30 20 50 100 150 4

5 AUC001 Human Values and Professional Ethics

2 0 0 15 10 25 50 75 -

PRACTICAL/ DESIGN/ DRAWING

10 EC 851 Project 0 0 12 - 100 100 250 350 8

11 GP 801 GP 50 50 -

TOTAL 14 4 12 1000 25

** Open Electives-II

1. OE-081 Non Conventional Energy Resources

2. OE-082 Nonlinear Dynamic Systems

3. OE-083 Product Development

4. OE-084 Automation & Robotics

Elective – III

EC-031 Optical Networks

EC-032 Digital System Design using VHDL

EC-033 Speech Processing

EC-034 Integrated Circuit Technology

EC-035 Introduction to RADAR System

Page 208: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

EEC CODE

SYLLABUS

FOR

1ST YEAR (2009-10)

2ND YEAR(2010-11)

3RD YEAR(2011-12)

4TH YEAR(TILL 2015-16)

Page 209: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

B.Tech. Electronics & Communication Engg.,

[Effective from the session 2009-10] YEAR 2nd, SEMESTER-III

S. No.

Course

Code

SUBJECT

PERIODS Evaluation Scheme

Subject

Total Cred

it

SESSIONAL

EXAM.

ESE

L T P CT TA Total

THEORY SUBJECTS

1. EHU-301/

EHU-302

Industrial Psychology/

Industrial Sociology

2 0 0 15 10 25 50 75 2

2. EAS-301/

EOE-031-

EOE-038

Mathematics III/ Science based

open Elective**

3 1 0 30 20 50 100 150 4

3. EEC-301 Fundamentals of Electronics

Devices

3 1 0 30 20 50 100 150 4

4. EEC-302 Digital Electronics 3 1 0 30 20 50 100 150 4

5. EEC-303 Electromagnetic Field Theory 3 1 0 30 20 50 100 150 4

6. EEC-304 Fundamentals of Network

Analysis & Synthesis

3 1 0 30 20 50 100 150 4

7. EHU-111 *Human Values & Professional

Ethics

2 2 0 15 10 25 50 75 -

PRACTICAL/DESIGN/DRAWING

8 EEC-351 Electronics Engineering Lab I 0 0 2 -- 20 20 30 50 1

9. EEC-352 Digital Electronics Lab-I 0 0 2 -- 20 20 30 50 1

10. EEC-353 PCB & Electronics Workshop 0 0 2 -- 10 10 15 25 1

11. GP 301 General Proficiency - - - - - 50 - 50 1

Total 17 5 6 165 160 375 625 1000 26

* Human Values & Professional Ethics will be offered as compulsory Audit Course for which passing marks are 40% in theory & 50% in aggregate. Students will be required to audit it within the period of their study. There will not be carry over facility for this course and a failure student will be required to repeat this course.

** Science based open Elective EOE031/EOE041 Introduction to soft computing (Neural network, Fuzzy logic and Genetic algorithm) EOE032/EOE042 Nano-sciences EOE033/EOE043 Laser systems and applications EOE034/EOE044 Space sciences EOE035/EOE045 Polymer science and technology EOE036/EOE046 Nuclear science EOE037/EOE047 Material science EOE038/EOE048 DISCRETE mathematics

Page 210: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.Tech Electronics & Communication Engineering

Institute of Engineering and Technology, Lucknow

YEAR 2nd , SEMESTER-IV

YEAR 2nd , SEMESTER-IV

S. No.

Course

Code

SUBJECT

PERIODS Evaluation Scheme

Subject

Total Cred

it

SESSIONAL

EXAM.

ESE

L T P CT TA Total

THEORY SUBJECTS

1. EHU-402/

EHU-401

Industrial Sociology/Industrial

Psychology

2 0 0 15 10 25 50 75 2

2. EOE-041-

EOE-048/

EAS-401

Science based open Elective**/

Mathematics III

3 1 0 30 20 50 100 150 4

3. EEC-401 Electronic circuits 3 1 0 30 20 50 100 150 4

4. EEC-402 Computer Architecture &

Organization

3 1 0 30 20 50 100 150 4

5. EEC-403 Electronic Instrumentation and

Measurements

3 1 0 30 20 50 100 150 4

6. EEC-404 Signals and Systems 3 1 0 30 20 50 100 150 4

7. EHU-111 *Human Values & Professional

Ethics

2 2 0 15 10 25 50 75 -

PRACTICAL/DESIGN/DRAWING

8. EEC-451 Electronics Engineering lab II 0 0 2 -- 20 20 30 50 1

9 EEC-452 Digital Electronics Lab II 0 0 2 -- 20 20 30 50 1

10 EEC-453 Measurement lab 0 0 2 -- 10 10 15 25 1

11. GP 401 General Proficiency - - - - - 50 - 50 1

Total 17 5 6 165 160 375 625 1000 26

**Science based open Elective

EOE031/EOE041 Introduction to soft computing (Neural network, Fuzzy logic and Genetic algorithm) EOE032/EOE042 Nano-sciences

EOE033/EOE043 Laser systems and applications EOE034/EOE044 Space sciences EOE035/EOE045 Polymer science and

technology EOE036/EOE046 Nuclear science EOE037/EOE047 Material science EOE038/EOE048 DISCRETE mathematics

Page 211: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

Syllabus third semester:

Unit Topic Chapter/

Section

Proposed

number of

Lectures I Crystal Properties and charge Carriers in Semiconductors:

Elemental and compound semiconductor materials, crystal lattice structure, Bonding forces and energy bands in solids, charge carriers in semiconductors, carrier concentrations, drift of carriers in electric and magnetic fields.

1.1 to 1.2

3.1 to 3.4

8

II Excess Carriers in Semiconductors: Optical absorption, luminescence,

carrier life time and photo conductivity, diffusion of carriers. 4.1 to 4.3 and 4.4.1 to 4.4.4

8

III Junction Properties: Equilibrium conditions, biased junctions, steady

state conditions, reverse bias break down, transient and AC conditions. Metal semiconductor junctions.

5.2 to 5.5

5.7

10

IV Transistors: Metal-semiconductor-field-effect-transistors (MESFET),

Metal-insulator-semiconductor-field-effect-transistors (MISFET), Metal oxide semiconductor field effect transistor (MOSFET): Construction, Operation and characteristics of above devices. Bipolar junction transistors: Fundamentals of BJT operation, amplification with BJTs,

6.3.1 to 6.3.2, 6.4.1 to 6.4.2, 6.5.1 to 6.5.2

7.1 to 7.2

6

V Some special devices: Photodiodes, photo detectors, solar cell, light emitting diodes, semiconductor lasers, light emitting materials. Tunnel Diode: degenerate semiconductors,

IMPATT diode;

The transferred electron mechanism: The GUNN diode.

P-N-P-N diode, semiconductor controlled rectifier (SCR), bilateral devices: DIAC, TRIAC, IGBT.

8.1, 8.2.1, 8.2.3, 8.3, 8.4; 10.1 10.2 10.3.1, 10.3.2 11.1 to 11.3

8

Text Book: B. G. Streetman and S. Banerjee “Solid state electronics devices”, 5th Edition, PHI. Reference Books:1. Alok Dutta, “Semiconductor Devices and circuits”, Oxford University Press.

2. Donald A Neaman, “Semiconductor Physics and Devices Basic Principles”

3rd Ed TMH India.

EEC 301 FUNDAMENTALS OF ELECTRONICS DEVICES 3 1 0

Page 212: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

EEC 302 DIGITAL ELECTRONICS 3 1 0 Unit Topic Chapter/

Section

Proposed

number of

Lectures I Digital system and binary numbers: Signed binary numbers, binary

codes, cyclic codes, error detecting and correcting codes, hamming

codes.

Floating point representation

Gate-level minimization: The map method up to five variable, don’t care conditions, POS simplification, NAND and NOR implementation, Quine Mc-Clusky method (Tabular method).

1.6, 1.7, 7.4

3.1 to 3.7,

3.10

8

II Combinational Logic: Combinational circuits, analysis procedure, design

procedure, binary adder-subtractor, decimal adder, binary multiplier, magnitude comparator, decoders, encoders, multiplexers

4.1 to 4.11

8 III Synchronous Sequential logic: Sequential circuits, storage elements:

latches, flip flops, analysis of clocked sequential circuits, state

reduction and assignments, design procedure.

Registers and counters: Shift registers, ripple counter, synchronous counter, other counters.

5.1 to 5.5, 5.7

to 5.8

6.1 to 6.5

8

IV Memory and programmable logic: RAM, ROM, PLA, PAL.

Design at the register transfer level: ASMs, design example, design with

multiplexers.

7.1 to 7.3, 7.5

to 7.7

8.4, 8.5, 8.10

8 V Asynchronous sequential logic: Analysis procedure, circuit with latches,

design procedure, reduction of state and flow table, race free state assignment, hazards.

9.1 to 9.7

8 Text Book:M. Morris Mano and M. D. Ciletti, “Digital Design”, 4th Edition, Pearson Education

Reference Books: 1. Hill & Peterson, “Switching Circuit & Logic Design”, Wiley.

Page 213: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

EEC 303 ELECTROMAGNETIC FIELD THEORY 3 1 0 Unit Topic Chapter/

Section

Proposed

number of

Lectures I Coordinate systems and transformation: Cartesian coordinates,

circular

cylindrical coordinates, spherical coordinates

Vector calculus: Differential length, area and volume, line surface and

volume integrals, del operator, gradient of a scalar, divergence of a

vector and divergence theorem, curl of a vector and Stoke’s theorem,

Laplacian of a scalar.

2.1 to 2.4

3.1 to 3.8

6 II Electrostatics: Electrostatic fields, Coulombs law and field intensity,

Electric field due to charge distribution, Electric flux density, Gausses’s Law – Maxwell’s equation, Electric dipole and flux lines, energy density in electrostatic fields.

Electric field in material space: Properties of materials, convection

and conduction currents, conductors, polarization in dielectrics,

dielectric constants, continuity equation and relaxation time, boundary

condition. Electrostatic boundary value problems: Poission’s and

Laplace’s equations, general procedures for soling Poission’s or

Laplace’s equations, resistance and capacitance, method of images.

to 4.9

5.1 to 5.6, 5.8,

5.9

6.1, 6.2, 6.4 to

6.6

10 III Magnetostatics: Magneto-static fields, Biot-Savart’s Law, Ampere’s

circuit law, Maxwell’s equation, application of ampere’s law, magnetic flux density- Maxwell’s equation, Maxwell’s equation for static fields, magnetic scalar and vector potential.

Magnetic forces, materials and devices: Forces due to magnetic field,

magnetic torque and moment, a magnetic dipole, magnetization in

materials, magnetic boundary conditions, inductors and inductances,

magnetic energy.

7.1 to 7.7

8.1 to 8.9

8 IV Waves and applications: Maxwell’s equation, Faraday’s Law,

transformer and motional electromotive forces, displacement current, Maxwell’s equation in final form.

Electromagnetic wave propagation: Wave propagation in lossy dielectrics, plane waves in lossless dielectrics, plane wave in free space,

plain waves in good conductors, power and the pointing vector, reflection of a plain wave in a normal incidence.

9.1 to 9.5

10.1, 10.3 to

10.8

8

V Transmission lines: Transmission line parameters, Transmission line equations, input impedance, standing wave ratio and power, The Smith

chart, Some applications of transmission lines.

11.1 to 11.6

8 Text Book: M. N. O. Sadiku, “Elements of Electromagnetics”, 4th Ed, Oxford University Press. Reference Books: W. H. Hayt and J. A. Buck, “Electromagnetic field theory”, 7th Ed., TMH.

Page 214: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II
Page 215: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

(10)

EEC 304 FUNDAMENTAL OF NETWORK ANALYSIS & SYNTHESIS 3 1 0 Unit Topic Chapter

/ Section

Proposed

number of

Lectures I Signal analysis, complex frequency, network analysis, network synthesis

General characteristics and descriptions of signals, step function and associated wave forms, The unit impulse

Introduction to network analysis, network elements, initial and final conditions, step and impulse response, solution of network equations,

1.1 to 1.4

2.1 to 2.3

5.1 to 5.5

10

II Review of Laplace transforms, poles and zeroes, initial and final value theorems, The transform circuit, Thevenin’s and Norton’s theorems, the

system function, step and impulse responses, the convolution integral. Amplitude and phase responses.

Network functions, relation between port parameters, transfer functions

using two port parameters, interconnection of two ports.

7.1 to 7.5

8.1

9.1 to 9.4

8 III Hurwitz polynomials, positive real functions.

Properties of real immittance functions, synthesis of LC driving point immittances, properties of RC driving point impedances, synthesis of RC impedances or RL admittances, properties of RL impedances and RC

admittances.

10.2,10.3

11.1 to 11.5

8

IV Properties of transfer functions, zeroes of transmission, synthesis of Y21

and Z21 with 1Ω terminations.

