svat model introduction

29
Soil-Vegetation- Atmosphere Transfer (SVAT) Models Dr. Mathew Williams

Upload: chamila-dias

Post on 22-Oct-2014

29 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: SVAT Model Introduction

Soil-Vegetation-Atmosphere Transfer (SVAT) Models

Dr. Mathew Williams

Page 2: SVAT Model Introduction

What are SVAT models?

• Simulators of energy and matter exchange between land surface and atmosphere

• Based on mechanistic understanding of the component systems

• Used by meteorologists, climatologists, ecologists and biogeochemists.

Page 3: SVAT Model Introduction

Why do we need SVAT models?

• To assist understanding of observations• To allow hypothesis testing• To extend understanding across space and

time• To provide a basis for prediction

Page 4: SVAT Model Introduction

Model Jargon

• State variables• Parameters• Driving variables• Calibration• Corroboration/validation/testing• Sensitivity analysis

Page 5: SVAT Model Introduction

What is the structure of a typical SVAT model?

• Radiative transfer• Energy balance• Turbulent and diffusive transfer• Stomatal function• Photosynthesis and respiration• Liquid phase water flow

Page 6: SVAT Model Introduction

Small Group Task

• For a SVAT component, define the sub-model structure

• What are the driving variables, the parameters and state variables?

• What are the key connections to other SVAT sub-models?

• How would you calibrate your sub-model?

Page 7: SVAT Model Introduction

Radiative Transferreflectance

transmittance

Absorptance

•Direct and diffuse•NIR vs PAR•Solar geometry•Foliar geometry•Sunlit and shaded

Beer’s Law: I=Io exp(-kL)

Page 8: SVAT Model Introduction

Energy BalanceFirst law of thermodynamics: Energy is always conserved

QhQe

Qc

Qs

Qlout

Qs + Qe + Qh + Qlin + Qlout + Qc = 0

Qlin

Page 9: SVAT Model Introduction

Turbulent and Diffusive Transfer

Boundary layer thickness- leaf size- wind speed- temperature

Turbulent zone

Laminar zone

J = g c/zWind withinCrops and forests

Wind speed

Page 10: SVAT Model Introduction

Stomatal Function

Empirical vs. mechanistic approaches

E = gs cw

gs is responsive to:CO2LightLeaf waterHumidity

Page 11: SVAT Model Introduction

Penman-Monteith Equation 

E

sR c g e

s g ga l

n a p H

[ ( [ / ])]1

  

= psychrometer constantacp = volumetric heat

capacity of dry airs = slope of saturation vapour

pressure curve latent heat of

vapourisation

Rn = net radiatione = vapour pressure deficitga = leaf boundary layer conductancegl = leaf stomatal conductancegH = heat conductance

Page 12: SVAT Model Introduction

Photosynthesis and Respirationlight

CO2 + 2H2O CO2 + 4H + O2 (CH2O) + H2O + O2

 

LIGHT REACTIONS DARK REACTIONS

Metabolic model = Diffusion model Vc(1-*/Cc)–Rd = gt(Ca-Cc)

Page 13: SVAT Model Introduction

Liquid Phase Water Flow

Rs

2

Rp

Rsn

Rs1

C

s1

sn

s2

E

Rr1

Rr2

Rrn

PlantSoil

AtmosphereCO2

gs Leaf

Stem

Roots

l

)()(

ddΨ

prs

lprswsl

RRRCRRREgh

t

What determines:Root resistance (Rr)?

Plant resistance (Rp)?

Soil resistance (Rs)?

Soil water potential (l)?

Page 14: SVAT Model Introduction

The Soil-Plant-Atmosphere Model

• Multi-layer canopy and soils• 30 minute time-step• Fully coupled liquid and vapour phase

water fluxes• Biochemical model of photosynthesis

Page 15: SVAT Model Introduction

A. Canopy Structure

PHYSICAL COMPONENT

10

n

1En (gsn)

CO2H2O

Rsn

BIOLOGICAL COMPONENT

CnRpn

s

PAR NIR

B. RadiationC. Boundary Layer

D. Soil Water Potential & Soil-Root Hydraulic Conductivity

Layer

ln

Windspeed LAI

Sun &shade

[N]

SOIL PLANT ATMOSPHERE MODEL

Page 16: SVAT Model Introduction

No Yes

1. Increment gs

& calculate gt

2. Determine Leaf

Temperature, Tl

3. Calculate metabolic parameters;

Vcmax, Jmax = f(Tl, [N])

4. Determine assimilation by varying Cc until:

Metabolic model = Diffusion model

Vc(1-*/Cc)-Rd = gt(Ca-Cc)

5. Evaporation (Penman-Monteith)

6. Change in LWP, l /t

7. /gs > &

l >

lmin ?

STOP START LEAF LEVEL PROCESSES

Page 17: SVAT Model Introduction

Harvard Forest

Page 18: SVAT Model Introduction

4.120 4.140 4.160 4.180 4.200 4.220 4.240 4.260 4.280 4.3000

2

4

6

8

10

12

14

164.120 4.140 4.160 4.180 4.200 4.220 4.240 4.260 4.280 4.3000

2

4

6

8

10

12

14

Modelled LE (fine-scale) Measured LE

LE (

W m

-2)

Day of year

Harvard Forest

HFsun_6yrs TR.OPJ 26/11/2001 15:59

Modelled GPP (SPA) Measured GPP

GP

P (

gC m

-2 d

-1)

Page 19: SVAT Model Introduction

4.14 4.16 4.18 4.20 4.22 4.24 4.26 4.28 4.300

10

20

30

Harvard Forest, controls on GPP, 1994

tem

pera

ture

(o C)

Time (d)

4.14 4.16 4.18 4.20 4.22 4.24 4.26 4.28 4.30048

1216202428

irrad

ianc

e (M

J m

-2 d

-1)

4.14 4.16 4.18 4.20 4.22 4.24 4.26 4.28 4.300

2

4

LAI

Page 20: SVAT Model Introduction
Page 21: SVAT Model Introduction
Page 22: SVAT Model Introduction

Tropical rain forest

Page 23: SVAT Model Introduction
Page 24: SVAT Model Introduction
Page 25: SVAT Model Introduction
Page 26: SVAT Model Introduction

Arctic tundra – northern Alaska

Page 27: SVAT Model Introduction

201 202 203 204 205 206 207 208 209 210 211 212-4

0

4

Modelled NEP (mol m-2 s-1)Day of year

6

178 179 180 181 182 183 184 185 186-4

0

4Measured Modelled

171 172 173 174 175 176 177 178 179-4

0

4

CO2 exchange in three tussock tundra sites, northern Alaska

Mea

sure

d N

EP

(m

ol m

-2 s

-1)

4

3

-4 0 4

-4 0 4

-4 0 4

Page 28: SVAT Model Introduction

SPA(30 min,

process based)

ACM(daily, ‘big leaf’)

Eddy flux

Field data:

LAI, N

Satellite data(NDVI)

Weather stations

GIS

PREDICTIONS

Page 29: SVAT Model Introduction

What you should have learned

• Structure of typical SVAT models• Diagnostic uses (working with eddy flux

data)• Prognostic uses (scaling up)• Key research areas in developing SVAT

models (applicability to global change research)