sven poggensee agilent technologies hamburg · 2016-08-30 · jp morgan healthcare conf. 2011...

67
6400 Triple Quadrupole Produkte Sven Poggensee Agilent Technologies Hamburg

Upload: others

Post on 03-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 6400 Triple Quadrupole Produkte

    Sven PoggenseeAgilent Technologies

    Hamburg

  • 6400 Triple Quadrupole Product LineExcellent Value and Performance -

    6410 Triple Quadrupole LC/MS

    � Robust, Easy-to-Use

    � Lowest cost of ownership

    � Automate compound optimization

    6430 Triple Quadrupole LC/MS� Fast, robust,

    Page 2

    � Fast, robust,

    � Targeted Protein Quantitation

    � Fast polarity switching

    6460 Triple Quadrupole LC/MS� Agilent Jet Stream – sub fg sensitivity!

    � Perfect for the most demanding applications

    � Fast polarity switching

    � Largest mass range for a premium Triple Quad

    All compatible with HPLC chip MS interface

  • Agilent 6460 QQQ and 6530 QTOF

    Rough Pump

    Octopole 1

    Turbo 1 Turbo 1 Turbo 1

    Quad Mass Filter (Q1)

    Collision Cell

    Lens 1 and 2

    Quad Mass Filter (Q3)

    10KV Detector

    Turbo 2 2nd Turbo

    6460 QQQ6530 QTOF

    Ion Pulser

    Turbo 2

    Octopole 1

    DC Quad

    Rough Pump

    Turbo 1 Turbo 1 Turbo 1

    Quad Mass Filter (Q1)

    Collision CellLens 1 and 2

    Octopole 2

    *Patent Pending

  • New 6490 Triple Quadrupole“The highest sensitivity triple quadrupole on the market”

    JP Morgan Healthcare Conf. 2011

    Zeptmole Sensitivitymicrodosing

    dried blood spotshormone analysispersonal care products in waterpesticides –dilute and shoot

    Page 4

    Dynamic Range of Six Orders Linearityeliminates serial dilution of samplesanalyze trace level impurities in one run

    Triggered MRM (tMRM)library searching – NIST data base fit scores

    create your own data base for searches

  • New 6490 Advances Sensitivity 50 Fold in 4 Years

    5000

    6000

    7000

    8000

    9000

    10000

    6490S

    NR

    1 p

    g r

    eserp

    ine

    5

    0

    1000

    2000

    3000

    4000

    2006 2007 2008 2009 2010

    64106460S

    NR

    1 p

    g r

    eserp

    ine

  • iFunnel Technology Captures 6x More Ions

    Agilent Jet Stream

    • Thermal confinement of ESI plume

    • Efficient desolvation to create gas phase ions

    • Creates an ion rich zone

    Hexabore Capillary

    • Samples 6 times more ion rich gas from the source with 6 capillaries

    • Captures the majority of the gas from the source region

    Dual Ion Funnel

    • Removes the gas but captures the ions

    • Removes neutral noise

    • Extends turbo pump life

    June 6

    region

  • Agilent Jet StreamThermal Gradient Focusing Technology

    Dramatic Sensitivity Gains for

    Premium TOF, Q-TOF, and Triple Quad

    Ions Focused in a Collimated

    Thermal Confinement Zone

    Improved Ionization Efficiency and

    Sampling Sampling

    Effective Across a Broad Range of

    Analyte Classes, including many

    APCI compounds

  • High

    Pressure

    Stage 1

    Low

    Pressure

    Stage 2

    Line of

    Sight

    Two Stage Ion Funnel Manages the Gas Load

    Stage 1

    8-12 Torr

    Stage 2

    1-3 Torr

    Offset ion funnels to prevent neutrals from going straight through to MS

    June 8

  • Ion Funnel Operation

    RF DriveRF Voltage focuses the ions to the center.

    UnfocusedFocused

    DC Voltage accelerates the ions to the exit. DC DriveDC Drive

    UnfocusedIons and GasEnter

    FocusedIons Out

  • Ion Funnel Construction

    Previously, many metal plates made cleaning

    a priority because of the large, active surface area…

    The high capacitance also required larger power

    supplies to provide RF power

    Gold Plated

    Rim

    June 10

    The 6490 design uses printed circuit board technology giving a greatly reduces surface area. This low

    capacitance enables the use of small power supplies, and enables fast polarity switching

    The 6490 design uses printed circuit board technology giving a greatly reduces surface area. This low

    capacitance enables the use of small power supplies, and enables fast polarity switching

  • Simple and Easy Ion Funnel Cleaning Procedure

    • As with all LC/MS systems routine cleaning is necessary periodically.

    • The high pressure ion funnel should be cleaned periodically, although this could vary from 3 months to 1 year depending on the quantity and type of sampleson the quantity and type of samples

    • The high pressure ion funnel is easily removed

    • Clean by sonicating the ion funnel assembly in 100% isopropanol for 15 minutes.

  • 1000

    Abundance

    20 femtogram verapamil on-column injection

    ConstantResponse

    6490 Performance: For Over 2,000 SamplesProtein Precipitated Plasma over Four Days with 5% RSDs

    June 12

    Number of Injections

    0

    500 1,000 1,500 2,000

    500

    Abundance

    • Typically 1 – 5 pg injected for such studies• Lower amounts on-column to monitor response

  • • Die Software

    Agilent 6490 QQQ

    • Beispieldaten:

    • Anabole Steroide in Urin und Rindfleisch

    • Pestizide

    • Photoinitiatoren in Verpackungsmaterial

    Sven Poggensee

    Agilent Technologies

    Hamburg

  • Steroid hormones

    • Steroidhormone werden als wachstumsfördernde Medikamente verwendet, um das Tempo des Gewichtsgewinnes zu steigern und Fütterungseffizienz in Schlachtvieh zu verbessern.