12.1 to 12.3

6 V Introduction to active network synthesis

Active Network Synthesis

Material available

on UPTU website

&

8.7 (Text Book 2)

8 Text Book:

1. Franklin F. Kuo, “Network Analysis and synthesis”, 2nd Edition, Wiley India Pvt Ltd.

2. Behrouz Peikari, “Fundamentals of Network Analysis & synthesis”, Jaico Publishing House, 2006. Reference Books: M. E. Van Valkenberg, “Network Analysis”, 2nd Edition, Prentice Hall of India Ltd.

Page 216: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

(11)

LABORATORY

EEC 351 ELECTRONICS ENGINEERING LAB I

Objective: To attain expertise in lab equipment handling and understanding the basic devices, their

properties, characteristics in detail. Along with their practical usage in the circuit

1. Study of lab equipments and components: CRO, Multimeter, Function Generator, Power supply- Active,

Passive Components & Bread Board.

2. P-N Junction Diode: Characteristics of PN Junction diode-Static and dynamic resistance measurement

from graph.

3. Applications of PN junction diode: Half & Full wave rectifier- Measurement of Vrms, Vdc, and ripple

factor-use of filter- ripple reduction (RC Filter)-Clipper & Clamper

4. Properties of junctions Zener diode characteristics. Heavy doping alters the reverse characteristics.

Graphical measurement of forward and reverse

resistance.

5. Application of Zener diode: Zener diode as voltage regulator. Measurement of percentage regulation by

varying load resistor.

6. Characteristic of BJT: BJT in CB and CE configuration- Graphical measurement of h parameters from

input and output characteristics. Measurement of Av, AI, Ro and Ri of CE amplifier with potential divider

biasing.

7. Characteristic of FET: FET in common source configuration. Graphical measurement of its parameters

gm, rd & m from input and output characteristics.

8. Characteristic of silicon-controlled rectifier.

9. To plot V-I Characteristics of DIAC.

10. To draw V-I characteristics of TRIAC for different values of Gate Currents.

EEC 352 DIGITAL ELECTRONICS LAB

Objective: To understand the digital logic and create various systems by using these logics.

Page 217: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

(12)

1. Introduction to digital electronics lab- nomenclature of digital ICs, specifications, study of the data

sheet, concept of Vcc and ground, verification of the truth tables of logic gates using TTL ICs.

2. Implementation of the given Boolean function using logic gates in both SOP and POS forms.

3. Verification of state tables of RS, JK, T and D flip-flops using NAND & NOR gates.

4. Implementation and verification of Decoder/De-multiplexer and Encoder using logic gates.

5. Implementation of 4x1 multiplexer using logic gates.

6. Implementation of 4-bit parallel adder using 7483 IC.

7. Design, and verify the 4-bit synchronous counter.

8. Design, and verify the 4-bit asynchronous counter.

9. Mini Project.

EEC 353 ELECTRONIC WORKSHOP & PCB LAB Objective:

To create interest in Hardware Technology.

1. Winding shop: Step down transformer winding of less than 5VA.

2. Soldering shop: Fabrication of DC regulated power supply

3. PCB Lab: (a) Artwork & printing of a simple PCB.

(b) Etching & drilling of PCB.

4. Wiring & fitting shop: Fitting of power supply along with a meter in cabinet.

5. Testing of regulated power supply fabricated.

Fabricate and test the audio amplifier circuit by using above power supply

Page 218: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

(11)

EEC 401 ELECTRONIC CIRCUITS 3 1 0 Unit Topic Chapter

/ Section

Proposed

number of

Lectures I Operational Amplifier: Inverting and non-inverting configurations,

difference amplifier, Effect of finite open loop gain and bandwidth on circuit performance, Large signal operation of op-amp.

2.2 to 2.6

8 II MOSFET: Review of device structure operation and V-I characteristics.

Circuits at DC, MOSFET as Amplifier and switch, Biasing in MOS amplifier

circuits, small-signal operation and models, single stage MOS amplifier,

MOSFET internal capacitances and high frequency model, frequency

response of CS amplifier

4.3 to 4.9 and

4.11

8

III BJT: Review of device structure operation and V-I characteristics, BJT

circuits at DC, BJT as amplifier and switch, biasing in BJT amplifier circuit, small-signal operation and models, single stage BJT amplifier, BJT internal capacitances and high frequency model, frequency response

of CE amplifier.

5.3 to 5.9

8

IV Differential Amplifier: MOS differential pair, small signal operation of

the MOS differential pair, BJT differential pair, other non-ideal

characteristic of the Differential amplifier (DA), DA with active load.

7.1 to 7.5

9 V Feedback: The general feed back structure, properties of negative

feed back, the four basic feed back topologies, the series-shunt feedback

amplifier, the series-series feedback amplifier, the shunt-shunt and shunt series feedback amplifier.

Oscillators: Basic principles of sinusoidal oscillators, op-amp RC

oscillator circuits, LC oscillator.

8.1 to 8.6

13.1 to 13.3

4+3 Text Book: A. S. Sedra and K. C. Smith, “Microelectronic Circuits”, Oxford University Press, 5th Ed. Reference Books:

1. Neamen D A, “Electronics Circuits”, 3rd Ed TMH

2. Jacob Millman and Arvin Grabel, “Microelectronics”, 2nd Ed TMH

Syllabus fourth semester:

THEORY SUBJECTS

Page 219: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

EEC 402 COMPUTER ARCHITECTURE AND ORGANIZATION 3 1 0 Unit Topic Chapter/

Section

Proposed

number of

Lectures I Introduction to Design Methodology: System Design - System

representation, Design Process, the gate level (revision), the

register level components and PLD (revision), register level design

The Processor Level: Processor level components, Processor level

design.

2.1.1, 2.1.2,

2.1.3, 2.2.1,

2.2.2, 2.2.3

2.3.1, 2.3.2

8 II Processor basics: CPU organization- Fundamentals , Additional features

Data Representation – Basic formats, Fixed point numbers, Floating

point numbers.

Instruction sets – Formats, Types, Programming considerations.

3.1, 3.1.1,

3.1.2, 3.2,

3.2.1, 3.2.2,

3.2.3, 3.3.1,

3.3.2, 3.3.3

8

III Datapath Design: Fixed point arithmetic – Addition and subtraction,

Multiplication and Division, Floating point arithmetic, pipelining.

4.1.1, 4.1.2,

4.1.3, 4.2.1,

4.2.2, 4.3.1,

4.3.2

6 IV Control Design: basic concepts – introduction, hardwired control, Micro

programmed control –introduction, multiplier control unit, cpu control unit, Pipeline control- instruction pipelines, pipeline performance.

5.1.1, 5.1.2,

5.1.3, 5.2.1,

5.2.2, 5.2.3,

5.3.1, 5.3.2,

5.3.3

8

V Memory organization: Multi level memories, Address translation, Memory allocation, Caches – Main features, Address mapping, structure

vs performance, System Organisation: Communication methods- basic concepts, bus control.

Introduction to 8085

6.2.1, 6.2.2,

6.2.3, 6.3.1,

6.3.1, 6.3.2,

6.3.3, 7.1.1,

7.1.2

Teachers

choice

10

2

Text Book: John P Hayes “Computer Architecture and Organisation” McGraw Hilll 3rd Edition Reference Books: M Morris Mano, “Computer System Architecture” PHI 3rd Edition

Page 220: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

EEC 403 ELECTRONIC INSTRUMENTATION AND MEASUREMENTS 3 1 0 Unit Topic Chapter

/ Section

Proposed

number of

Lectures I Unit, dimensions and standards: Scientific notations and metric prefixes.

SI electrical units, SI temperature scales, Other unit systems, dimension and standards.

Measurement Errors: Gross error, systematic error, absolute error and relative error, accuracy, precision, resolution and significant figures,

Measurement error combination, basics of statistical analysis.

PMMC instrument, galvanometer, DC ammeter, DC voltmeter, series

ohm meter,

1.1 to 1.7

2.1 to 2.5

3.1 to 3.4

8 II Transistor voltmeter circuits, AC electronic voltmeter, current

measurement with electronic instruments, multimeter probes

Digital voltmeter systems, digital multimeters, digital frequency meter system

4.1, 4.2, 4.4,

4.5, 4.7

6.1 to 6.3

8 III Voltmeter and ammeter methods, Wheatstone bridge, low

resistance

measurements, low resistance measuring instruments

AC bridge theory, capacitance bridges, Inductance bridges, Q meter

7.1, 7.3, 7.4,

7.5

8.2 to 8.4, 8.9

8 IV CRO: CRT, wave form display, time base, dual trace oscilloscope,

measurement of voltage, frequency and phase by CRO, Oscilloscope

probes, Oscilloscope specifications and performance.

Delay time based Oscilloscopes, Sampling Oscilloscope, DSO, DSO

applications

9.1, 9.3, 9.4,

9.5, 9.7, 9.9,

9.12

10.1, 10.3,

10.4, 10.5

8

V Instrument calibration: Comparison method, digital multimeters as

standard instrument, calibration instrument

Recorders: X-Y recorders, plotters

12.1, 12.2,

12.3

13.2, 13.4

8 Text Book: David A. Bell, “Electronic Instrumentation and Measurements”, 2nd Ed., PHI , New Delhi 2008. Reference Books:

1. Oliver and Cage, “Electronic Measurements and Instrumentation”, TMH, 2009.

2. Alan S. Morris, “Measurement and Instrumentation Principles”, Elsevier (Buterworth Heinmann),

2008.

Page 221: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

EEC 404 SIGNALS AND SYSTEMS 3 1 0 Unit

No.

Topics Chapter/

Section

Proposed

number of

Lectures I Signals: Definition, types of signals and their representations:

continuous-time/discrete-time, periodic/non-periodic, even/odd,

energy/power, deterministic/ random, one-dimensional/multi-

dimensional; commonly used signals (in continuous-time as well as in

discrete-time): unit impulse, unit step, unit ramp (and their inter-

relationships), exponential, rectangular pulse, sinusoidal; operations

on continuous-time and discrete-time signals (including

transformations of independent variables).

1.1 to 1.5 6

II Laplace-Transform (LT) and Z-transform (ZT):

(i) One-sided LT of some common signals, important theorems and

properties of LT, inverse LT, solutions of differential equations

using LT, Bilateral LT, Regions of convergence (ROC)

(ii) One sided and Bilateral Z-transforms, ZT of some common

signals, ROC, Properties and theorems, solution of difference

equations using one-sided ZT, s- to z-plane mapping

2.1 to 2.15 3+5

III Fourier Transforms (FT):

(i) Definition, conditions of existence of FT, properties, magnitude

and phase spectra, Some important FT theorems, Parseval’s

theorem, Inverse FT, relation between LT and FT

(ii) Discrete time Fourier transform (DTFT), inverse DTFT,

convergence, properties and theorems, Comparison between

continuous time FT and DTFT

4.1 4.11;

5.1 to 5.7

6+4

IV Systems: Classification, linearity, time-invariance and causality, impulse response, characterization of linear time-invariant (LTI)

systems, unit sample response, convolution summation, step response of discrete time systems, stability.

convolution integral, co-relations, signal energy and energy spectral

density, signal power and power spectral density, properties of

power spectral density,

7.1 to 7.12;

9.2, 9.6 to 9.8

8

V Time and frequency domain analysis of systems

Analysis of first order and second order systems, continuous-time (CT)

system analysis using LT, system functions of CT systems, poles and

zeros, block diagram representations; discrete-time system functions,

block diagram representation, illustration of the concepts of system

bandwidth and rise time through the analysis of a first order CT low

pass filter

8.1-8.6; 8.8 10

Text Book: P. Ramakrishna Rao, `Signal and Systems’ 2008 Ed., Tata McGraw Hill, New Delhi Reference Books:

1. Chi-Tsong Chen, `Signals and Systems’, 3rd Ed., Oxford University Press, 2004

2. V. Oppenheim, A.S. Willsky and S. Hamid Nawab, ‘Signals & System’, Pearson Education, 2nd Ed.,

2003.

Page 222: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

LABOROTARY

EEC 451 ELECTRONICS ENGINEERING LAB II

Objective -To design and implement the circuits to gain knowledge on performance of the circuit and

its application.

1. Measurement of Operational Amplifier Parameters-Common Mode Gain, Differential Mode Gain,

CMRR, Slew Rate.

2. Applications of Op-amp- Op-amp as summing amplifier, Difference amplifier, Integrator and

differentiator

3. Field Effect Transistors-Single stage Common source FET amplifier –plot of gain in dB Vs frequency,

measurement of, bandwidth, input impedance, maximum signal handling capacity (MSHC) of an amplifier

4. Bipolar Transistors- Design of single stage RC coupled amplifier –design of DC biasing circuit using

potential divider arrangement –Plot of frequency Vs gain in dB. Measurement of bandwidth of an

amplifier, input impedance and Maximum Signal Handling Capacity of an amplifier.

