swim and horizon 2020 support mechanism · 2018-07-04 · introduction: hierarchy of integrated...

32
This Project is funded by the European Union SWIM and Horizon 2020 Support Mechanism Working for a Sustainable Mediterranean, Caring for our Future Presented by: Dr. Ahmed Gaber, Professor of Chemical Engineering, Cairo University and Chairman, Chemonics Egypt Consulting Leachate Management Training Program June 25 th -29 th , 2018, Beirut, Lebanon Landfill Basics Lecture 1

Upload: others

Post on 14-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

This Project is funded by the European Union

SWIM and Horizon 2020 Support Mechanism Working for a Sustainable Mediterranean, Caring for our Future

Presented by:

Dr. Ahmed Gaber, Professor of Chemical Engineering, Cairo University

and Chairman, Chemonics Egypt Consulting

Leachate Management Training Program

June 25th-29th, 2018, Beirut, Lebanon

Landfill Basics

Lecture 1

Page 2: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Outline

1.Introduction 2.Principles 3.Processes 4.Design considerations 5.Emerging technologies in landfills

Page 3: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Introduction: Hierarchy of integrated waste management

• Even with the implementation of waste reduction, recycling, material recovery and transformation technologies, disposal of solid waste in a landfill remains an important component of solid waste management strategies.

• It is not always economical to recycle/recover all waste under all conditions.

• Safe and reliable long-term disposal of solid waste is one of the most essential components of solid waste management.

• The landfill is the most economical form of solid waste disposal that minimises adverse environmental effects, associated risks and inconveniences; allowing the waste to decompose under controlled conditions.

Page 4: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Introduction: Service Provision Plans (SPPs) and the need for final disposal

Transfer station

SPP1

Cleaning, collection and transportation of

MSW

Transfer of collected, mixed MSW in small

vehicles to large vehicles

Final disposal – Sanitary landfill

Final disposal of mixed MSW in

sanitary landfill Alternative:

Bioreactor landfill

G3

Collection of mixed MSW

Street cleaning

G1

Service Provision Plan (SPP) 1: Collection of mixed MSW G1 (Transfer Station) G3 (Sanitary Landfill for the disposal of mixed MSW)

Page 5: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Introduction: Service Provision Plans (SPPs) and the need for final disposal

Transfer station

SPP2

Cleaning, collection and transportation

of MSW

Transfer of collected, mixed

MSW in small vehicles to large

vehicles

Centralised treatment facility

Collection of mixed

MSW

Street cleaning

G1

Service Provision Plan (SPP) 2: Collection of mixed MSW G1 (Transfer Station) G2 (Centralised Treatment Facility) G3 (Sanitary Landfill for the final disposal of the rejects fraction of the MSW)

Final disposal – Sanitary landfill

Final disposal of reject fraction of MSW in sanitary

landfill

Sorting of recyclables and processing the

Organic Fraction (OF) of MSW Output depends

on the employed technology and

may include; recyclables,

compost, Refuse Derived Fuel

(RDF), electrical energy…etc.

G2 G3

Page 6: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Introduction: Service Provision Plans (SPPs) and the need for final disposal

Dirty Material Recycling

Facility (MRF)

SPP3

Cleaning, collection and

transportation of MSW

Sorting of mixed MSW and transfer

of OFMSW in large vehicles

Centralised treatment facility

Collection of mixed

MSW

Street cleaning

G1

Service Provision Plan (SPP) 3: Collection of mixed MSW G1 (Dirty MRF) G2 (Centralised Treatment Facility) G3 (Sanitary Landfill for the final disposal of the rejects fraction of the MSW)

Final disposal – Sanitary landfill

Final disposal of reject fraction of MSW in sanitary

landfill

Processing of OFMSW

Output depends on the employed technology and

may include; compost, electrical

energy…etc.