    • Estradiol, Progesteron und Testosteron sind natürlich vorkommende Steroidhormone und es wird angenommen, daß Verbraucher wenig Risiko haben, falls Nahrung von behandelten Tieren gegessen wird. (FDA)

    • Synthetische Hormone wie trenbolone-Acetat, zeranol, und melengestrol-Acetat werden nicht natürlich produziert. Der Metabolismus erfolgt hier wesentlich langsamer als bei natürlichen Hormonen.

    • Es gibt ein Verbot für wachstumsfördernde Hormone in der EU.

    • Mitgliedsstaaten der EU sind verpflichtet Steroide und Synthetische Hormone in Lebensmitteln zu analysieren

    Sven Poggensee

    6490 QQQ Hamburg

    Page 14

  • Anabolika in Urin

    Target compounds:

    • Chlormadinone acetate

    • 16-b-Stanozolol

    • a/b-Zearalenol

    • Ethinyl estradiol

    Injection volume: 10 µL

    Column: Eclipse PlusC18, 1.8 um, 3.0 x 50 mm

    Pump Flow: 0.5 ml/min

    Mobile Phase: A = 0.5mM Ammonium Acetate in Water : Methanol (70:30)B = 0.5mM Ammonium Acetate in Water : Methanol (5:95)

    Gradient: Time %B

    0 251 253 505 756 75

    6.01 25 6.01 25

    Page 15

  • Steroids – Chromatography 200 ng/ml All compounds

    5x10

    3.5

    3.75

    4

    4.25

    4.5

    4.75

    5

    5.25

    5.5

    5.75

    6

    6.25

    6.5

    6.75

    7

    7.25

    -ESI MRM Frag=380.0V CID@** (295.2000 -> 145.0000) Cal_11-r001.d

    1 1

    0.25

    0.5

    0.75

    1

    1.25

    1.5

    1.75

    2

    2.25

    2.5

    2.75

    3

    3.25

    Counts vs. Acquisition Time (min)

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8

    Page 16

  • 5x10

    2.6

    2.8

    3

    3.2

    3.4

    3.6

    3.8

    4

    4.2

    4.4

    4.6

    4.8

    -ESI MRM Frag=380.0V CID@** (319.1000 -> 275.1000) Cal_11-r001.d

    1 1

    Steroids – Alpha and Beta Zearalenol, example of chromatography200ng/ml

    Alpha

    Beta

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    2.4

    Counts vs. Acquisition Time (min)

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8

    Page 17

  • 1x10

    5.25

    5.5

    5.75

    6

    6.25

    6.5

    6.75

    7

    7.25

    7.5

    7.75

    -ESI MRM Frag=380.0V CID@** (319.1000 -> 160.0000) Cal_1-1ulr004.d Smooth Noise (PeakToPeak) = 2.66; SNR (3.678min) = 7.6

    * 3.67820

    1 1

    -ESI MRM Frag=380.0V CID@** (319.1000 -> 275.1000) Cal_1-1ulr004.d Smooth

    Steroids – αααα and ββββ-Zearalenol 0.05ng/ml (50 fg on column with 1uL inj)

    αααα-ZearalenolQual ionS/N = 7.6Peak to peak Based on height

    ββββ-ZearalenolQual ionS/N = 8.9Peak to peak Based on height

    0.0025 ng/ml urine equivalent

    2x10

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    -ESI MRM Frag=380.0V CID@** (319.1000 -> 275.1000) Cal_1-1ulr004.d Smooth Noise (PeakToPeak) = 6.34; SNR (3.688min) = 5.7

    * 3.68836

    1 1

    Counts vs. Acquisition Time (min)

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8

    αααα-ZearalenolQuant ionS/N = 5.7Peak to peak Based on height

    ββββ-ZearalenolQuant ionS/N = 4.4Peak to peak Based on height

    Page 18

  • Steroids Low Matrix Spike – Chromatogram

    3x10

    1

    2

    3

    4

    5

    6

    7

    8

    -ESI MRM Frag=380.0V CID@** (319.1000 -> 160.0000) UrineSpike_1-r004.d Noise (PeakToPeak) = 28.60; SNR (3.699min) = 253.2

    * 3.6997241

    * 3.1423768

    1 1

    -ESI MRM Frag=380.0V CID@** (319.1000 -> 275.1000) UrineSpike_1-r004.d

    ββββ-Zearalenol0.04 ng/ml in urine

    αααα-Zearalenol0.1 ng/ml in urine

    Preconcentration: 20x

    4x10

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    -ESI MRM Frag=380.0V CID@** (319.1000 -> 275.1000) UrineSpike_1-r004.d Noise (PeakToPeak) = 116.62; SNR (3.699min) = 91.1

    * 3.69910619

    * 3.1425702

    1 1

    Counts vs. Acquisition Time (min)

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8

    Page 19

  • Steroids – Beta Zearalenol – Quant software Batch at a glance

    Page 20

  • 1x10

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    6.4

    -ESI MRM Frag=380.0V CID@** (295.2000 -> 143.0000) Cal_2-r001.d Smooth Noise (PeakToPeak) = 2.96; SNR (3.687min) = 2.3

    3.6877

    1 1

    -ESI MRM Frag=380.0V CID@** (295.2000 -> 145.0000) Cal_2-r001.d Smooth

    Steroids – Ethynylestradiol 0.1ng/ml (1 pg on column, 10 uL inj)