5. Two stage Amplifier. Plot of frequency Vs gain. Estimation of Q factor, bandwidth of an amplifier

6. Common Collector Configuration-Emitter Follower (using Darlington pair)-Gain and input impedance

measurement of the circuit.

7. Power Amplifiers-Push pull amplifier in class B mode of operation –measurement of gain.

8. Differential Amplifier –Implementation of transistor differential amplifier .Non ideal characteristics of

differential amplifier

9. Oscillators -Sinusoidal Oscillators- (a) Wein bridge oscillator (b) phase shift oscillator

10. Simulation of Amplifier circuits studied in the lab using any available simulation software and

measurement of bandwidth and other parameters with the help of simulation software.

EEC 452 DIGITALLAB II

1. TTL Transfer Characteristics and TTL IC Gates.

2. CMOS Gate Transfer Characteristics.

3. Implementation of a 3-bit SIPO and SISO shift registers using flip-flops.

4. Implementation of a 3-bit PIPO and PISO shift registers using flip-flops.

5. Design of Seven segment display driver for BCD codes.

6. BCD Adders & Subtractors

Page 223: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

7. A L U

8. 8085 Assembly Language Programming

EEC 453 MEASUREMENT LAB

1. Study of semiconductor diode voltmeter and its us as DC average responding AC voltmeter .

2. Study of L.C.R. bridge and determination of the value of the given components.

3. Study of distortion factor meter and determination of the % distortion of the given oscillator.

4. Study of the transistor tester and determination of the parameters of the given transistors.

5. Study of the following transducer (i) PT-100 trans (ii) J- type trans. (iii) K-type trans (iv) Presser trans

6. Measurement of phase difference and frequency using CRO (lissajous figure)

7. Measurement of low resistance Kelvin’s double bridge.

8. Radio Receiver Measurements

Page 224: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

[Effective from the session 2010-11]

YEAR 3rd, SEMESTER-V

S. No.

Course

Code

SUBJECT

PERIODS Evaluation Scheme

Subject

Total Cred

it

SESSIONAL

EXAM.

ESE

L T P CT TA Total

THEORY SUBJECTS

1 EEC 501 Integrated Circuits 3 1 0 30 20 50 100 150 4

2 EEC 502 Principles of Communications 3 1 0 30 20 50 100 150 4

3 EEC 503 Microprocessors 3 1 0 15 10 25 50 75 3

4 EEC 504 Antenna &Wave Propagation 3 1 0 15 10 25 50 75 3

5 EIC 501 Control Systems - I 3 1 0 30 20 50 100 150 4

6 EHU 501 Engineering and Managerial Economics

3 1 0 30 20 50 100 150 3

7 AUC 001 *Human Values & Professional

Ethics

2 0 0 15 10 25 50 75 -

PRACTICAL/DESIGN/DRAWING

8. EEC 551 Integrated circuits Lab 0 0 2 -- 20 20 30 50 1

9. EIC 551 Control Systems Lab 0 0 2 -- 20 20 30 50 1

10. EEC 552 Communication Lab- I 0 0 2 -- 20 20 30 50 1

11. EEC 553 Microprocessors Lab 0 0 2 -- 20 20 30 50 1

12. GP 501 General Proficiency - - - - - 50 - 50 1

Total 18 6 8 150 180 380 620 1000 26

Page 225: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

YEAR 3rd, SEMESTER-VI

S. No.

Course

Code

SUBJECT

PERIODS Evaluation Scheme

Subject

Total Cred

it

SESSIONAL

EXAM.

ESE

L T P CT TA Total

THEORY SUBJECTS

1. EHU 601 Industrial Management 3 0 0 30 20 50 100 150 3

2. EEC 601 Digital communication 3 1 0 30 20 50 100 150 4

3. EEC 602 Digital Signal Processing 3 1 0 30 20 50 100 150 4

4. EEC 603 Microwave Engineering 3 1 0 30 20 50 100 150 4

5. EEC 604 Introduction to Electric Drives 3 1 0 15 10 25 50 75 3

6. Departmental Elective-I** 3 1 0 15 10 25 50 75 3

7. AUC 001 *Human Values & Professional Ethics

2 0 0 15 10 25 50 75 -

PRACTICAL/DESIGN/DRAWING

8. EEC 654 Seminar 0 0 2 -- 50 50 - 50 1

9. EEC 651 Communication Lab – II 0 0 2 -- 20 20 30 50 1

10. EEC 653 CAD of Electronics Lab 0 0 2 -- 20 20 30 50 1

11. EEC 652 DSP Lab 0 0 2 -- 20 20 30 50 1

12. GP 601 General Proficiency - - - - - 50 - 50 1

Total 18 5 8 150 210 410 590 1000 26

LIST OF ELECTIVES:

Elective – I**

1. EEC 011 Analog signal processing 2. EEC 012 Data Structures 3. EEC 013 Advance Semiconductor Devices 4. EIC 601 Microcontroller

Page 226: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

Syllabus fifth semester: THEORY SUBJECTS

(Revised)

EEC 501 INTEGRATED CIRCUITS

3 1 0

Unit Topic Chapter/

Section

From Text [1]

Proposed

number of

Lectures I Analog Integrated circuit Design: an overview: Current Mirrors using BJT

and MOSFETs, Simple current Mirror, Base current compensated current Mirror, Wilson and Improved Wilson Current Mirrors, Widlar Current source and Cascode current Mirror

The 741 IC Op-Amp: Bias circuit, short circuit protection circuitry, the input

stage, the second stage, the output stage, and device parameters; DC Analysis

of

741: Small Signal Analysis of input stage, the second stage, the output stage; Gain, Frequency Response of 741; a Simplified Model, Slew Rate, Relationship Between ft and SR

5.6, 6.4, 6.5

10.1-10.6

8 II Linear Applications of IC op-amps: An Overview of Op-Amp (ideal and non

ideal) based Circuits V-I and I-V converters, generalized Impedance converter,

simulation of inductors

Filters: First and second order LP, HP, BP BS and All pass active filters, KHN,

Tow-Thomas and State Variable Biquad filters; Sinusoidal oscillators

2.2-2.7

11.4, 11.7,

12.1, 12.2

8 III Digital Integrated Circuit Design-An Overview: CMOS Logic Gate Circuits:

Basic Structure CMOS realization of Inverters, AND, OR, NAND and NOR Gates

Latches and Flip flops: The Latch, The SR Flip-flop, CMOS Implementation of SR Flip-flops, A Simpler CMOS Implementation of the Clocked SR Flip-flop, D Flip-flop Circuits.

13.2-13.3

13.7

8 IV Non-Linear applications of IC Op-amps: Log–Anti Log Amplifiers, Precision

Rectifiers, Peak Detectors, Simple and Hold Circuits, Analog Multipliers and

their applications. Op-amp as a comparator, Zero crossing detector, Schmitt

Trigger, Astable multivibrator, Monostable multivibrator, Generation of

Triangular Waveforms

12.1, 12.4,

12.5 12.9

8

V D/A and A/D converters

Integrated Circuit Timer: The 555 Circuit, Implementing a Monostable

Multivibrator Using the 555 IC, Astable Multivibrator Using the 555 IC.

Phase locked loops (PLL): Ex-OR Gates and multipliers as phase detectors,

Block Diagram of IC PLL, Working of PLL and Applications of PLL.

10.9-10.11

12.7

6.5 of Ref

[2]

8

Text Book:

[1] Sedra and Smith, “Microelectronic Circuits”, 4th Edition, Oxford University Press.

Page 227: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

Reference Books:

[2] Michael Jacob, `Applications and Design with Analog Integrated Circuits’, PHI, 2nd Edn, 2006 [3] Jacob Milliman and Arvin Grabel, “Microelectronics”, 2nd Edition, TMH, 2008.

EEC 502 PRINCIPLES OF COMMUNICATIONS 3 1 0 Unit Topic Chapter/

Section

Proposed

number of

Lectures I Introduction: Overview of Communication system, Communication channels

Need for modulation, Baseband and Pass band signals, Amplitude Modulation:

Double side band with Carrier (DSB-C), Double side band without Carrier, Single

Side Band Modulation, DSB-SC, DSB-C, SSB Modulators and Demodulators,

Vestigial Side Band (VSB), Quadrature Amplitude Modulator, Radio Transmitter

and Receiver.

1.1,

3.1, 3.2, 3.3,

3.4, 3.5, 3.6

10 II Angle Modulation, Tone Modulated FM Signal, Arbitrary Modulated FM

Signal, FM Modulators and Demodulators, Approximately Compatible SSB

Systems, Stereophonic FM Broadcasting, Examples Based on Mat Lab.

4.1-4.6

8 III Pulse Modulation Digital Transmission of Analog Signals: Sampling Theorem

and its applications, Pulse Amplitude Modulation (PAM), Pulse Width

Modulation, Pulse Position Modulation. Their generation and Demodulation,

Digital Representation of Analog Signals, Pulse Code Modulation (PCM), PCM

System, Issues in digital transmission: Frequency Division Multiplexing, Time

Division Multiplexing ,Line Coding and their Power Spectral density, T1 Digital

System, TDM Hierarchy,.

5.1-5.5

8

IV Differential Pulse Code Modulation, Delta Modulation. Adaptive Delta

Modulation, Voice Coders, Sources of Noises, Frequency domain representation of Noise, Super position of Noises, Linear filtering of Noises ,Mathematical Representation of Noise,

5.6-5.7

7.1-7.5

7 V Noise in Amplitude Modulation: Analysis ,Signal to Noise Ratio, Figure of

Merit ,Noise in Frequency Modulation: Pre emphasis ,De Emphasis and SNR Improvement, Phase Locked Loops Analog and Digital

8.1-8.3

9.1, 9.2,9.4,

9.6, 10.1-

10.3

7 Text Book:

1. H. Taube, D L Schilling, Goutom Saha, “Principles of Communication”, 3rd Edition, Tata McGraw-Hill

Publishing Company Ltd. Reference Books:

1. B.P. Lathi, “Modern Digital and Analog communication Systems”, 3rd Edition, Oxford University Press,

2009.

1. Simon Haykin, “Communication Systems”,4th Edition, Wiley India.

2. H. P. HSU & D. Mitra , “Analog and Digital Communications”, 2nd Edition, Tata McGraw-Hill Publishing

Company Ltd.

Page 228: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

EEC- 503 MICROPROCESSORS 3 1 0 Unit Topic Chapter/

Section

Proposed

number of

Lectures I Introduction to Microprocessor, Microprocessor architecture and its

operations,

Memory, Input & output devices, Logic devices for interfacing, The 8085 MPU,

Example of an 8085 based computer, Memory interfacing.

1.1, 3.1, 3.2,

3.3, 3.5, 4.1,

4.2, 4.3,

8 II Basic interfacing concepts, Interfacing output displays, Interfacing input

devices, Memory mapped I/O, Flow chart symbols, Data Transfer operations,

Arithmetic operations, Logic Operations, Branch operation, Writing assembly language programs, Programming techniques: looping, counting and indexing.

5.1, 5.2, 5.3,

5.4, 6.1, 6.2,

6.3, 6.4,

6.5, 7.1

8 III Additional data transfer and 16 bit arithmetic instruction, Arithmetic

operations related to memory, Logic operation: rotate, compare, counter and time delays,

Illustrative program: Hexadecimal counter, zero-to-nine, (module ten) counter, generating pulse waveforms, debugging counter and time delay, Stack,

Subroutine, Restart, Conditional call and return instructions, Advance

subroutine concepts, The 8085 Interrupts, 8085 vector interrupts.

7.2, 7.3, 7.4,

7.5, 8.1, 8.2,

8.3, 8.4, 8.5,

9.1, 9.2, 9.3,

9.4, 12.1,

12.2

8 IV Program: BCD-to-Binary conversion, Binary-to-BCD conversion, BCD-to-

Seven segment code converter, Binary-to-ASCII and ASCII-to-Binary code conversion, BCD Addition, BCD Subtraction, Introduction to Advance instructions and Application, Multiplication, Subtraction with carry.

10.1, 10.2,

10.3, 10.4,

10.5, 10.6,

10.7, 10.8,

10.9

8

V 8255 Programmable peripheral interface, interfacing keyboard and seven

segment display, 8254 (8253) programmable interval timer, 8259A programmable interrupt controller, Direct Memory Access and 8237 DMA controller.

Introduction to 8086 microprocessor: Architecture of 8086 (Pin diagram,

Functional block diagram, Register organization).

15.1, 15.2,

15.4, 15.5,

15.6,

2.11*, 2.12*

8 Text Book:

1. Ramesh Gaonkar, “Microprocessor Architecture, Programming, and Applications with the 8085”, 5th Edition, Penram International Publication (India) Pvt. Ltd.

2. * Douglas V. Hall, “Microprocessors and Interfacing”, 2nd Edition, TMH, 2006. Reference Book: Kenneth L. Short, “Microprocessors and programmed Logic”, 2nd Ed, Pearson Education Inc.