G2 G3

Recyclables and RDF separated

Page 7: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Introduction: Service Provision Plans (SPPs) and the need for final disposal

Clean Material Recycling Facility

(MRF)

SPP4

Cleaning, collection and transportation

of MSW

Processing of source-separated MSW and transfer

of OFMSW in large vehicles

Centralised treatment facility

Collection of source-separated

MSW

Street cleaning G1

Service Provision Plan (SPP) 4: Collection of source-separated MSW G1 (Clean MRF) G2 (Centralised Treatment Facility) G3 (Sanitary Landfill for the final disposal of the rejects fraction of the MSW)

Final disposal – Sanitary landfill

Final disposal of reject fraction of MSW in sanitary

landfill

Processing of OFMSW

Output depends on the employed technology and

may include; compost, electrical

energy…etc.

G2 G3

Recyclables and RDF separated

Page 8: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Introduction: Landfills and their classification

• A landfill is any form of waste disposal land, ranging from an uncontrolled rubbish dump to a full containment site engineered with high standards to protect the environment.

• Landfilling practices in developing countries differ from that of developed countries; which, follow advanced landfilling practices such as sanitary landfills as opposed to open dumping practices.

Cross section of a typical engineered landfill Source: http://waste.snu.ac.kr

Two main types of landfills • Sanitary landfills: For Municipal

Solid Waste (MSW) i.e. waste from residential and commercial areas.

• Secure landfills: For hazardous waste.

Page 9: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Introduction: Evolution of landfills (definitions adapted from the World Bank technical paper No. 26)

• Open dumping: Uncontrolled dump causing hazards to humans and the environment

• Unsanitary landfill/controlled landfill: Dump with covering of waste • Fence • Daily cover • Control of insects pests and scavenging…etc.

• First generation sanitary landfill/Engineered landfill: Controlled landfill and engineered measures to limit impact • Leachate liner and treatment • Landfill fuel gas (LFG) collection and reuse…etc.

• Second generation sanitary landfill/Sanitary landfill: Engineered landfill in addition to landfill gas extraction, groundwater monitoring, water treatment facility and highly trained staff…etc. This may also include: • Multi-barrier concept for leachate and gas management • After care and environmental monitoring…etc.

Source: Haubrichs, Sanitary landfill Design, waste and water environmental engineering

Page 10: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Introduction: Landfills and their minimum requirements

• Sanitary landfill implementation, therefore, requires careful site selection, preparation and management.

• There are four minimum requirements to be considered: • Full or partial hydrological isolation (usually using liners) • Formal engineering preparation • Permanent control • Planned waste emplacement and covering

• These issues are discussed by addressing

• Landfill principles • Landfill process

Page 11: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Landfill Principles (source: Municipal solid waste management, unit 4: waste disposal)

Purpose: To bury or alter the chemical composition of the waste so as not to pose any threat to public and environmental health.

Landfills are NOT homogeneous and are made up of cells. Cells are discrete volumes of waste, kept isolated from adjacent waste cells using suitable barriers.

Landfilling most commonly relies on containment rather than treatment (for control) of waste. If executed appropriately, it can be safer and cheaper than incineration.

An environmentally sound landfill comprises appropriate liners for the protection of groundwater, run-off controls, leachate collection and treatment, monitoring wells and appropriate final cover design (Phelps, 1995)

Page 12: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Landfill Principles

Source: Haubrichs, Sanitary landfill Design, waste and water environmental engineering

Page 13: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Landfill Principles: life cycle and costs

• Planning phase: Involves preliminary hydro-geological and geo-technical site investigations a s a basis for actual design.

• Construction phase: Involves earthworks, road and facility construction and preparation (liners and drains) of the fill area.

• Operation phase (5-20 years): This phase has a high intensity of traffic work at the front of the fill, operation of environmental installations and completion of finished sections.

• Completed phase (20-100 years): Involves the termination of the actual filling to the time when the environmental installations no longer need to be operated. At this time, emissions may have decreased to a level that need no further treatment and can be directly discharged to the surrounding.

• Final storage phase: The landfill is integrated into the surroundings for other purposes and no longer needs special attention.