    0.1 ng/ml standardQual ionS/N = 2.3Peak to peak Based on height

    0.05 ng/ml urine equivalent

    1x10

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    6.4

    6.6

    -ESI MRM Frag=380.0V CID@** (295.2000 -> 145.0000) Cal_2-r001.d Smooth Noise (PeakToPeak) = 2.40; SNR (3.678min) = 5.1

    3.67812

    1 1

    Counts vs. Acquisition Time (min)

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8

    0.1 ng/nl standardQuant ionS/N = 5.1Peak to peak Based on height

    Page 21

  • 2x10

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    -ESI MRM Frag=380.0V CID@** (295.2000 -> 143.0000) UrineSpike_1-r004.d Noise (PeakToPeak) = 14.00; SNR (3.691min) = 15.9

    * 3.691223

    1 1

    -ESI MRM Frag=380.0V CID@** (295.2000 -> 145.0000) UrineSpike_1-r004.d

    Steroids Low Matrix Spike – Chromatogram

    Ethinyl estradiol0.2 ng/ml in urine

    Preconcentration: 20x

    2x10

    1

    2

    3

    4

    5

    6

    7

    8

    -ESI MRM Frag=380.0V CID@** (295.2000 -> 145.0000) UrineSpike_1-r004.d Noise (PeakToPeak) = 21.34; SNR (3.691min) = 22.2

    * 3.691473

    1 1

    Counts vs. Acquisition Time (min)

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8

    Page 22

  • Steroids High Matrix Spike – Chromatogram

    3x10

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    -ESI MRM Frag=380.0V CID@** (295.2000 -> 143.0000) UrineSpike_2-r001.d Noise (PeakToPeak) = 10.94; SNR (3.691min) = 136.4

    * 3.6911493

    1 1

    -ESI MRM Frag=380.0V CID@** (295.2000 -> 145.0000) UrineSpike_2-r001.d

    Ethinyl estradiol1.2 ng/ml in urine

    Preconcentration: 20x

    3x10

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    -ESI MRM Frag=380.0V CID@** (295.2000 -> 145.0000) UrineSpike_2-r001.d Noise (PeakToPeak) = 11.68; SNR (3.691min) = 260.7

    * 3.6913045

    1 1

    Counts vs. Acquisition Time (min)

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8

    Page 23

  • Steroids – Ethynylestradiol – Quant software Batch at a glance

    Page 24

  • Steroids – Comparison Agilent QQQ 6460 vs. Agilent QQQ 6490200 pg on column

    5x10

    1.8

    1.9

    2

    2.1

    2.2

    2.3

    2.4

    2.5

    2.6

    2.7

    2.8

    2.9

    3

    3.1

    3.2

    3.3

    +/-ESI TIC MRM CID@** (** -> **) 200ng-r001.d

    1 1Agilent QQQ 6490Agilent QQQ 6460

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8

    Counts vs. Acquisition Time (min)

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8

    Page 25

  • 3x10

    1

    2

    -ESI MRM Frag=380.0V CID@** (295.2000 -> 143.0000) VS_Cal_8-r001.d Noise (PeakToPeak) = 9.06; SNR (3.682min) = 206.0

    3.6821866

    1 1

    3x10

    2.5

    5

    -ESI MRM Frag=380.0V CID@** (295.2000 -> 145.0000) VS_Cal_8-r001.d Noise (PeakToPeak) = 6.60; SNR (3.685min) = 603.2

    3.6853981

    1 1

    -ESI MRM Frag=160.0V [email protected] (295.0000 -> 143.1000) 200ng-r001.d

    Steroids – Comparison Agilent QQQ 6460 vs. Agilent QQQ 6490200 pg Ethinyl estradiol on column

    Agilent QQQ 6490

    2x10

    0.5

    1

    -ESI MRM Frag=160.0V [email protected] (295.0000 -> 143.1000) 200ng-r001.d Noise (PeakToPeak) = 2.34; SNR (3.472min) = 23.5

    3.47255

    1 1

    2x10

    2

    -ESI MRM Frag=160.0V [email protected] (295.0000 -> 144.9000) 200ng-r001.d Noise (PeakToPeak) = 2.54; SNR (3.473min) = 74.4

    3.473189

    1 1

    Counts vs. Acquisition Time (min)

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8

    Agilent QQQ 6460

    Page 26

  • 5x10

    1

    2

    -ESI MRM Frag=380.0V CID@** (319.1000 -> 160.0000) VS_Cal_8-r001.d Noise (PeakToPeak) = 17.74; SNR (3.698min) = 7352.4

    3.698130431

    3.140126832

    5x10

    1

    2

    -ESI MRM Frag=380.0V CID@** (319.1000 -> 275.1000) VS_Cal_8-r001.d Noise (PeakToPeak) = 23.90; SNR (3.700min) = 7183.4

    3.700171684

    3.141165487

    -ESI MRM Frag=162.0V CID@** (319.2000 -> 275.2000) 200ng-r001.d

    Steroids – Comparison Agilent QQQ 6460 vs. Agilent QQQ 6490200 pg b/a-Zearalenol on column

    AgilentQQQ 6490

    4x10

    1

    2

    -ESI MRM Frag=162.0V CID@** (319.2000 -> 275.2000) 200ng-r001.d Noise (PeakToPeak) = 10.42; SNR (3.486min) = 1242.2

    3.486129442.911

    9412

    4x10

    0.5

    1

    -ESI MRM Frag=152.0V [email protected] (319.2000 -> 160.0000) 200ng-r001.d Noise (PeakToPeak) = 3.70; SNR (3.486min) = 1721.7

    3.48663702.910

    4755

    Counts vs. Acquisition Time (min)

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

    AgilentQQQ 6460

    Page 27

  • Anabolika in Urin

    Target compounds:

    • 17-alpha-nortestosterone (aNT)

    • 17-beta-nortestosterone (bNT)

    • Beta-boldenone (bBOL)

    • Norgestrel (NG)

    • Trenbolone acetate (TBA)

    • Acetoxyprogesterone (AP)

    Injection volume: 5 µL

    Column: Waters Acquity BEH, 1.8 µm, 100 x 2.1 mm

    Pump Flow: 0.4 ml/min

    Mobile Phase: A = H2O 0.1% Formic AcidB = Acetonitrile 0.1% Formic Acid

    Gradient: Time %B

    0.0 101.0 306.5 738.0 100

    10.0 10

    Page 28

  • 3.2. Anabolic Steroids - ResultsThe Signal to Noise for the standard injection was determined and the amount injected which would give a signal to noise of three was calculated.