Page 229: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

EEC 504 ANTENNA AND WAVE PROPAGATION 3 1 0

Unit Topic Chapter/ Section

Proposed

number of

Lectures I Antennas Basics

Introduction, Basic Antenna Parameters, Patterns, Beam Area (or Beam Solid

Angle)ΩA, Radiation Intensity, Beam Efficiency, Directivity D and Gain G, Directivity and Resolution, Antenna Apertures, Effective Height, The radio Communication link, Fields from Oscillating Dipole, Single-to-Noise

Ratio(SNR), Antenna Temperature, Antenna Impedance, Retarded Potential, Far

Field due to an alternating current element, Power radiated by a current

element, Field variation due to sinusoidal current distribution.

2.1 to 2.12,

2.18 to 2.20

4.3 to 4.7

8 II Point Sources and Their Arrays

Introduction, Point Source ,Power Theorem and its Application to an Isotropic

Source, Radiation Intensity, Arrays of Two Isotropic Point Sources, Non- isotropic but Similar Point Sources and the Principle of Pattern Multiplication, Pattern Synthesis by Pattern Multiplication, Linear Arrays of n Isotropic Point Sources of Equal Amplitude and Spacing, Linear Broadside Arrays with Non- uniform Amplitude Distributions. General Considerations.

Electric Dipoles, Thin Liner Antennas and Arrays of Dipoles and Apertures The Short Electric Dipole, The Fields of a Short Dipole, Radiation Resistance of Short Electric Dipole, Thin Linear Antenna, Radiation Resistance of λ/2 Antenna, Array of Two Driven λ/2 Elements: Broadside Case and End-Fire Case, Horizontal Antennas Above a Plane Ground, Vertical Antennas Above a Plane Ground, Yagi-Uda Antenna Design, Long-Wire Antennas, folded Dipole Antennas.

5.1 to 5.5

5.9 to 5.11,

5.13, 5.15,

6.2 to 6.6,

6.10, 6.11,

6.14 to 6.15,

6.16 to 6.17,

6.21

10

III The Loop Antenna. Design and its Characteristic Properties, Application of Loop

Antennas, Far Field Patterns of Circular Loop Antennas with Uniform Current, Slot Antennas, Horn Antennas, Helical Antennas, The Log-Periodic Antenna, Micro strip Antennas

6.23,6.24,7.4,

7.5,7.13,7.19,

8

7 IV Reflector Antennas

Flat Sheet Reflectors, Corner Reflectors, The Parabola-General Properties, A

comparison Between Parabolic and Corner Reflectors, The Paraboloidal Reflector, Patterns of Large Circular Apertures with Uniform Illumination, Reflector Types(summarized), Feed Methods for Parabolic Reflectors,

Antenna Measurements

Introduction, Antenna Measurement ranges, Radiation pattern Measurements, Gain and Directivity Measurements, Spectrum Analyzer

9.2,9.3,9.5 to

9.9, 9.10, 10,

11.7, 14

8 V Ground Wave Propagation

Plane Earth Reflection, Space Wave and Surface Wave,

Space Wave Propagation

Introduction, Field Strength Relation, Effects of Imperfect Earth, Effects of

Curvature of Earth,

Sky wave Propagation

Introduction structural Details of the ionosphere, Wave Propagation Mechanism,

Refraction and Reflection of Sky Waves by ionosphere, Ray Path, Critical

Frequency, MUF, LUF, OF, Virtual Height and Skip Distance, Relation

Between MUF and the Skip Distance, Multi-Hop Propagation, Wave

Characteristics

23.2 to 23.3,

24.1 to 24.4,

25.1 to 25.6,

25.8, 25.12

10 Text Book: 1- John D Krauss, Ronald J Marhefka and Ahmad S. Khan,”Antennas and Wave Propagation”, Fourth

Edition, Tata McGraw Hill, 2010 Special Indian Edition.

Page 230: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

(20)

Reference Books:

1. A .R. Harish, M. Sachidananda, “Antennas and Wave Propagation”, Oxford University Press, 2009.

2. Jordan Edwards C. and Balmain, Keith G.“Electromagnetic Waves and Radiating Systems”, PHI.

3. A. Das, Sisir K. Das, “Microwave Engineering”, Tata McGraw Hill.

Unit EIC 501 CONTROL SYSTEM I Text Book/

Chapter

Proposed

number of

Lectures I Basic Components of a control system, Feedback and its effect, types of

feedback control systems.

Block diagrams and signal flow graphs,

Modeling of Physical systems: electrical networks, mechanical systems

elements, equations of mechanical systems, sensors and encoders in

control systems, DC motors in control systems.

1.1 to 1.3

3.1 to 3.2

4.1 to 4.6

8

II State-Variable Analysis: Vector matrix representation of state equation, state

transition matrix, state-transition equation, relationship between state

equations and high-order differential equations, relationship between state

equations and transfer functions.

5.1 to 5.6

8 III Time domain Analysis of Control Systems: Time response of continuous data

systems, typical test signals for the time response of control systems, the unit

step response and time-domain specifications, Steady-State error, time

response of a first order system, transient response of a prototype second

order system

7.1 to 7.6

8 IV Stability of Linear Control Systems: Bounded-input bounded-output stability-

continuous data systems, zero-input and asymptotic stability of continuous

data systems, methods of determining stability, Routh Hurwitz criterion.

6.1 to 6.5

8

V Frequency Domain Analysis: Mr (resonant peak) and ωr (resonant frequency)

and bandwidth of the prototype Second order system, effects of adding a zero

to the forward path, effects of adding a pole to the forward path, Nyquist

stability criterion, relative stability: gain margin and phase margin, stability

analysis with the Bode plot

9.1to 9.11

10 Text Book: B.C. Kuo & Farid Golnaraghi, “Automatic Control Systems”, 8th Edition, John Wiley India, 2008. Reference Books:

1. William A. Wolovich, “Automatic Control Systems”, Oxford University Press, 2010.

2. Joseph J. Distefano III, Allen R. Stubberud, Ivan J. Williams, “Control Systems” Schaums Outlines Series, 3rd

Edition, Tata McGraw Hill, Special Indian Edition 2010.

3. I. J. Nagrath & M. Gopal, “Control System Engineering”, New Age International Publishers

Page 231: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

(21)

LABOROTARY

EEC 551 INTEGRATED CIRCUITS LAB

Objective: - To design and implement the circuits to gain knowledge on performance of the circuit and

its application. These circuits should also be simulated on Pspice.

1. Log and antilog amplifiers.

2. Voltage comparator and zero crossing detectors.

3. Second order filters using operational amplifier for– a. Low pass filter of cutoff frequency 1 KHz. b. High pass filter of frequency 12 KHz.

c. Band pass filter with unit gain of pass band from 1 KHz to 12 KHz.

4. Wien bridge oscillator using operational amplifier.

5. Determine capture range; lock in range and free running frequency of PLL.

6. Voltage regulator using operational amplifier to produce output of 12V with maximum load current of 50 mA.

7. A/D and D/A convertor.

8. Voltage to current and current to voltage convertors.

9. Function generator using operational amplifier (sine, triangular & square wave)

10. Astable and monostable multivibrator using IC 555.

EEC 552 COMMUNICATION LAB-I

1. To study DSB/ SSB amplitude modulation & determine its modulation factor & power in side bands.

2. To study amplitude demodulation by linear diode detector

3. To study frequency modulation and determine its modulation factor

4. To study PLL 565 as frequency demodulator.

5. To study sampling and reconstruction of Pulse Amplitude modulation system.

6. To study the Sensitivity, Selectivity, and Fidelity characteristics of super heterodyne receiver.

7. To study Pulse Amplitude Modulation a. using switching method

b. by sample and hold circuit

Page 232: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

(22)

8. To demodulate the obtained PAM signal by 2nd order LPF.

9. To study Pulse Width Modulation and Pulse Position Modulation.

10. To plot the radiation pattern of a Dipole, Yagi-uda and calculate its beam width.

11. To plot the radiation pattern of Horn, Parabolic & helical antenna. Also calculate beam width & element current.

12. Design and implement an FM radio receiver in 88-108 MHz.

EEC 553 MICROPROCESSOR LAB

1. Write a program using 8085 Microprocessor for Decimal, Hexadecimal addition and subtraction of two

Numbers.

2. Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.

3. To perform multiplication and division of two 8 bit numbers using 8085.

4. To find the largest and smallest number in an array of data using 8085 instruction set.

5. To write a program to arrange an array of data in ascending and descending order.

6. To convert given Hexadecimal number into its equivalent ASCII number and vice versa using 8085 instruction set.

7. To write a program to initiate 8251 and to check the transmission and reception of character.

8. To interface 8253 programmable interval timer to 8085 and verify the operation of 8253 in six different modes.

9. To interface DAC with 8085 to demonstrate the generation of square, saw tooth and triangular wave.

10. Serial communication between two 8085 through RS-232 C port.

Note :-In addition, Institutes may include two more experiments based on the expertise.

Page 233: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

(22)

1. DC SPEED CONTROL SYSTEM

EIC 551 CONTROL SYSTEM LAB

(a) To study D.C. speed control system on open loop and close loop.

(b) To study of Transient performance, another time signal is added at the input of control Circuit.

(c) To study how eddy current breaking is being disturbance rejected by close and open loop.

2. DC MOTOR POSITION CONTROL

(a) To study of potentiometer displacement constant on D.C. motor position control.

(b) To study of D. C. position control through continuous command.

(c) To study of D.C. position control through step command.

(d) To study of D.C. position control through Dynamic response.

3. AC MOTOR POSITION CONTROL

(a) To study of A.C. motor position control through continuous command.

(b) To study of error detector on A.C. motor position control through step command.

(c) To study of A.C. position control through dynamic response.

4. MAGNETIC AMPLIFIER

(a) To study Input / Output characteristic of a magnetic amplifier in mode (i) Saturable Reactor, (ii) Self

Saturable Reactor.

5. SYNCHRO TRANSMITTER / RECEIVER

(a) To study of Synchro Transmitter in term of Position v/s Phase and voltage magnitude with respect to

Rotor Voltage Magnitude/Phase.

(b) To study of remote position indication system using Synchro-transmitter/receiver.

6. PID CONTROLLER

(a) To observe open loop performance of building block and calibration of PID Controls.

(b) To study P, PI and PID controller with type 0 system with delay.

(c) To study P, PI and PID controller with type 1 system.

7. LEAD LAG COMPENSATOR

Page 234: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

(23)

(a) To study the open loop response on

compensator. (b) Close loop transient response.

8. LINEAR SYSTEM SIMULATOR (a)

Open loop response

(i) Error detector with gain, (ii) Time constant, (iii) Integrator

(b) Close loop system

(I) First order system (II) Second order system (III) Third order system

9. Introduction to MATLAB (Control System Toolbox), Implement at least any two experiment in MATLAB.

a. Different Toolboxes in MATLAB, Introduction to Control Systems Toolbox. b. Determine transpose, inverse values of given matrix.

c. Plot the pole-zero configuration in s-plane for the given transfer function.

d. Determine the transfer function for given closed loop system in block diagram representation. e. Plot unit step response of given transfer function and find peak overshoot, peak time.

f. Plot unit step response and to find rise time and delay time.

g. Plot locus of given transfer function, locate closed loop poles for different values of k.

h. Plot root locus of given transfer function and to find out S, Wd, Wn at given root & to discuss stability.

i. Plot bode plot of given transfer function.

j. Plot bode plot of given transfer function and find gain and phase margins

k. Plot Nyquist plot for given transfer function and to compare their relative stability

l. Plot the Nyquist plot for given transfer function and to discuss closed loop stability, gain and phase margin.

Page 235: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

Syllabus sixth semester: THEORY SUBJECTS

EEC 601 DIGITAL COMMUNICATIONS 3 1 0 Unit Topic Chapter/

Section

Proposed

number of

Lectures I Digital Data transmission, Line coding review, Pulse shaping, Scrambling,

Digital receivers, Eye diagram, Digital carrier system, Method of generation

and detection of coherent & non-coherent binary ASK, FSK & PSK, Differential phase shift keying, quadrature modulation techniques. (QPSK and

MSK ),M-ary Digital carrier Modulation.

7.1-7.10,

10.11

10

II Concept of Probability, Random variable, Statistical averages, Correlation,

Sum of Random Variables, Central Limit Theorem, Random Process,

Classification of Random Processes, Power spectral density, Multiple random

processes,

8.1-8.7,

9.1-9.4

8 III Performance Analysis of Digital communication system: Optimum linear

Detector for Binary polar signaling, General Binary Signaling, Coherent

Receivers for Digital Carrier Modulations, Signal Space Analysis of Optimum

Detection, Vector Decomposition of White Noise Random processes, General

Expression for Error Probability of optimum receivers,

10.1-10.7

8 IV Spread spectrum Communications: Frequency Hopping Spread

Spectrum(FHSS) systems, Direct Sequence Spread Spectrum, Code Division

Multiple Access of DSSS, Multiuser Detection, OFDM Communications

11.1-

11.7,12.7

6 V Measure of Information, Source Encoding, Error Free Communication over a

Noisy Channel capacity of a discrete and Continuous Memory less channel

Error Correcting codes: Hamming sphere, hamming distance and Hamming

bound, relation between minimum distance and error detecting and

correcting capability , Linear block codes, encoding & syndrome decoding;

Cyclic codes, encoder and decoders for systematic cycle codes; convolution

codes, code tree

& Trellis diagram, Viterbi and sequential decoding, burst error correction,

Turbo codes.