Source: https://foresternetwork.com/wp-content/uploads/ms1611_26.jpg

Page 14: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Landfill Processes: Site selection process

• Appropriate location e.g. far from airports, flood plains • Land availability • Soil conditions and topography • Geological conditions e.g. unstable areas, seismic activity • Hydrologic conditions e.g. surface and ground water • Climatic conditions e.g. rainfall and wind • Environmental and ecological conditions e.g. endangered species..etc. • Minimise haul distance • Large enough site to accommodate the SW needs of the service area • Compatible with local SWM programmes • Minimise adverse effects on surrounding area and property value • Minimise impacts on traffic flow • Minimise potential for fire, spill, accidents e.g. outside flood zones • Public input and concerns • Potential use after closur

Site selection considerations include

Site selection process and consideration require a working plan or a series of plans outlining the development and descriptions of site location, operation, engineering and site restorations.

Page 15: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Landfill Processes: Settling process

Primary consolidation

• Short-term deformation stage with substantial settling.

• It results from the weight of the waste layers and the movement of trucks, bulldozers and mechanical compactors.

• Aerobic degradation processes occur during this stage.

Secondary compression

• Rate of settling is much lower than primary consolidation.

• Settling occurs due to compression which can't be enhanced.

Decomposition

• During this process, organic material is converted into gas and leachate.

• The settling rate increases compared to secondary compression and continues until the OFMSW has degraded.

• The settling rate gradually decreases with the passage of time.

Source: Municipal solid waste management, unit 4: waste disposal

Page 16: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Landfill Processes: Microbial degradation process

Source: Municipal solid waste management, unit 4: waste disposal)

This process is the most important biological process occurring in a landfill. These processes induce changes in the chemical and physical environment within the waste body which determine the quality of leachate and both the quality and quantity of landfill gas (LG).

Assuming that landfills mostly receive organic wastes, microbial processes will dominate the stabilisation of the waste and will thus govern LG generation and leachate composition.

After waste disposal in the landfill, the predominant part of the waste degradation becomes anaerobic, where, bacterial will degrade the solid organic carbon eventually to produce carbon dioxide and methane. This process can be enhanced using: • Adding partly composted waste • Recirculating leachate

Page 17: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Design considerations

• The design should be acceptable to the public (hide/keep distance). • The shape of the area has major impacts on the design of the landfill.

• Appropriate gas collection systems and leachate management systems should be employed

• Limit negative environmental impacts by limiting the transport of pollutants by constructing liners and waste covers.

• Additional facilities may be included such as fences, rainwater drainage ditches, leachate and LFG treatment facilities, groundwater monitoring wells…etc.

Page 18: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Design considerations Landfills = Containment

Passive Barrier +

Active Barrier

Passive Barrier: Protects the bottom/side layer (in contact with the soil) • Geological barrier formed with natural material that is found in-situ or brought in • Material with low permeability • Must not be sollicitated

Active Barrier: Protects the top layer (in contact with the waste) • Synthetic membrane (liners) • Drainage and leachate collection systems

Page 19: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Design considerations: Liner systems

Two categories of liners: • Natural liners: These refer to compacted clay or shale, bitumen or soil sealants.

• They are generally less permeable, resistant to chemical attach and have good sorption properties.

• They generally do not act as true containment barriers, since leachate can migrate through them.

• Synthetic (geo-membrane) liners: these are typically made up of high or medium density polyethylene. • Are generally less permeable, easy to install, relatively strong and have good

deformation characteristics. • They can expand and shrink depending on temperature and age.

Note: • Both types of liners are often combined to enhance the overall efficiency of the

containment system. • Some leachate collection systems include impermeable liner and granular material.