    Noise was calculated peak-to-peak and the noise region is indicated in bold.

    aNT: 2.5pg injected - S:N=150.548.8 fg injected for a S:N=3

    bNT: 2.5pg injected - S:N= 61.2122.5 fg injected for a S:N=3

    bBOL: 2.5pg injected - S:N= 269.727.8 fg injected for a S:N=3

    TBA: 5pg injected - S:N= 813.918.4 fg injected for a S:N=3

    NG: 12.5pg injected - S:N= 378.299.2 fg injected for a S:N=3

    AP: 12.5pg injected - S:N= 430.787.0 fg injected for a S:N=3

    Page 29

  • Herausforderung:

    > 860 active compounds (Brit. Crop Protection Council)

    • > 100 different compound classes

    • different physico-chemical properties

    • different hetero atoms (halogens, sulfur, nitrogen ...)

    • neutral, acidic, and basic pesticides

    Pestizide in Nahrung und Umweltproben

    • volatile and non-volatile compounds

    • complex sample matrices

    Page 30

  • • Need for screening methods; confirmation and quantitation of positives

    only (e.g. EU water framework directive)

    • Need for “ready to use” methods of analysis including sample

    preparation (e.g. EPA Method 1694: “Pharmaceuticals and Personal

    Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS”)

    • Increased number of samples in labs:

    • Need for faster analysis methods with less sample prep

    Environmental analysis trends

    • Need for multi-component analyses

    • Need for a data management solution

    • Ideal:

    • easy sample prep

    • safe identification

    • screening and quantitation in

    one analytical run

    6490 QQQ Introduction, Berlin

    Page 31

  • Get started quickly

    Column & test mix

    LCMS Application Kits

    Analysis methods show how to use advanced technologies for fast multi-component screening

    Column & test mixApplication Note and Quick start guideCD with method parametersLCMS databases for fast screening:

    •Dynamic MRM•Accurate Mass

    * Contents may vary based upon the application. Ask your Account Manager about the details for your application of interest.

    6490 QQQ Introduction, Berlin

    Page 32

  • Pesticide MRM Data Base G1733AA

    6490 QQQ Introduction, Berlin

    Page 33

  • DMRM Pesticides and Forensic/Tox Database

    Analyze medium level standard mixtures

    fixed dwell time for each MRM transition using one time segment

    MHW Quantitative Data Analysis gets retention times

    Load tabular MRM from Database

    Compound names, ISTD (optional)

    MRM transitions, fragmentorvoltages, collision energies

    • Pesticide database contains MRM transitions for more than 600 pesticides

    • Forensic/Tox database contains MRM transitions for more than 130 forensic drugs

    Create a Dynamic MRM method

    Import the results generated in the custom report into acquisition

    method

    Specify delta retention time window

    6490 QQQ Introduction, Berlin

    Page 34

  • Comparison of MRM and Dynamic MRM

    Time (min) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

    Compounds (10/block)

    Cycle Time (sec)

    MRM

    50 80

    0.5 0.8 1

    Time Segment 1 Time Segment 2 Time Segment 3 Time Segment 4

    0.7

    100 70

    Quantitative analysis of pesticides (dMRM)

    Cycle Time (sec)

    Max Coincident

    Cycle Time (sec) 0.4 0.4 0.4 0.4

    20 40 40

    Dynamic MRM

    0.5 0.8 1

    30

    0.7

    • 2 x shorter cycle times supports narrow chromatographic peaks, more analytes or longer dwell per analyte.

    6490 QQQ Introduction, Berlin

    Page 35

  • Dynamic MRM Simulation

    Abundance

    >>

    >

    Time >>>

    ConcurrentCompounds

    6490 QQQ Introduction, Berlin

    Page 36

  • � Chromatographic conditionsAgilent 1290 Infinity LC system consisting of:

    - binary pump

    - wellplate sampler

    - column compartment

    - diode array detector (not used)

    HPLC method

    Separation column: ZORBAX Eclipse Plus C-18 RRHD column,150 x 2.1 mm, 1.8 µm @ 30°C

    4.) Quantitative analysis of pesticides

    150 x 2.1 mm, 1.8 µm @ 30°C

    Mobile phase: A: 5 mM ammonium formate

    B: methanol + 5 mM ammonium formate

    Flow: 0.4 ml/min

    Gradient: 0.00 min 10 % B0.50 min 10 % B3.50 min 50 % B

    12.00 min 100 % B13.00 min 100 % B13.10 min 10 % B15.00 min 10 % B

    Inj.Vol.: 1 or 10 µl

    6490 QQQ Introduction, Berlin

    Page 37

  • � Agilent Jet Stream conditions

    Spray chamber conditions:Gas temp.: 200°C

    Dry gas: 8 l/min

    Nebulizer: 30 psi

    Sheath gas temp: 300°C

    Sheath gas flow: 11 l/min

    Positive NegativeCapVoltage: 4500 V 3000 V

    4.) Quantitative analysis of pesticides

    CapVoltage: 4500 V 3000 V

    Nozzle voltage 300 V 0 V

    • Automatic setup of MRM tables based on selected cycle time, retention times and retention time windows for the individual compounds