13.1-13.5,

14.1-4.4,

14.6-14.11

8 Text Book:

1. B.P. Lathi, “Modern Digital and Analog communication Systems”, 4th Edition, Oxford University Press,

2010. Reference Books:

1. H. Taub, D L Schilling, Goutom Saha, “Principles of Communication”, 3rd Edition, Tata McGraw-Hill

Publishing Company Ltd.

2. John G. Proakis, “Digital Communications”, 4th Edition, McGraw-Hill International.

3. Simon Haykin, “Communication Systems”,4th Edition, Wiley India.

4. H P HSU & D Mitra, “Analog and Digital Communications”, 2nd Edition, Tata McGraw-Hill Publishing

Company Ltd.

Page 236: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

EEC 602 DIGITAL SIGNAL PROCESSING 3 1 0 Unit Topic Chapter/ Section Proposed

number of

Lectures I Realization of Digital Systems: Introduction, direct form realization of

IIR systems, cascade realization of an IIR systems, parallel form

realization of an IIR systems, Ladder structures: continued fraction

expansion of H(z), example of continued fraction, realization of a ladder

structure, example of a ladder realization.

4.1, 4.5, 4.6,

4.7, 4.8

8

II Design of Infinite Impulse Response Digital Filters: Introduction to

Filters, Impulse Invariant Transformation, Bi-Linear Transformation, All- Pole Analog Filters: Butterworth and Chebyshev, Design of Digital Butterworth and Chebyshev Filters

5.2-5.6 8

III Finite Impulse Response Filter Design: Windowing and the

Rectangular Window, Other Commonly Used Windows, Examples of

Filter Designs Using Windows ,The Kaiser Window

6.2-6.5 8

IV Discrete Fourier Transforms: Definitions, Properties of the DFT,

Circular Convolution, Linear Convolution

7.1-7.4 8

V Fast Fourier Transform Algorithms: Introduction, Decimation –In

Time(DIT) Algorithm, Computational Efficiency, Decimation in

Frequency(DIF) Algorithm

8.1-8.4 8

Text Books: Johnny R. Johnson, “Digital Signal Processing”, PHI Learning Pvt Ltd., 2009. Reference Books:

1. John G Prokias, Dimitris G Manolakis, “Digital Signal Processing”, Pearson Education.

2. Oppenheim & Schafer, “ Digital Signal Processing” PHI

Page 237: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

EEC 603 MICROWAVE ENGINEERING 3 1 0 Unit Topic Chapter/ Section Proposed

number of

Lectures I Rectangular Wave Guide: Field Components, TE, TM Modes, Dominant

TE10 mode, Field Distribution, Power, Attenuation. Circular Waveguides: TE, TM modes. Wave Velocities, Micro strip Transmission line (TL), Coupled TL, Strip TL, Coupled Strip Line, Coplanar TL, Microwave Cavities,

4.1-4-3,11.0-

11.3

8

II Scattering Matrix , Passive microwave devices: Microwave Hybrid

Circuits. , Terminations, Attenuators, Phase Shifters, Directional Couplers: Two Hole directional couplers, S Matrix of a Directional coupler, Hybrid Couplers, Microwave Propagation in ferrites, Faraday

Rotation, Isolators, Circulators. S parameter analysis of all components.

4.4-4.6

8

III Microwave Tubes: Limitation of Conventional Active Devices at

Microwave frequency, Two Cavity Klystron, Reflex Klystron,

Magnetron, Traveling Wave Tube, Backward Wave Oscillators: Their

Schematic, Principle of Operation, Performance Characteristic and their

applications.

9.0-9.5, 10.0-

10.2

8

IV Solid state amplifiers and oscillators: Microwave Bipolar Transistor,

Microwave tunnel diode, Microwave Field-effect Transistor, Transferred electron devices, Avalanche Transit –time devices: IMPATT Diode, TRAPPAT Diode,

5.0-

5.1,5.3,6.0-

6.1,7.0-7.3

10 V Microwave Measurements: General set up of a microwave test

bench,

Slotted line carriage, VSWR Meter, microwave power measurements techniques, Crystal Detector, frequency measurement, wavelength measurements, Impedance and Refection coefficient, VSWR, Insertion and attenuation loss measurements, measurement of antenna characteristics, microwave link design.

14.1-14.4

(Book 2)

8 Text Books:

1. Samuel Y. Liao, “Microwave Devices and Circuits”, 3rd Ed, Pearson Education.

2. A. Das and S. K. Das, “Microwave Engineering”, TMH. Reference Books:

1. R.E Collin, “Foundation for Microwave Engineering “, 2nd Ed., John Wiley India.

Page 238: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

EEC 604 INTRODUCTION TO ELECTRIC DRIVES 3 1 0 Unit Topic Chapter/

Section

Proposed

number of

Lectures I Thyristor: Principles and Characteristics

Gate Triggering Circuits

1.1-1.16

2.1-2.10

8 II Phase Controlled Rectifiers

Phase Angle Control, Single-phase Half-wave Controlled Rectifier (One quadrant), Single-phase Full-wave Controlled Rectifier (Two quadrant

Converters),Performance Factors of Line-commutated Converters, The

Performance Measures of Two-pulse Converters, Three phase Controlled

Converters

Inverters: Introduction Thyristor Inverter Classification, Series Inverters, Parallel Inverter, Three-phase Bridge Inverters, Three-phase Bridge Inverter with Input-circuit Commutation.

4.2 – 4.4

4.6 – 4.8

5.1 – 5.3, 5.5.

5.7-5.8

8 III Choppers: Introduction, Principle of Chopper Operation, Control

Strategies, step-up/Down Chopper, Jones

Chopper

Cycloconverters: Introduction, The Basic Principle of Operation, Single-phase to Single-phase Cycloconverter, Three-phase half-wave Cycloconverters, Cycloconverter Circuits for Three-phase Output

6.2 – 6.5, 6.8

7.1 – 7.5

8

IV Control of D.C. Drives: Introduction, Basic Machine Equations, Breaking Modes, Schemes for D.C. Motor Speed Control, Single-phase

Separately Excited Drives, Braking Operation of Rectifier Controlled

Separately excited Motor, Single-phase Separately Excited Drives, Power Factor Improvement, Three-phase Separately Excited Drives, D.C. Chopper Drives

12.1 – 12.10

8 V Control of A.C. Drives: Introduction, basic Principle of Operation,

Squirrel-cage Rotor Design, Speed Control of Induction Motors, stator Voltage Control, Variable Frequency control, Rotor Resistance Control, Slip Power Recovery Scheme, Synchronous Motor Drives

13.1 – 13.9

8 Text Book: M.D. Singh & K. Khan chandani, “Power Electronics”, Tata McGraw Hill 1998 Edition Reference Books: M H Rashid, “Power Electronics”, 3rd Ed., Pearson Education, 2009.

Page 239: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

Departmental Electives I:

EEC- 011 ANALOG SIGNAL PROCESSING 3 1 0 Unit Topic Chapter/ Section Proposed

number of

Lectures I Liner Analog Functions: Addition , Subtraction, Differentiation,

Integration, Impedance Transformation and Conversion

4.1-4.5

Text book 1

8

II AC/DC Signal Conversion: Signal Rectification, Peak and Valley

Detection, rms to dc Conversion, Amplitude Demodulation

5.2-5.5

Text book 1

8

III Other Nonlinear Analog Functions: Voltage Comparison, Voltage

Limiting(Clipping), Logarithmic Amplifiers, Analog Multipliers, Analog

Dividers

6.1-6.6

Text book 1

8

IV Continuous time op-amp RC filters: Second order LP, HP, BP, Notch and

AP transfer functions, Kirwin-Huelsman-Newcomb biquad, Ackerberg- Mosberg Circuits, Tow-Thomas biquad, compensated integrators, Sallenkey Circuits, Generalized convertor, GIC biquads.

4.2, 4.3, 4.4,

4.5

Text book 2

8

V Transconductance-C filters: Transconductance cells, realization of resistors, integrators, amplifiers, summers and gyrators, first order and

second order sections, Ladder design.

16.1, 16.2,

16.3, 16.4.2

Text book 2

8

Text Books:

1. Ramon Pallas-Areny, John G. Webster, “Analog Signal Processing”, John Wiley& Sons

2. R. Schaumann and M. E. Valkenberg, “Design of Analog Circuits”, Oxford University Press, 2001.

Page 240: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

EEC 012 DATA STRUCTURE 3 1 0 Unit Topic Chapter/

Section

Proposed

number of

Lectures I Introduction: Basic Terminology, Elementary Data Organization,

Algorithm, Efficiency of an Algorithm, Time and Space Complexity, Asymptotic notations: Big-Oh, time-Space trade-off, Abstract Data Types (ADT)

Arrays: Definition, Single and Multidimensional Arrays, Representation of Arrays: Row major Order, and Column Major Order, Application of arrays, Sparse Matrices and their representations.

Linked lists: Array Implementation and Dynamic Implementation of Singly

Linked Lists, Doubly Linked List, Circularly Linked List, Operations on a Linked

List, Insertion, Deletion, Traversal, Polynomial Representation and Addition,

Generalized Linked List.

8

II Stacks: Abstract Data Type, Primitive Stack operations: Push & Pop, Array and Linked Implementation of Stack in C, Application of stack: Prefix and

Postfix Expressions, Evaluation of Postfix expression, Recursion, Tower of

Hanoi Problem, Simulating Recursion, Principles of recursion, Tail recursion, Removal of recursion.

Queues: Operations of Queue: Create, Add, Delete, Full and Empty, Circular queues, Array and linked implementation of queues in C, Dequeue and

Priority Queue

8

III Trees: Basic terminology, Binary Trees, Binary Tree Representation: Array

Representation and Dynamic Representation, Complete Binary Tree,

Algebraic Expressions, Extended Binary Trees, Array and Linked

Representation of Binary trees, Tree Traversal algorithms: In-order, Pre-order

and Post-order, Threaded Binary trees, Traversing Threaded Binary trees,

Huffman algorithm.

8

IV Graphs: Terminology, Sequential and linked Representations, of Graphs:

Adjacency Matrices, Adjacency List, Adjacency Multi list, Graph Traversal: Depth First Search and Breadth first Search, Connected Component, Spanning Trees, Minimum Cost Spanning Trees: Prims and Kurskal algorithm, Transitive Closure and Shortest Path algorithm: Warshal Algorithm and Dijikstra Algorithm, Introduction to Activity Networks.

8

V Searching: Sequential search, Binary search, Comparison and Analysis,

Internal Sorting: Insertion Sort, selection, Bubble Sort, Quick Sort, Two Way Merge Sort, Heap Sort, Radix Sort, Practical consideration for Internal Sorting.

Search Trees: Binary Search Trees (BST), Insertion and Deletion in BST,

Complexity of search Algorithm, AVL trees, Introduction to m-way Search

Trees, B Trees & B+ Trees Storage Management: Garbage Collection and

Compaction.

8

Text Book:

1. Aaron M. Tenenbaum, Yedidyah Langsam and Moshe J. Augenstein “Data structures Using C and

C++”, PHI

2. Lipschutz, “Data Structures” Schaum’s Outline Series, TMH

Reference Books:

1. Horowitz and Sahani, “Fundamentals of Data Structures”, Galgotia Publication

Page 241: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

EEC 013 ADVANCE SEMICONDUCTOR DEVICES 3 1 0 Unit Topic Chapter/ Section Proposed

number of

Lectures I Review of Fundamentals of Semiconductors:

Semiconductor Materials and their properties

Carrier Transport in Semiconductors

Excess Carriers in Semiconductor

3.1 to 3.8

4.1 to 4.9

5.1 to 5.7

10 II Junctions and Interfaces:

Description of p-n junction, Action, The Abrupt Junction, Example of an

Abrupt Junction, The linearly graded Junction.

The Ideal Diode Model, Real Diodes, Temperature Dependence of I-V

Characteristics, High Level Injection Effects, Example of Diodes.

Description of Breakdown Mechanism, Zener and Avalanche

Breakdown in p-n Junction

6.1 to 6.4

7.1 to 7.5

8.1,8.3,8.5,8.7

8 III Majority Carrier Diodes:

The Tunnel Diode, The Backward Diode, The Schottkey Barrier Diode,

Ohmic Contacts Heterojunctions.

10.1 to 10.5

6

IV Microwave Diodes:

The Varactor Diode, The p-i-n Diode, The IMPATT Diode, TRAPATT

Diode, The BARITT Diode, Transferred Electron Devices

Optoelectronic Devices:

The Solar Cell, Photo detectors, Light Emitting Diodes, Semiconductor

Lasers.