Source: Seoul National University; Design, operation and management of solid waste landfills; Laboratory of waste management and resource recirculation

Page 20: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Design considerations: Standards for liner systems

Bottom lining systems for municipal waste landfills from different regulations and recommendations

Source: Seoul National University Laboratory of waste management and resource recirculation; Design, operation and management of solid waste landfills

Page 21: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Design considerations: Landfill gas and Leachate

• LFG and leachate resulting from the degradation of the OFMSW are considered a major hazard associated with landfills and can contaminate soils, water and air.

• Factors that affect the production of LFG and leachate include: • Nature of the waste i.e. the content of biodegradable material. • Moisture content since most microorganisms require a minimum of 12%

moisture for growth. • pH: The bacteria producing methane gas will only grow around a neutral pH. • Particle size and density which affect the surface area and volume which in

turn affect moisture absorption and rate of degradation. • Temperature which affects the .optimum operating conditions for different

types of bacteria

• Note: In the past, it was believed that in a closed landfill, leachate was only generated by the percolation of precipitation. However, leachate will be generated irrespective of whether there is precipitation or not.

Page 22: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Design considerations: Landfill Gas Collection System

• Methane gas is emitted to the atmosphere from natural wet lands, rice paddy fields, gas and oil wells, landfills…etc.

• Among the emission sources, landfills are the most dominant anthropogenic source.

Gas GWP Lifetime (years)

CO2 1 Variable

CH4 21 12

N2O 310 120

PCFs 140 6,300

HCFs 6,500 9,200

SF6 23,900 3,200

Source: Seoul National University Laboratory of waste management and resource recirculation; Design, operation and management of solid waste landfills

Page 23: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Design considerations: Landfill Gas Extraction Wells

Source: Seoul National University Laboratory of waste management and resource recirculation; Design, operation and management of solid waste landfills

Equilateral triangular distribution for vertical gas extraction wells

Page 24: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Design considerations: Leachate Collection System

Source: Seoul National University Laboratory of waste management and resource recirculation; Design, operation and management of solid waste landfills

Page 25: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Design considerations: Leachate Collection System

Source: Seoul National University Laboratory of waste management and resource recirculation; Design, operation and management of solid waste landfills

Source: CH2MHILL; Understanding leachate generation and management

Page 26: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Design considerations: Covers

Source: Seoul National University Laboratory of waste management and resource recirculation; Design, operation and management of solid waste landfills

Two types of covers:

Protects against: • The scattering of waste • Odours • Insect pests and animals • Rainwater drainage • Accessibility • Aesthetic

Daily/intermediate cover

Protects against: • Rainwater drainage • Gaseous contaminants • Vegetation (erosion,

aesthetics) • LFG control (fire) • Insect pests and animals

Final cover

*Intermediate cover needs better accessibility of heavy equipment

Page 27: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Design considerations: Covers

*Intermediate cover needs better accessibility of heavy equipment

Source: Seoul National University Laboratory of waste management and resource recirculation; Design, operation and management of solid waste landfills

Page 28: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Emerging Technologies in Landfills: Selected cases (Source: Seoul National

University; Design, operation and management of solid waste landfills; Laboratory of waste management and resource recirculation)

Landfill classifications

Page 29: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Emerging Technologies in Landfills: Selected cases

Bio-reactor landfill (anaerobic bioreactor)

Source: Don Davies Stantec Consulting Ltd.; 2010; Sustainable landfill biocell

Page 30: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Emerging Technologies in Landfills: Selected cases

Bio-reactor landfill (forced aeration)

Source: Don Davies Stantec Consulting Ltd.; 2010; Sustainable landfill biocell

Page 31: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Emerging Technologies in Landfills: Selected cases (Source: Seoul National

University; Design, operation and management of solid waste landfills; Laboratory of waste management and resource recirculation)

Closed landfill – steel cover

Page 32: SWIM and Horizon 2020 Support Mechanism · 2018-07-04 · Introduction: Hierarchy of integrated waste management • Even with the implementation of waste reduction, recycling, material

Emerging Technologies in Landfills: Selected cases (Source: Seoul National

University; Design, operation and management of solid waste landfills; Laboratory of waste management and resource recirculation)

Offshore disposal sites