    • Cycle time 500 ms• Interscan delay 3.5 ms• Total No. of MRMs 484• Maximum No. Of concurrent MRMs 68• Minimum Dwell time 3.85 ms• Maximum Dwell time 246.5 ms

    6490 QQQ Introduction, Berlin

    Page 38

  • � Compounds included in method (242 compounds in total)

    4.) Quantitative analysis of pesticides

    Acephate

    Acetamiprid

    Acibenzolar-S-methyl

    Acrinathrin

    Aldicarb

    Aldicarb sulfone

    Aldicarb sulfoxide

    Amitraz

    Atrazine

    Avermectin B1a

    Azinphos-methyl

    Azoxystrobin

    Benalaxyl

    Bendiocarb

    Benfuracarb

    Benthiavalicarb

    Cinerin 1

    Cinerin 2

    Clofentezine

    Clothianidin

    Crufomate

    Cyanofenphos

    Cyazofamid

    Cyflufenamid

    Cyhalothrin

    Cymoxanil

    Cyproconazole

    Cyprodinil

    Cyromazine

    Demeton-S-methyl

    Demeton-S-methyl sulfone

    Oxydemethon methyl

    EPN

    Epoxiconazole

    Ethiofencarb

    Ethiofencarb sulfone

    Ethiofencarb sulfoxide

    Ethion

    Ethofumesate

    Ethoprophos

    Etofenprox

    Etrimfos

    Fenamidone

    Fenamiphos

    Fenamiphos-Sulfone

    Fenamiphos-Sulfoxide

    Fenarimol

    Fenazaquin

    Flutriafol

    Fluvalinate

    Fonofos

    Formothion

    Fosthiazate

    Furalaxyl

    Furathiocarb

    Haloxyfop acid

    Heptenophos

    Hexaconazole

    Hexazinone

    Hexythiazox

    Imazalil

    Imidacloprid

    Indoxacarb

    Iprovalicarb

    Methidathion

    Methiocarb

    Methiocarb sulfone

    Methiocarb Sulfoxide

    Methomyl

    Methoxifenozide

    Metolachlor

    Metolcarb

    Metrafenone

    Metribuzin

    Mevinphos

    Monocrotophos

    Myclobutanil

    Neo-Quassin

    Nitenpyram

    Nuarimol

    Piperonyl butoxide

    Pirimicarb

    Pirimiphos-ethyl

    Pirimiphos-methyl

    Prochloraz

    Profenofos

    Prometryn

    Propachlor

    Propamocarb

    Propanil

    Propargite

    Propazine

    Propetamphos

    Propham

    Propiconazole

    Propoxur

    Rotenone

    Simazine

    Spinosad A

    Spinosad D

    Spirodiclofen

    Spiromefesin

    Spiroxamine

    Sulfotep

    Tebuconazole

    Tebufenozide

    Tebufenpyrad

    Teflubenzuron

    Terbufos

    Terbufos sulfone

    Terbufos sulfoxide

    TetrachlorvinphosBenthiavalicarb

    Bifenthrin

    Bitertanol

    Boscalid

    Bromuconazole

    Bupirimate

    Buprofezin

    Butralin

    Cadusafos

    Carbaryl

    Carbendazim

    Carbofuran

    Carbofuran-3-hydroxy

    Carbophenothion

    Carbosulfan

    Chlorfenvinphos

    Chlorotoluron

    Chlorpyrifos

    Chlorthiophos

    Oxydemethon methyl

    Dialifos

    Diazinon

    Diclobutrazol

    Dicrotophos

    Diethofencarb

    Difenoconazol

    Diflubenzuron

    Dimethoate

    Dimethomorph

    Dimethylvinphos(E)

    Dimoxystrobin

    Disulfoton-Sulfone

    Disulfoton-Sulfoxide

    Ditalimfos

    Diuron

    Dodine

    Edifenphos

    Emamectin B1a

    Fenazaquin

    Fenbuconazol

    Fenhexamid

    Fenoxycarb

    Fenpropimorph

    Fenpyroximate

    Fenthion

    Fenthion-sulfon

    Fenthion-Sulfoxide

    Fipronil

    Fluazifop acid

    Fluazifop-P-butyl

    Fludioxonil

    Flufenacet

    Flufenoxuron

    Fluopicolide

    Fluoxastrobin

    Fluquinconazole

    Flusilazole

    Iprovalicarb

    Isazofos

    Isoprocarb

    Isoproturon

    Jasmolin 1

    Jasmolin 2

    Kresoxim-methyl

    Lenacil

    Linuron

    Lufenuron

    Malaoxon

    Malathion

    Mecarbam

    Mepanipyrim

    Mepronil

    Metalaxyl

    Metazachlor

    Metconazole

    Methamidophos

    Nuarimol

    Ofurace

    Omethoate

    Oxadixyl

    Oxamyl

    Paclobutrazol

    Paraoxon-ethyl

    Paraoxon-methyl

    Penconazol

    Pencycuron

    Pendimethalin

    Phenthoate

    Phorate Sulfone

    Phorate Sulfoxide

    Phosalone

    Phosmet

    Phosphamidon

    Phoxim

    Picoxystrobin,

    Propoxur

    Propyzamide

    Proquinazid

    Prosulfocarb

    Pymetrozine

    Pyraclostrobin

    Pyrazophos

    Pyrethrin 1

    Pyrethrin 2

    Pyridaben

    Pyridaphenthion

    Pyrifenox

    Pyrimethanil

    Pyriproxifen

    Quassin

    Quinalphos

    Quinoxyfen

    Resmethrin

    Tetrachlorvinphos

    Tetraconazole

    Tetramethrin

    Thiabendazole

    Thiacloprid

    Thiamethoxam

    Thiobencarb

    Thiodicarb

    Tolylfluanid

    Triadimefon

    Triadimenol

    Triazamate acid

    Triazophos

    Trichlorfon

    Trietazine

    Trifloxystrobin

    Triticonazole

    Zoxamide

    6490 QQQ Introduction, Berlin

    Page 39

  • Dynamic MRM viewer – display of concurrent MRMs

    Quantitative analysis of pesticides (dMRM)