11.1 to 11.6

12.1 to 12.4

8

V Metal Semiconductor Field Effect Transistors:

Basic Types of MESFETs, Models for I-V Characteristics of Short –

Channel MESFETs, High Frequency Performance, MESFETs Structures.

MOS Transistors and Charge Coupled Devices:

Basic Structures and the Operating Principle, I-V Characteristics, Short-

Channel Effects, MOSFET Structures, Charge Coupled Devices.

15.4 to 15.7

16.4 to 16.9

8 Text Book: M.S. Tyagi, “Introduction To Semiconductor Materials And Devices”, John Willy-India Pvt. Ltd. Reference Books:

1. S. M. Sze, “Physics of Semiconductor Devices”, 2nd Edition, John Willy-India Pvt. Ltd.

2. B. G. Streetman and S. Banerjee, “Solid state electronics devices”, 5th Edition, PHI.

Page 242: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

EIC 601 MICROCONTROLLER 3 1 0 Unit Topic Chapter/

Section

Proposed

number of

Lectures

I Introduction , Microcontrollers and Embedded processors, Overview of

the 8051, Inside the 8051, Addressing modes,

0.3, 1.1, 1.2,

2.1, 5.1-5.4,

6

II Introduction to 8051 assembly programming, Assembling and running

an 8051 program, The program counter and ROM space in the 8051,

8051 data types and directives, 8051 flag bits and the PSW register,

8051 register banks and stack, 8051 I/O programming, I/O bit manipulation programming.

2.2, 2.3, 2.4,

2.5, 2.6, 2.7,

4.1, 4.2

8

III Programming the 8051 timers, Counter programming, Basics of serial

communications, 8051 connection to RS-232, 8051 serial port

programming assembly, 8051 interrupts, Programming timer

interrupts, programming external hardware interrupts, programming

the Serial communication interrupts, Interrupts priority in the 8051,

9.1, 9.2,

10.1, 10.2,

10.3, 11.1,

11.2, 11.3,

11.4, 11.5

10

IV Interfacing with 8051: Memory address decoding 8031/ 51 interfacing

with external ROM, 8051 data memory space, LCD, Keyboard, Parallel and Serial ADC, DAC interfacing, Sensor interfacing and Signal Conditioning, Stepper motor and DC motor,

14.2, 14.3,

14.4, 12.1,

12.2, 13.1,

13.2, 13.3,

17.2, 17.3,

10

V Programming the 8255 and Interfacing, Introduction to Intel 8096 and

MC68HC11 microcontroller*.

15.1, 15.2, Text Book

2: Ch. 3 & 4

6

Text Book:

1. Mazidi Ali Muhammad, Mazidi Gillispie Janice, and McKinlay Rolin D., “ The 8051 Microcontroller and Embedded Systems using Assembly and C”, Pearson, 2nd Edition.

2. Chhabra Bhupendra Singh, “Microcontrollers & its Applications” Dhanpat Rai Publishing Company Reference Book:

1. Ayala Kenneth, “The 8051 Microcontroller”, Cengage Learning, 3rd Edition

2. Shah Satish, “ 8051 Microcontrollers MCS 51 Family and its variants”, Oxford

3. Ghoshal Subrata, “ 8051 Microcontroller Internals, Instructions, Programming and Interfacing” Pearson

Page 243: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

LABOROTARY

EEC 651 COMMUNICATION LAB – II

1. To construct a triangular wave with the help of Fundamental Frequency and its Harmonic component.

2. To construct a Square wave with the help of Fundamental Frequency and its Harmonic component.

3. Study of Pulse code modulation (PCM) and its demodulation using Bread Board.

4. Study of delta modulation and demodulation and observe effect of slope overload.

5. Study of pulse data coding techniques for NRZ formats.

6. Study of Data decoding techniques for NRZ formats.

7. Study of Manchester coding and Decoding.

8. Study of Amplitude shift keying modulator and demodulator.

9. Study of Frequency shift keying modulator and demodulator.

10. Study of Phase shift keying modulator and demodulator

11 Study of single bit error detection and correction using Hamming code.

12 Measuring the input impedance and Attenuation of a given Transmission Line

EEC-652 DIGITAL SIGNAL PROCESSING LAB

1. With the help of Fourier series, make a square wave from sine wave and cosine waves. Find out coefficient values.

2. Evaluate 4 point DFT of and IDFT of x(n) = 1, 0 ≤ n ≤ 3; 0 elsewhere.

3. Implement the FIR Filters for 2 KHz cutoff frequency and 2 KHz bandwidth for band pass filter.

4. Design FIR filter using Fourier series expansion method.

5. Implement IIR low pass filter for a 4 KHz cutoff frequency and compare it the FIR filter with the same type use

chirp as input signal.

6. Verify Blackman and Hamming windowing techniques for square wave as an input which window will give good results.

7. Implement the filter functions.

8. Generate DTMF sequence 1234567890*# and observe its spectrogram.

9. Generate an Amplitude Modulation having side low frequencies 1200 Hz and 800 Hz. Observe and verify the

theoretical FFT characteristics with the observed ones.

10. Generate Frequency Modulation having carrier frequencies 1 KHz and modulating frequency 200 Hz with the modulation index of 0.7. Observe and verify the theoretical FFT characteristics with the observed ones.

11. Generate an FSK wave form for transmitting the digital data of the given bit sequence. Predict and verify the FFT

for the same one.

Page 244: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

12. To study the circular convolution.

EEC-553 CAD OF ELECTRONICS LAB

PSPICE Experiments

1. (a) Transient Analysis of BJT inverter using step input.

(b)DC Analysis (VTC) of BJT inverter with and without parameters.

2. (a) Transient Analysis of NMOS inverter using step input. (b)

Transient Analysis of NMOS inverter using pulse input.

(c) DC Analysis (VTC) of NMOS inverter with and without parameters.

3. (a) Analysis of CMOS inverter using step input.

(b) Transient Analysis of CMOS inverter using step input with parameters. (c) Transient Analysis of CMOS inverter using pulse input.

(d) Transient Analysis of CMOS inverter using pulse input with parameters. (e) DC Analysis (VTC) of CMOS inverter with and without parameters.

4. Transient & DC Analysis of NOR Gate inverter.

5. Transient & DC Analysis of NAND Gate. VHDL Experiments

1. Synthesis and simulation of Full Adder.

2. Synthesis and Simulation of Full Subtractor.

3. Synthesis and Simulation of 3 X 8 Decoder.

4. Synthesis and Simulation of 8 X 1 Multiplexer.

5. Synthesis and Simulation of 9 bit odd parity generator.

6. Synthesis and Simulation of Flip Flop (D, and T).

Page 245: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

Study and Evaluation Scheme B. Tech. in Electronics & Communication Engineering

[Effective from the session 2011-12]

YEAR 4th, SEMESTER-VII

S. No.

Course

Code

SUBJECT

PERIODS

Evaluation Scheme

Subject

Total

Cre

dit

SESSIONAL

EXAM.

ES

E L T P CT TA Tota

l THEORY SUBJECTS

1. EOE 07* Open Elective-I** 3 1 0 30 20 50 100 150 4

2. EOE 02* Departmental Elective-II 3 1 0 30 20 50 100 150 4

3. EEC 701 Optical Communication 3 1 0 30 20 50 100 150 4

4. EEC 702 Data Communication Networks 3 1 0 30 20 50 100 150 4

5. EEC 703 VLSI Design 3 1 0 30 20 50 100 150 4

6. AUC

001

*Human Values & Professional

Ethics

2 0 0 15 10 25 50 75 -

PRACTICAL/DESIGN/DRAWING

7. EEC 751 Microwave & Fiber Optic Lab 0 0 2 - 20 20 30 50 1

8. EEC 752 Electronics Circuit Design Lab 0 0 3 - 50 50 - 50 2

9. EEC 753 Industrial Training Viva-Voce 0 0 2 - 20 20 30 50 1

10. EEC 754 Project 0 0 2 - 50 50 - 50 1

11. GP 701 General Proficiency - - - - - 50 - 50 1

Total 15 5 9 150 240 440 560 1000 26

** Open Electives-I

EOE-071 Entrepreneurship Development

EOE-072 Quality Management

EOE-073 Operation Research

EOE-074 Introduction to Biotechnology

EOE-075 Micro and smart syste

Page 246: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

1. EEC 031 Optical Networks 2. EEC 032 Digital System Design using VHDL 3. EEC 033 Speech Processing 4. EEC 034 Integrated Circuit Technology 5. EEC 035 Introduction to RADAR systems

YEAR 4th, SEMESTER-VIII

S. No.

Course

Code

SUBJECT

PERIODS

Evaluation Scheme

Subject

Total

Cre

dit

SESSIONAL

EXAM.

ES

E L T P CT TA Tota

l THEORY SUBJECTS

1. EOE 08* Open Elective-II** 3 1 0 30 20 50 100 150 4

2. EEC 03* Departmental Elective-III 3 1 0 30 20 50 100 150 4

3. EEC 801 Wireless & Mobile

Communication

3 1 0 30 20 50 100 150 4

4. EEC 802 Electronics Switching 3 1 0 30 20 50 100 150 3

5. AUC 001 *Human Values &

Professional Ethics

2 0 0 15 10 25 50 75 -

PRACTICAL/DESIGN/DRAWING

6. EEC 851 Project 0 0 12 - 100 100 250 350 8

7. GP 801 General Proficiency - - - - - 50 - 50 1

Total 12 4 12 120 180 350 650 1000 24

** Open Electives-II

EOE-081 Non Conventional Energy Resources

EOE-082 Nonlinear Dynamic system

EOE-083 Product Development

EOE-084 Automation and Robotics

LIST OF ELECTIVES:

Elective – I

1. EEC 011 Analog Signal Processing 2. EEC 012 Data Structure 3. EEC 013 Advance Semiconductor Devices 4. EEC 014 Microcontrollers

Elective – II

1. EEC 021 Satellite Communication 2. EEC 022 Digital Image Processing 3. EEC 023 ANN 4. EEC 024 Filter Design

Elective – I

Page 247: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

SYLLABUS

EEC 701 OPTICAL COMMUNICATION 3 1 0

UNIT TOPICS LECTURES I Overview of optical fiber communication-

The general system, advantages of optical fiber communications. Optical fiber

wave guides- Introduction, Ray theory transmission, Optical fiber Modes and

configuration, Mode theory for circular Waveguides, Step Index fibers,

Graded Index fibers.

Single mode fibers- Cut off wavelength, Mode Field Diameter, Effective

Refractive Index. Fiber Material and its Fabrication Techniques

8

II Signal distortion in optical fibers- Attenuation, Absorption, Scattering and

Bending losses, Core and Cladding losses. Information capacity

determination, Group delay, Attenuation Measurements Techniques,

Types of Dispersion - Material dispersion, Wave-guide dispersion,

Polarization mode dispersion, Intermodal dispersion. Pulse broadening.

Overall fiber dispersion in Multi mode and Single mode fibers, Fiber

dispersion measurement techniques, Non linear effects.

Optical fiber Connectors: Joints, Couplers and Isolators.

8

III Optical sources- LEDs, Structures, Materials, Quantum efficiency, Power,

Modulation, Power bandwidth

product.

Laser Diodes- Basic concepts, Classifications, Semiconductor injection Laser:

Modes, Threshold conditions, External quantum efficiency, Laser diode rate

equations, resonant frequencies, reliability of LED & ILD

8

IV Source to fiber power launching - Output patterns, Power coupling, Power

launching, Equilibrium Numerical Aperture, Laser diode to fiber coupling.

Optical detectors- Physical principles of PIN and APD, Detector response

time, Temperature effect on Avalanche gain, Comparison of Photo detectors.

Optical receiver operation- Fundamental receiver operation, Digital signal

transmission, error sources, Receiver configuration, Digital receiver

performance, Probability of error, Quantum limit, Analog receivers

8

V Link Design: Point to Point Links, Power Penalities, Error

control,Multichannel Transmission Techniques, WDM concepts and

component overview,

OTDR and optical Power meter

8

TEXT BOOKS: 1. John M. Senior, “Optical Fiber Communications”, PEARSON, 3rd Edition, 2010. 2. Gerd Keiser, “Optical Fiber Communications”, TMH, 4th Edition, 2008.

REFERENCE BOOKS 1. Govind P. Agrawal, “Fiber Optic Communication Systems”, John Wiley, 3rd Edition, 2004. 2. Joseph C. Plais, “Fiber Optic Communication”, Pearson Education, 4th Ed, 2004.

Page 248: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

EEC 702 DATA COMMUNICATION NETWORKS 3 1 0

Unit Topic Lectures I Introduction to Networks & Data Communications

The Internet, Protocols & Standards, Layered Tasks, OSI Model, TCP / IP,

Addressing, Line Coding Review, Transmission Media: Guided and

unguided Media Review.