    6490 QQQ Introduction, Berlin

    Page 40

  • Quantitative analysis of pesticides

    � MRM traces of pesticides in sample EF_Cal 3 (10 ng/ml)

    • Final method includes 242 pesticides with 2 MRM transitions each• Variable dwell times, Inter-scan delay 3.5 ms

    6490 QQQ Introduction, Berlin

    Page 41

  • Quantitative analysis of pesticides

    � MRM traces of pesticides in sample EF_Cal 3 (10 ng/ml)

    5x10

    0.4

    0.45

    0.5

    0.55

    0.6

    0.65

    0.7

    0.75

    0.8

    0.85

    0.9

    0.95

    1

    1.05

    +ESI MRM Frag=130.0V [email protected] (890.6000 -> 567.2000) EF_Cal_3.d

    more than 120 MRM

    transitions in 1.2 min

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Counts vs. Acquisition Time (min)

    9.6 9.7 9.8 9.9 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8

    6490 QQQ Introduction, Berlin

    Page 42

  • Compounds at a glance – peak review in MH Quant

    Page 43

    6490 QQQ Introduction, Berlin

  • The issue with the matrix …

    -100%

    -80%

    -60%

    -40%

    -20%

    0%

    20%

    0 5 10 15 20 25 30 35 40 45

    ma

    trix

    eff

    ect

    s

    retentiontime in minutes

    � Dilute !!!

    ,if sensitivity allows ...‘

    Page 44

    -100%

    -80%

    -60%

    -40%

    -20%

    0%

    20%

    0 5 10 15 20 25 30 35 40 45

    ma

    trix

    eff

    ect

    s

    retentiontime in minutes

    -100%

    -80%

    -60%

    -40%

    -20%

    0%

    20%

    0 5 10 15 20 25 30 35 40 45

    ma

    trix

    eff

    ect

    s

    retentiontime in minutes

    1 : 10 1 : 100

    Data provided by Stefan Kittlaus, LUA Sachsen

    6490 QQQ Introduction, Berlin

  • Pesticides in water

    Target compounds:

    • Atrazine

    • Atrazine-desethyl

    • Chlorotoluron

    • Cyanazine

    • Diuron

    • Hexazinone

    • Isoproturon

    • Linuron

    Injection volume: 1 µL

    Column: Eclipse PlusC18, 1.8 um, 2.1 x 50 mm

    Pump Flow: 0.4 ml/min

    Mobile Phase: A = water + 5mM ammonium formate +

    0.01% formic acid

    B = 95% acetonitrile/5% water + 5mMammonium formate + 0.01% formic acid

    Gradient: Time %B

    0.00 20

    4.00 70

    4.10 100

    4.50 100• Linuron

    • Metazachlor

    • Methabenzthiazuron

    • Metobromuron

    • Metolachlor

    • Metoxuron

    • Monolinuron

    • Sebuthylazin

    • Simazine

    • Terbuthylazin

    6490 QQQ Introduction, Berlin

    Page 45

  • 10 fg On Column(1 uL inj. of 10 pg/mL)

    Monolinuron

    0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4

    Counts 2x10

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    215.1 -> 126.0 , 215.1 -> 148.1

    Ratio = 35.1 (57.0 %)

    Acquisition Time (min)

    0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4

    Acquisition Time (min)

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

    Counts 2x10

    0

    1

    2

    3

    4

    5

    6

    7

    202.1 -> 132.0 , 202.1 -> 124.1

    Ratio = 82.1 (106.1 %)

    Simazine

    6490 QQQ Introduction, Berlin

    Page 46

  • 10 fg On Column(1 uL inj. of 10 pg/mL)

    1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4

    Counts 2x10

    0.25

    0.5

    0.75

    1

    1.25

    1.5

    1.75

    2

    2.25

    2.5

    2.75

    3

    3.25

    3.5

    278.1 -> 134.1 , 278.1 -> 210.1

    Ratio = 58.4 (97.1 %)

    Metazachlor

    Acquisition Time (min)

    1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4

    Acquisition Time (min)

    2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4

    Counts 2x10

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    5.5

    284.1 -> 252.1 , 284.1 -> 176.1

    Ratio = 22.4 (111.6 %)

    Metolachlor

    Qualifier present

    Qualifier not present

    6490 QQQ Introduction, Berlin

    Page 47

  • 100 fg On Column(1 uL inj. of 100 pg/mL)

    0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

    Counts 2x10

    1

    2

    3

    4

    5

    6

    7

    8

    188.1 -> 146.0 , 188.1 -> 104.0

    Ratio = 29.8 (155.7 %)

    Atrazine-desethyl

    Acquisition Time (min)

    0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

    Acquisition Time (min)

    1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6

    Counts 3x10

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    216.1 -> 174.1 , 216.1 -> 132.0

    Ratio = 25.1 (143.4 %)

    Atrazine

    6490 QQQ Introduction, Berlin

    Page 48

  • 100 fg On Column(1 uL inj. of 100 pg/mL)

    1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4

    Counts 2x10

    0

    1

    2

    3

    4

    5

    6

    7

    259.0 -> 170.0 , 259.0 -> 148.1

    Ratio = 57.0 (81.7 %)

    Metobromuron

    Acquisition Time (min)

    1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4

    Counts 2x10

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    259.0 -> 170.0 , 259.0 -> 148.1

    Ratio = 55.1 (79.1 %)

    10 fg on column

    Acquisition Time (min)

    1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4

    Acquisition Time (min)

    1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4

    Counts 2x10

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    249.0 -> 160.0 , 249.0 -> 182.0

    Ratio = 59.1 (86.2 %)

    Linuron

    6490 QQQ Introduction, Berlin

    Page 49

  • Summary of Pesticides Results6490 6460 x-fold improvement

    pg on column S/N pg on column S/N

    Atrazine-desethyl 0.1 33 1 100 3

    Hexazinone 0.01 43 1 350 12

    Metoxuron 0.01 42 1 120 35

    Simazine 0.1 59 1 75 8

    Cyanazine 0.1 23 1 65 4

    Methabenzthiazuron 0.01 42 1 125 34

    Chlortoluron 0.01 56 1 95 59

    Atrazine 0.1 123 1 105 12Atrazine 0.1 123 1 105 12

    Isoproturon 0.01 77 1 250 31

    Monolinuron 0.01 14 1 80 18

    Diuron 0.01 33 1 50 66

    Metobromuron 0.1 83 1 30 28

    Metazachlor 0.01 43 1 280 15

    Sebuthylazin 0.01 29 1 250 12

    Terbuthylazin 0.01 38 1 280 14

    Linuron 0.1 31 1 20 15

    Metolachlor 0.01 65 not recorded

    6490 QQQ Introduction, Berlin

    Page 50

  • Photoinitiators

    • More than 1000 compounds are used for printing on packaging materials for food. In 2005 ITX (2-Isopropylthioxanton) a photoinitiator has been found in baby food packed in paperboard containers and had been taken off the shelves in Italy.

    S

    CH3

    CH3

    O

    • Photoinitiators are compounds which accelerate the drying of colors which undergo a UV induced polymerization.

    • ITX is non-mutagenic but it is not acceptable in food products and at concentrations above 0.05 mg/kg food product EFSA requested food producers to react.

    • Nestlé has published a list of compounds which are accepted in food packaging, all other compounds need to be tested for food migration and must comply with regulations or must be at concentrations below 0.01 mg/kg.

    6490 QQQ Introduction, Berlin

    Page 51

  • PhotoinitiatorsScreening method

    Target compounds:

    • 1-(4-((4-Benzoylphenyl)-thio)-phenyl)-2-methyl-2-((4-methylphenyl)-sulfonyl)-1-propan-1-on

    • 1-Chlor-4-propoxythioxanthon

    • 1-Hydroxycyclohexylphenylketon

    • 2-(4-Methylbenzyl)-2-dimethylamino-1-(4-morpholinophenyl)-1-butanon

    • 2,2-Bis-(2-chlorophenyl)-4,4,5,5-tetraphenyl-1,2-biimidazol

    • 2,2-Diethoxy-acetophenon

    • 2,2-Dimethoxy-2-phenylacetophenon

    • 2-Hydroxy-4-methoxybenzophenon

    • 2-Hydroxy-4-n-octoxy-benzophenon

    • 3-Methylbenzophenon

    • 4-(4-Methylphenylthio)-benzophenon

    • 4,4,4-Methylidynetris-(N,N-dimethylanilin)

    • 4,4-Bis-(diethylamino)-benzophenon

    • 4,4-Bis-(dimethylamino)-benzophenon

    • 4-Dimethylaminobenzophenon

    • 4-Hydroxybenzophenon• 2,2-Dimethoxy-2-phenylacetophenon

    • 2,4,6-Trimethylbenzophenon

    • 2,4,6-Trimethylbenzoylphenylphosphinsäureethylester

    • 2,4-Diethylthioxanthon

    • 2-Benzyl-2-dimethylamino-4-morpholinobutyrophenon

    • 2-Chlorthioxanthon

    • 2-Dimethylamino-ethylbenzoat

    • 2-Ethylanthraquinon

    • 2-Ethylhexyl-4-dimethylaminobenzoat

    • 2-Hydroxy-1-(4-(4-(2-hydroxy-2-methylpropanyl)-benzyl)-phenyl-2-methyl-2-propanon

    • 4-Hydroxybenzophenon

    • 4-Phenoxy-2,2-dichloracetophenon

    • 4-Phenylbenzophenon

    • Benzophenon

    • Bisphenol A

    • Butoxyethyl-4-dimethylamino-benzoat

    • Diphenyl-2,4,6-trimethylbenzoyl)-phosphinoxid

    • Ethyl-4-dimethylamino-benzoat

    • Isopropylthioxanthone

    • Methyl-2-benzoylbenzoat

    • Phenyl-bis-(2,4,6-trimethylbenzoyl)-phosphinoxid

    • Thioxanthon

    6490 QQQ Introduction, Berlin

    Page 52

  • Photoinitiators in cardboard extract

    Injection volume: 2 µL

    Column: Eclipse PlusC18, 1.8 um, 2.1 x 100 mm

    Pump Flow: 0.3 ml/min

    Mobile Phase: A = water + 5mM ammonium formateB = acetonitrile

    Gradient: Time %B

    0 100.5 103.5 609 95

    11.5 9511.6 10

    6490 QQQ Introduction, Berlin

    Page 53

  • Photoinitiators – Chromatography 100 ng/ml (all compounds)