8

II Switching: Datagram Networks, Virtual Circuit Networks, Structure of a

switch ,Ethernet Physical Layer, Data Link Layer: Error detection and

Correction Data Link Control: Framing, Flow and Error Control Protocols,

Noiseless Channel and Noisy Channel Protocol, HDLC, Point-to-Point

Protocol

8

III Multiple Access : RANDOH, CDMA, CSMA/CD, CSMA/CA, Controlled

Access, Channelization

Wired LANs: IEEE Standards, Standard Ethernet, Fast Ethernet, Gigabit

Ethernet, Wireless LAN

IEEE 802.11, Bluetooth IEEE 802.16

8

IV Network Layer : Design Issues. Routing Algorithms. Congestion control

Algorithms.IPV4 Addresses, Connecting Devices, Virtual LAN IPV6

Addresses, Internet Protocol, Hardware Addressing versus IP Addressing, IP Data Gram

8

V Transport Layer Protocol : UDP and TCP, ATM

ATM, Cryptography, Network Security

8

Text Books:

1. B. A. Forouzan, “Data Communications and Networking”, MGH, 4th ed. 2007

Reference Books:

1. A. S. Tanenbaum, “Computer Networks”, PHI.

2. W. Stallings, “Data and Computer Communication”, PHI.

Page 249: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

EEC 703 VLSI DESIGN 3 1 0

Unit

Topic

Lectures I Introduction: Overview of VLSI Design Methodologies, VLSI Design Flow,

Design Hierarchy, Concepts of Regularity, Modularity and Locality.

MOSFET Fabrication: Fabrication process flow, NMOS and CMOS

fabrication, layout design rules, stick diagram and mask layout design.

MOS Transistor : MOS Structure, The MOS System under external bias,

Operation of MOSFET, MOSFET - Current /Voltage Characteristics, Scaling

and Small geometry effects and capacitances

8

II MOS Inverters: Introduction, Resistive Load Inverter, Inverters with n-type

MOSFET load, CMOS Inverter.

MOS Inverters - Switching Characteristics: Introduction, Delay – Time

Definitions, Calculation of Delay Times, and Inverter Design with Delay

Constraints.

8 III Combinational MOS Logic Circuits: Introduction, MOS logic circuits with

depletion NMOS Loads, CMOS logic circuits, complex logic circuits, CMOS

transmission gates (pass

gates)

Sequential MOS Logic Circuits: Introduction, behaviour bistable elements,

SR latch circuits, clocked latch and FF circuits, CMOS D latch and edge

triggered FF.

8

IV Dynamic logic circuits: Introduction, basic principle of pass transistor

circuits, synchronous dynamic circuit techniques, dynamic CMOS circuit

techniques, domino CMOS logic.

Semiconductor memories: Introduction, DRAM, SRAM, ROM, flash memory.

8 V Low – Power CMOS Logic Circuits: Introduction, Overview of Power

Consumption, Low – Power Design through voltage scaling, Estimation and

Optimization of switching activity, Reduction of Switched Capacitance and

Adiabatic Logic Circuits.

Design for Testability: Introduction, Fault Types and Models, Controllability

and Observability, Ad Hoc Testable Design Techniques, Scan Based and

BIST Techniques

8

Text Book:

1. Sung-Mo Kang & Yosuf Leblebici, “CMOS Digital Integrated Circuits: Analysis &

Design”, TMH, 3rd Edition.

Reference Books:

2. D. A. Pucknell and K. Eshraghian, “Basic VLSI Design: Systems and Circuits”, PHI, 3rd Ed., 1994.

3. W.Wolf, Modern VLSI Design: System on Chip, Third Edition, Pearson, 2002.

Page 250: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

ELECTIVES II

EEC 021 SATELLITE COMMUNICATIONS 3 1 0

Unit Topic Lectures I Elements of Satellite Communication. Orbital mechanics, look angle and

orbit determination, launches & launch vehicle, orbital

effects, Geostationary Orbit.

8

II Satellite subsystems, attitude and orbit control systems, TTC&M, communication subsystem, satellite antenna

Satellite link design: basic transmission theory, system noise

temperature and G/T ratio, downlink design, uplink design, satellite

systems using small earth station, design for specified C/N.

8

III Propagation effects and their impact on satellite-earth links: attenuation and depolarization, atmospheric absorption, rain, cloud and ice effects etc.

Introduction of various satellite systems: VSAT, low earth orbit and non-

geostationary,

8

IV Direct broadcast satellite television and radio, satellite navigation and the global positioning systems, GPS position location principle, GPS Receivers

and Codes, Satellite Signal Acquisition, GPS Navigation Message, GPS

Signal Levels, Timing accuracy, GPS Receiver Operation

8

V Global Mobile Satellite Systems, Antenna System for mobile satellite applications, Evolution, Antenna Requirement and Technical

Characteristics, Classification of Mobile Satellite Antenna(MSA), Low gain

omni directional Antenna, Medium gain Directional Antenna, High gain

Directional Aperture Antenna, Wire Quadrifilar Helix Antenna(WQHA) for

Hand held Terminals, Antenna Systems for Mobile Satellite Broadcasting.

8

Text/ Reference Books:

1. B. Pratt, A. Bostian, “Satellite Communications”, Wiley India.

2. D. Roddy, “Satellite Communications”, TMH, 4th Ed.

3. S. D. Ilcev, “Global Mobile Satellite Communication”, Springer

4. R. Pandya, “Mobile and Personal Communication Systems and Services ”, PHI.

Page 251: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

EEC 022 DIGITAL IMAGE PROCESSING 3 1 0

Unit Topic Lectures

I & II

Introduction: Fundamental steps in DIP, elements of DIP, Simple image model, sampling & quantization, basic relationships between

pixels, colour image model.

Image Transforms: One-dimensional & two-dimensional DFT, cosine,

sine, Hadamard, Haar, and Slant & KL transforms.

Image Enhancement: Introduction, point operations, histogram

modelling, spatial operations, Transform operations.

8

III

Image Restoration: Introduction, image observation models, Inverse & Wiener filtering, difference between enhancement & restoration

Restoration-spatial filtering, Noise reduction in frequency domain.

8

IV

Image Compression: Introduction, Pixel coding, Predictive coding, Transform coding, Inter-frame coding

8

V

Image Segmentation: Introduction, Spatial feature extraction, Transforms features, Edge detection, Boundary extraction, Segmentation techniques.

8

Text Books:

1. Rafael C. Gonzalez Richard E Woods, “Digital Image Processing”, Pearson, 3rd

Ed. 2009.

2. Anil K Jain, “Fundamentals of Digital Image Processing”, PHI.

Page 252: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

EEC 023 Artificial Neural Networks 3 1 0

Unit Topic Lectures I Introduction:Introduction and history, human brain, biological neuron,

models of neuron, signal flow graph of neuron, feedback, network

architecture, knowledge representation, Artificial intelligence and neural networks.

Learning Process:

Error correction learning, memory based learning, Hebbian learning, competitive learning, Boltzmann learning, learning with and

without teacher, learning tasks, memory and adaptation.

4

4 II Artificial neurons, Neural networks and architectures

Introduction, neuron signal function, mathematical preliminaries, Feed forward & feedback architecture.

Geometry of Binary threshold neurons and their networks Pattern recognition, convex sets and convex hu l l s , space of Boolean functions, binary neurons for pattern classification, non linear separable problems, capacity of TLN, XOR solution.

2

3

III Perceptrons and LMS Learning objective of TLN, pattern space & weight space, perceptron learning algorithm, perceptron convergence theorem, pocket algorithm, α – LMS learning, MSE error surface, steepest descent search, μ – LMS and application.

Back propagation and other learning algorithms Multilayered architecture, back propagation learning algorithm, practical

considerations, structure growing algorithms, applications of feed forward

neural networks, reinforcement learning

5

IV Statistical Pattern Recognition Bayes’ theorem, classical decisions with Bayes’ theorem, probabilistic interpretation of neuron function, interpreting neuron signals as probabilities, multilayered networks & posterior probabilities, error functions for classification problems. RBF Networks

Regularization networks, generalized RBF networks, RBF network for

solving XOR problem, comparison of RBF networks & multilayer perceptrons.

Stochastic MachinesStatistical mechanics, simulated annealing, Boltzmann

machine.

4

2

2

V Adaptive Resonance Theory Building blocks of adaptive resonance, Adaptive Resonance Theory 1. Self

Organizing Feature MAP

Introduction, Maximal eigenvector filtering, principal component analysis,

generalized learning laws, competitive learning, vector quantization, Mexican hat

networks.

8

Text Books:

1. Kumar Satish, “Neural Networks”, TMH

2. Simon Haykin, ”Neural Networks”, PHI

Page 253: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

EEC 024 FILTER DESIGN 3 1 0

Unit Topic Lectures I Review of op-amps circuits, Categorization of filters-Low-pass filter,

High-pass filter, band-pass filter, band-reject filter, Gain equalizers, and

Delay equalizers.

8

II Approximation Theory: Butterworth approximation, Chebyshev

approximation, Inverse Chebyshev approximation, Basic of sensitivity,

Frequency Transformations.

8

III Three amplifier Biquad: Basic low pass and band pass circuit,

realization of the general Biquadratic Functions, summing of four

Amplifier biquad, feed forward three amplifier biquad, Passive Ladder

structures, Inductor Substitution using Gyrator, Transformation of

elements using the FDNR. Active ladder filters. Active R filters.

10

IV Elementary transconductor building blocks, resistors, integrators, amplifiers, summers, gyrator, First and second order filters, higher order filters.

8

V Switched capacitor filters: The MOS switch, The switched capacitor,

first order building blocks, second order sections, sampled data

operation, Switched capacitor first and second order filters, Bilinear

transformation based SC filter design.

6

Text Book:

[1] Gobind Daryanani, “Principles of active network synthesis and design”,John Wiley &

Sons.

[2] R. Schaumann, M. E. Van Valkenburg, “Design of analog filters”, Oxford University

Press.

Page 254: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

EEC 751 Microwave and Optical Communication Lab

Minimum Ten Experiments to be conducted:

Part – A (Any 6 Experiments):

1. Study of Reflex Klystron Characteristics.

2 Measurement of guide wavelength and frequency of the signal in a rectangular

Waveguide using slotted line carriage in a Micro wave Bench.

3. Measurement of impedance of an unknown load connected at the output end of the slotted line carriage in a Micro wave Bench

4. Determine the S-parameter of any Three port Tee.

5 Determine the S-parameter of a Magic Tee.

6. Study various parameters of Isolator .

7. Measurement of attenuation of a attenuator and isolation, insertion loss, cross coupling of a circulator.

8 Determine coupling coefficient, Insertion loss, Directivity and Isolation coefficient of anty

Multi-Hole directional coupler.

9 To study working of MIC Components like Micro strip Line, Filter, Directional Coupler, Wilkinson Power Divider, Ring resonator & coupler, antennas & amplifies.

10. Study of waveguide horn and its radiation pattern and determination of the beam width.

11. Study radiation pattern of any two types of linear antenna.

Part – B (Any 4 Experiments):

1. To setting up fiber optic analog link.

2. Study and measurement of losses in optical fiber.

3. Study and measurement of numerical aperture of optical fiber.

4. Study and perform time division multiplexing (digital).

5. Study of framing in time division multiplexing.

6. Study of Manchester coding and decoding.

7. Study of voice coding and codec chip.

8. Study and measure characteristics of fiber optic LED’s and photo detector.

Page 255: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

EEC 752 Electronic Circuit Design

In this practical course students will carry out a design oriented project work using various

analog/ digital building blocks which they have already studied in their analog electronic/

digital electronic courses such as Electronic circuits, integrated circuits and filter design.

The project may include but not restricted to any of the following:

1. Universal op-amp based biquad

2. Universal OTA biquad

3. Amplitude control or stabilization applied to any sinusoidal oscillators

4. Op-amp/ OTA based function generator

5. Any application of log/antilog circuits

6. Any applications of analog multiplier/ divider

7. Any digital system design and its hardware implementation using TTL/ CMOS ICs

8. Any circuit idea (not studied in the course) using 555 Timer in conjunction with any

other ICs

The above must include

1. Design the circuit.

2. Make a hardware and measure various parameters.

3. Simulation in Spice of the designed circuit.

4. Comparison of measured and simulated results.

5. A report is to be made for evaluation.

Page 256: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

EEC 801 Mobile and Wireless Communication 3 1 0

Unit Topic Lectures

I Evolution of mobile radio communication fundamentals.

Large scale path loss: propagation models, reflection, diffraction,

scattering, practical link budget design using path loss model.

Small scale fading & multipath propagation and measurements,

impulse response model and parameters of multipath channels.

Small scale Multipath Measurements, Parameters of Mobile Multipath

Channels types of small scale fading.

8

II Fundamentals of equalisation, Equalisers in communication receiver,

Survey of equalisation techniques, linear equaliser, Algorithms for

Adaptive Equalization, Diversity techniques, RAKE receiver.