    6x10

    2.2

    2.4

    2.6

    2.8

    3

    3.2

    3.4

    3.6

    3.8

    4

    4.2

    +ESI TIC MRM (** -> **) Mix_35_100ppb+BP.d

    1 1

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    Counts vs. Acquisition Time (min)

    0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

    6490 QQQ Introduction, Berlin

    Page 54

  • Photoinitiatoren – Quant software Batch at a glance

    2-Hydroxy-1-(4-(4-(2-hydroxy-2-methylpropanyl)-benzyl)-phenyl-2-methyl-2-propanon

    6490 QQQ Introduction, Berlin

    Page 55

  • Photoinitiatoren – Quant software Batch at a glance

    Methyl-2-benzoylbenzoat

    6490 QQQ Introduction, Berlin

    Page 56

  • Photoinitiatoren – Quant software Batch at a glance

    1-(4-((4-Benzoylphenyl)-thio)-phenyl)-2-methyl-2-((4-methylphenyl)-sulfonyl)-1-propan-1-on

    6490 QQQ Introduction, Berlin

    Page 57

  • Bisphenol A and benzophenone – Comparison Agilent 6460 vs. 6490100 ng/ml in muesli extract, 5 ul

    Agilent QQQ 6490Agilent QQQ 6460

    6490 QQQ Introduction, Berlin

    Page 58

  • Bisphenol A – Comparison Agilent QQQ 6460 vs. 6490100 ng/ml in muesli extract, 5 ul

    30 X Signal12 X SNR

    Agilent QQQ 6490

    Agilent QQQ 6460

    6490 QQQ Introduction, Berlin

    Page 59

    LOQ 2.5 pg o.c.(S/N 10, Peak-to-Peak)

  • Benzophenon – Comparison Agilent QQQ 6460 vs. 6490100 ng/ml in muesli extract, 5 ul

    9 X Signal6 X SNR

    Agilent QQQ 6490

    Agilent QQQ 6460

    6490 QQQ Introduction, Berlin

    Page 60

    LOQ 2.5 pg o.c.(S/N 10, Peak-to-Peak)

  • New triggered MRM functionality for confirmation

    6490 QQQ Introduction, Berlin

    Page 61

  • Identification of compounds by library search - Qual

    Library search functionality in MassHunter Qual

    Excellent peak shapes for primary transitions!

    6490 QQQ Introduction, Berlin

    Page 62

  • Identification of compounds by library search - Quant

    6490 QQQ Introduction, Berlin

    Page 63

  • Qualifier ratios in triggered spectra

    0.0

    2000.0

    4000.0

    6000.0

    8000.0

    10000.0

    12000.0

    14000.0

    16000.0

    105.1 133.1 139.00 146.00 331.1 360.00

    1-(4-((4-Benzoylphenyl)-thio)-phenyl)-2-methyl-2-((4-methylphenyl)-sulfonyl)-1-

    propan-1-on

    m/zin spectra

    ratioRSD

    Peak Area ratio

    105.1 100.0 0.0

    133.1 30.4 18.5

    139.0 25.1 19.6

    146.0 54.4 4.4

    331.1 89.7 5.7 80.6

    360.0 47.6 6.8

    0.0

    10000.0

    20000.0

    30000.0

    40000.0

    50000.0

    60000.0

    127.00 171.00 200.00 228.00 234.00 263.00

    1-Chlor-4-propoxythioxanthon

    m/zin spectra

    ratioRSD

    Peak Area ratio

    127.0 47.0 17.6

    171.0 74.8 0.7 74.9

    200.0 100.6 16.4

    228.0 175.4 19.7

    234.0 9.6 22.8

    263.0 100.0 0.0

    6490 QQQ Introduction, Berlin

    Page 64

  • 0.0

    10000.0

    20000.0

    30000.0

    40000.0

    50000.0

    60000.0

    70000.0

    80000.0

    90000.0

    100000.0

    89.10 165.10 191.00 226.00 329.10

    2-(2,2-Bis-(2-chlorophenyl)-4,4,5,5-tetraphenyl-1,2-biimidazol

    Qualifier ratios in triggered spectra

    m/zin spectra

    ratioRSD

    Peak Area ratio

    89.10 21.9 0.86 21.8

    165.10 46.1 19.76

    191.00 18.3 20.14

    226.00 16.5 21.99

    329.10 100.0 0.00

    0.0

    20000.0

    40000.0

    60000.0

    80000.0

    100000.0

    120000.0

    140000.0

    77.10 105.10 165.10 197.10

    2-(2,2-Dimethoxy-2-phenylacetophenon

    m/zin spectra

    ratioRSD

    Peak Area ratio

    77.10 100.0 0.00

    105.10 377.8 18.22

    165.10 185.5 17.22

    197.10 93.0 0.79 93.7

    6490 QQQ Introduction, Berlin

    Page 65

  • 5. Summary and Conclusions

    • It was demonstrated that the 1290 Infinity UHPLC coupled with a 6490 QQQ gives excellent sensitivity for the three analyte groups.

    • The detection limit of almost all analytes was improved over the 6460 QQQ, in many cases by more than a factor of 10.

    • Although highly sensitive, the 6490 QQQ performs with great robustness, which shows in the good reproducibility of the peak area.

    6490 QQQ Introduction, Berlin

    Page 66

  • Vielen Dank für Ihre Aufmerksamkeit

    Sven PoggenseeAgilent TechnologiesSales & Service GmbH & Co KG

    ?

    Sales & Service GmbH & Co KG

    [email protected]

    Page 67

    6490 QQQ Introduction, Berlin