Characteristics of speech signals, quantisation techniques,

vocoders, linear predictive coders, Multiple Access techniques for

Wireless Communications.

8

III Cellular concepts, Frequency reuse, channel assignment strategies,

handoff strategies, interference and system capacity, improving

coverage and capacity in cellular systems.

8

IV GSM system for mobile: Services and features, System Architecture, Radio

Sub system Channel types, Frame Structure.

CDMA Digital Cellular Standard (IS 95): Frequency and Channel

specifications, Forward CDMA channel and reverse CDMA channel

8

V Introduction to Mobile Adhoc Networks, Mobile data networks, wireless

standards IMT2000, Introduction to 4G and concept of NGN.

8

Text Book:

1. T.S. Rappaport, “Wireless Communication-Principles and practice”, Pearson, Second

Edition.

2. T L Singal ,“Wireless Communications ”,McGraw Hill Publications.

3. R. Pandya, “ Mobile and personal communication system”, PHI.

Reference Books:

1. Andrea Goldsmith, “Wireless Communications”, Cambridge University press.

2. Andreas F. Molisch, “Wireless Communications”, Wiley Student Edition.

3. S. Haykin & M. Moher, “Modern wireless communication”, Pearson, 2005.

Page 257: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

EEC 802 ELECTRONIC SWITCHING 3 1 0

Unit

Topic

Text

Book/

Chapter

Lectures

I Evolution of Switching systems: Introduction: Message

switching, circuits switching, functions of a switching system,

register-translator-senders, distribution frames, crossbar

switch, a general trunking, electronic switching, Reed

electronic system, digital switching systems.

2/3 8

II Digital switching: Switching functions, space division

switching, Time division switching, two dimensional

switching, Digital cross connect systems, digital switching

in analog environment.

3/5 8

III Telecom Traffic Engineering: Network traffic load

and parameters, grade of service and blocking probability,

modelling switching systems, incoming traffic and

service time characterization, blocking models and loss

estimates, Delay systems.

1/8 8

IV Control of Switching Systems: Introduction, Call

processing functions; common control, Reliability

availability and security; Stored program control.

Signalling: Introduction, Customer line signalling, AF

junctions and trunk circuits, FDM carrier systems, PCM and

inter register signalling, Common channel signalling

principles, CCITT signalling system No. 6 and 7, Digital

customer line signalling.

2/7

2/8

8

V Packet Switching: Packets formats, statistical multiplexing,

routing control, dynamic, virtual path circuit and fixed path

routing, flow control, X.25 protocol, frame relay, TCP/IP,

ATM cell, ATM service categories, ATM switching, ATM

memory switch, space memory switch, memory-space,

memory-space-memory switch, Banyan network switch.

3/10 8

Text Books:

1. Thiagarajan Viswanathan, “Telecommunication switching System and

networks”, PHI.

2. J.E. Flood, “Telecommunication switching, Traffic and Networks”, Pearson education.

rd

3. J.C. Bellamy, “Digital Telephony”, John Wiley, 3 Ed.

Page 258: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

ELECTIVE III

EEC 031 OPTICAL NETWORKS 3 1 0 Unit Topic Lectures

I Introduction to Optical Networks- Principles and Challenges and its

Generation, Characteristics of Optical Fiber in non linear region ,Optical

Packet Switching, Transmission Basics, Multiplexers & Filters,

8

II Optical Amplifiers ,Tunable Lasers, Switches, Wavelength Converters.

Sub-Carrier Modulation and Multiplexing,Spectral efficiency,Crosstalk,Introduction of Soliton systems.

8

III SONET/SDH: Multiplexing, SONET/ SDH Layers,

Frame Structure, Physical Layer, Elements of a SONET/SDH Infrastructure, Ethernet.

Optical Transport Network, Generic framing Procedure, IP routing and

forwarding and QOS.

WDM Network Elements

Optical Line Terminals, Optical Line Amplifiers,

Optical Add/ Drop Multiplexers, Optical Cross

Connects.

8

IV WDM Network Design

Cost Trade-offs, Light path Topology Design, and

Routing and wavelength assignment problems, Dimensioning

Wavelength Routing Networks, Network Survivability

Basic Concepts, Protection in SONET/SDH,

Protection in client layer, Optical Layer Protection, Different Schemes,

Interworking between Layers

Access Networks

Network Architecture Overview, Enhanced HFC,

FTTC, PON evolution

8

V Optical Switching

OTDM, Synchronization, Header Processing,

Buffering, Burst Switching.

Deployment Considerations- SONET/SDH core Network

Text Books:

1. R. Ramaswami, & K. N. Sivarajan, “Optical Networks a Practical perspective”, Morgan Kaufmann Publishers, 3rd Ed.

2. U. Black, “Optical Networks: Third Generation Transport Systems”/ Pearson

Educations

Reference Books:

1. Biswanath Mukherjee “Optical WDM Networks” Springer Pub 2006.

Page 259: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

EEC 032 DIGITAL SYSTEM DESIGN USING VHDL 3 1 0 Unit Topic Lectures

I Introduction to VHDL, reserve words, structures, modeling, objects, data

type and operators, sequential statements and processes,

sequential modeling and attributes, conditional assignment, concatenation

and case, array loops and assert statements, subprograms.

8

II Digital System Design Automation– Abstraction Levels, System level

design flow, RTL design flow, VHDL.

RTL Design with VHDL – Basic structures of VHDL, Combinational circuits, Sequential circuits, Writing Test benches, Synthesis issues, VHDL Essential Terminologies

VHDL Constructs for Structures and Hierarchy Descriptions – Basic

Components, Component Instantiations, Iterative networks,

Binding Alternatives, Association methods, generic Parameters,

Design Configuration

8

III Concurrent Constructs for RT level Descriptions – Concurrent Signal

Assignments, Guarded signal assignment

Sequential Constructs for RT level Descriptions – Process Statement,

Sequential WAIT statement, VHDL Subprograms, VHDL library Structure,

Packaging Utilities and Components, Sequential Statements.

VHDL language Utilities - Type Declarations and Usage, VHDL

Operators, Operator and Subprogram overloading, Other TYPES and TYPE

– related issues, Predefined Attributes

8

IV VHDL Signal Model – Characterizing hardware languages, Signal

Assignments, Concurrent and Sequential Assignments, Multiple Concurrent

Drivers Standard Resolution

8

V Hardware Cores and Models - Synthesis rules and styles, Memory and

Queue Structures, Arithmetic Cores, Components with Separate

Control and Data parts.

Core Design Test and Testability - Issues Related to Design Test, Simple

Test benches.

8

TEXT BOOKS:

1. Z. Navabi, “VHDL-Modular Design and Synthesis of cores and Systems”, TMH – 3rd Edition.

2. R.D.M. Hunter, T. T. Johnson, “Introduction to VHDL” Spriger Publication, 2010.

REFERENCE BOOKS:

3. C. H. Roth, “Digital System Design using VHDL”, PWS Publishing

4. Douglas Perry, “VHDL- Programming by examples”, MGH

Page 260: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

EEC 033 SPEECH PROCESSING 3 1 0 Unit Topic Lectures

I Digital models for speech signals: Mechanism of speech

production & acoustic phonetics, the acoustic theory of speech

production, lossless tube models, and digital models for speech

signals.

10

II Time Domain methods of speech sampling: Time dependent

processing of speech, short time energy and average magnitude,

short time average zero crossing rate, discrimination between

speech& silence, pitch period estimation using parallel processing, short

time autocorrelation function & AMDF, pitch period estimation

using autocorrelation function.

10

III Short time Fourier Analysis: Definition and properties, design of filter

banks, implementation of filter bank summation method using FFT,

spectrographic displays, pitch detection, analysis by synthesis phase,

vocoder and channel vocoder.

10

IV Homomorphic speech processing: Homomorphic system for

convolution, complex cepst rum of speech, pitch det e ction using

Homomorphic processing, formant estimation, Homomorphic vocoder.

6

V Linear Predictive Coding of Speech: Basic principles of linear

predictive analysis, the autocorrelation method, computation of the gain for the model, solution of LPC equations for auto correlation method,

prediction error and normalized mean square error, frequency domain interpretation of mean squared prediction error relation of linear

predictive analysis to lossless tube models, relation between various speech parameters, synthesis of speech from linear predictive parameters,

application of LPC parameters.

10

Text / Reference Books:

1. R. L. Rabiner & R.W. Schafer, “Digital Processing of speech signals”, Pearson

Education.

2. B. Gold and Nelson Morgon, “Speech and audio signal processing”, Wiley India

Edition, 2006.

Page 261: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

EEC 034 VLSI TECHNOLOGY 3 1 0 Unit Topic Lectures

I Introduction To IC Technology: SSI, MSI, LSI, VLSI Integrated Circuits

Crystal Growth and Wafer Preparation:

Electronic Grade Silicon, Czochralski Crystal Growth, Silicon Shaping,

Processing Considerations.

Epitaxy: Vapor –Phase Epitaxy, Molecular Beam Epitaxy, Silicon on

Insulators, Epitaxial Evaluation.

8

II Oxidation: Growth Kinetics, Thin Oxides, Oxidation Techniques and

Systems, Oxides Properties.

Lithography: Optical Lithography. Photo masks, Wet Chemical Etching.

Dielectric and Polysilicon Film Deposition:

Deposition Processes, Polysilicon , Silicon Dioxide, Silicon Nitride.

8

III Diffusion: Diffusion of Impurities in Silicon and Silicon Dioxide, Diffusion

Equations, Diffusion Profiles, Diffusion Furnace, Solid, Liquid and

Gaseous Sources , Sheet Resistance and its Measurement.

Ion-Implantation: Ion-Implantation Technique, Range Theory, Implantation

Equipment.

8

IV Metallization: :Metallization Application, Metallization Choices, Physical

Vapor Deposition, Vacuum Deposition, Sputtering Apparatus.

Packaging of VLSI devices: Package Types, Packaging Design

Consideration, VLSI Assembly Technologies, Package Fabrication

Technologies.

8

V VLSI Process Integration: Fundamental Considerations For IC Processing,

NMOS IC Technology, CMOS IC Technology, Bipolar IC Technology,

Monolithic and Hybrid Integrated Circuits, IC Fabrication

8

Text Book:

1. S. M. Sze, “VLSI Technology”, 2nd Edition, McGraw –Hill Publication.

Reference Books:

1. S.K. Ghandhi, “VLSI Fabrication Principles”, 2nd Edition,. Willy-India Pvt. Ltd.

2. J. D. Plummer, M. D. Deal and Peter B. Griffin, “Silicon VLSI Technology: Fundamentals,

practice and modelling”, Pearson Education.

3. Stephen A. Campbell, “Fabrication Engineering at the micro and nano scale”, Oxford Univ

Press.

Page 262: SYLLABUS - IET Lucknow · 13. ROE 071-ROE 074 OE 071-OE 074 OE O74 EOE 071 to EOE 075 Open ElectiveI 4 14. ROE 081 Open -ROE 084 OE -081 to OE-084 081 OE 084 EOE 081 toEOE 084 Elective-II

B.TECH ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY, LUCKNOW

EEC 035 INTRODUCTION TO RADAR SYSTEMS 3 1 0

Unit Topic Lectures I Introduction to Radar: Basic Radar, The Simply Form of the Radar

Equations, Radar Block Diagram, Radar Frequencies, Applications of

Radar.

The Radar Equation: Detection of Signals in Noise, Receiver Noise and

the Signal-to-Noise Ratio, Probabilities of Detection and False Alarm,

Integration of Radar Pulses, Radar Cross Section of Targets, Radar Cross-

Section of Targets, Radar Cross-Section Fluctuations, Transmitter Power,

Pulse Repetition Frequency, Antenna Parameters, System Losses,

Problems

8

II MTI and Pulse Doppler Radar: Introduction to Doppler and MTI Radar,

Delay-Line Cancelers, Staggered Pulse Repetition Frequencies, Doppler

Filter Banks, Digital MTI Processing, Moving Target Detector,

Limitations to MTI Performance.

8

III Tracking Radar: Tracking with Radar, Mono pulse Tracking, Conical

Scan and Sequential Lobing, Limitations to tracking Accuracy, Low- Angle Tracking, Tracking in Range, Other Tracking Radar Topics, Comparison of Trackers, Automatic Tracking with Surveillance

Radars(ADT)

8

IV Detection of Signals in Noise: Introduction, Detection Criteria, Detectors,

Automatic Detection, Integrators, Constant-False-Alarm Rate Receivers.

8

V Information from Radar Signals: Basic Radar Measurements, Theoretical

Accuracy of Radar Measurements, Ambiguity Diagram, Pulse

Compression, Target Recognition, Land Clutter, Sea Clutter, Weather

Clutter

8

Text/ Reference Books:

1. Merrill I. Skolnik “ Introduction to Radar Systems” Third Edition.

2. J.C. Toomay , Paul J. Hannen “ Principles of Radar” Third Edition.