sustainable materials based on aliphatic polyesters,iasc...

58
DR. S. SIVARAM A 201, Polymers & Advanced Materials Laboratory, National Chemical Laboratory, Pune-411 008, INDIA Tel : 0091 20 2589 2614 Fax : 0091 20 2589 2615 Email : [email protected] SUSTAINABLE MATERIALS BASED ON ALIPHATIC POLYESTERS : TEACHING OLD CHEMISTRY SOME NEW TRICKS Indian Academy of Science, Bangalore Mid-Year Meeting July 5, 2013

Upload: others

Post on 04-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • DR. S. SIVARAMA 201, Polymers & Advanced MaterialsLaboratory, National Chemical Laboratory,Pune-411 008, INDIATel : 0091 20 2589 2614Fax : 0091 20 2589 2615Email : [email protected]

    SUSTAINABLE MATERIALS BASED ON ALIPHATIC POLYESTERS : TEACHING OLD

    CHEMISTRY SOME NEW TRICKS

    Indian Academy of Science, Bangalore

    Mid-Year Meeting

    July 5, 2013

  • SUSTAINABLE DEVELOPMENT (CHEMISTRY)

    “ Development (chemistry or chemical industry) that meet the needs of the

    present without compromising the ability of future generations to meet their

    own needs”

    In other words, each generation must bequeath to its successor at least as

    large a productive base it inherited from its predecessor

    Brundtland Report

    UN World Commission on Environment and

    Development, 1987

    www.un.org/documents/ga/res/42/ares 42-187.htm

    We do not inherit the earth from our ancestors; we borrow it from our children.

    Native American Proverb

  • ORGANIC CHEMICALS AND MATERIALS

    • Exclusive dependence on fossil fuelbased resources

    • Generation of wastes that need disposal

    Can the chemical and materials needsof humankind be based on the concept

    of sustainability of both

    resources and environment?

    RIL, Mumbai 281205

    REDUCE

    REUSERECYCLESustainability is the key concern of science, technology,

    industry and society today

  • Over 30 billion

    liters of bottled water is

    consumed annually

    Every second we throw away about

    1500 bottles

    What is the

    solution ?

    Poly( ethylene terephthalate)

  • FROM HYDROCARBONS TO CARBOHYDRATES : FROM NON

    RENEWABLES TO RENEWABLES

    Can a part of the chemicals / materials manufacturing progressively shift

    to renewable carbohydrate resources (biomass) ?

    RIL, Mumbai 281205

    Biomass

    Chemicals

    Materials

    Carbon dioxide

    Water

    Is such a virtuous cycle just a dream ?

  • Objectives

    Expand the chemistry toolbox with new methods and techniques for next generation products

    SUSTAINABLE POLYMERS FROM BIO-DERIVED AND

    BIO-RENEWABLE RESOURCES

    Materials Platform

    Aliphatic Polyesters

  • Aliphatic polyesters

    C

    O

    (CH2)m C

    O

    O (CH2)n O

    x

    C

    O

    C

    CH3

    H

    O

    n

    C

    O

    (CH2)5 O

    n

    C

    O

    C

    O

    O CH2 CH2 O

    n

    C

    O

    C

    O

    O (CH2)n O

    m

    C

    O

    C

    O

    O CH2 CH2 O

    m

    C

    O

    C

    O

    O (CH2)n O

    m

    C

    O

    C O

    O

    O

    n

    Aliphatic-Aromatic polyesters

    Fully Aromatic polyesters

    GENERAL CLASSES OF POLYESTERS

    n : 2 PETn: 2 PBT

    60 million tons per annum; One third goes for making bottles !

    < 200,000 tons per annum !

  • POLY (LACTIC ACID )S : AN ALIPHATIC

    POLYESTER FROM THE MOST SIMPLE AB MONOMER

    Insoluble in water, moisture and grease

    resistant

    Biodegradable and compostable

    Clarity and glossiness similar to PET

    Requires 20 to 50% less fossil fuels to

    produce than PET

    Physical properties similar to PET

  • � Patents

    � Publications

    � Patents

    � Publications

    POLY(LACTIC ACID)

    51

    6

    53

    2

    65

    1

    91

    1

    93

    1

    11

    73

    13

    77

    16

    33

    19

    07

    19

    30 2

    00

    6

    20

    14

    23

    02

    11

    90

    33

    1

    41

    7

    63

    7

    71

    2

    82

    0

    10

    44

    12

    02 1

    28

    4

    14

    93

    16

    15

    18

    24

    19

    99

    19

    99

    49

    8

    0

    500

    1000

    1500

    2000

    2500

    2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

    Publication Year

    No

    . o

    f P

    ate

    nts

    /Pu

    bli

    cati

    on

    s

  • ALIPHATIC POLYESTERS

    � Patents

    � Publications

    � Patents

    � Publications

    Publication Year

    No

    . o

    f P

    ate

    nts

    /Pu

    bli

    cati

    on

    s

    40

    4

    39

    5

    39

    9

    48

    0

    53

    2

    52

    9

    44

    8 46

    3

    49

    8

    53

    5

    51

    1

    45

    3

    56

    0

    27

    3

    10

    6

    14

    2

    11

    9

    14

    1

    15

    9

    16

    2

    18

    0

    16

    8 17

    7

    17

    8

    18

    2

    18

    3

    17

    9

    89

    0

    100

    200

    300

    400

    500

    600

    2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

  • ALIPHATIC POLYESTERS : PIONEERING CHEMISTRY OF

    WALLACE HUME CAROTHERS

    1896-1937

    STUDIES ON POLYMERIZATION AND RING FORMATION

    Twenty eight papers from 1929 to 1935

    Carothers addressed one important question:

    (a) If two bifunctional molecules, e. g., one dibasic acid and one glycol or diamide, react, two possibilities occur. The reaction can result (1) in a chain polymer of lower or higher molecular weight, which still bears either hydroxyl or carboxyl terminal groups or (2) in a smaller or larger ring, which does not contain the reactive group.

    Under what conditions does either of these two possibilities take place and what is the molecular weight of the resulting compound?

    Published 1940

    54 papers400 pages

    Enough forone lifetime !

  • CAROTHER’S DELINEATION OF POLYMERIZATION OF

    HYDROXY CARBOXYLIC ACIDS

    1 α-hydroxy acetic acid

    (Glycolic acid)

    2 β-Hydroxy Propionic acid

    3 γ-Hydroxy butyric acid

    4 δ-Hydroxy pentanoic acid

    5 ε-Hydroxy Caproic acid

    + Oligomers

    + Oligomers

    + Oligomers

    + Oligomers

    Ref. : Carothers, Chem Rev; 8 353 (1931)

  • IX. Polymerization*

    TABLE OF CONTENTS

    I. Definitions1. Current definitions2. Proposed definitions3. Linear and non-linear polymers 4. Types of compounds capable of

    polymerizing 5. Types of polymerization 6. Condensation polymerizations and

    bi functional reactions II. Condensation polymerization

    1. Polyesters a. The self- esterification of hydroxy

    acids 86b. Polyesters from dibasic acids

    and glycols 90

    * Wallace H. Carothers; Chemical Reviews

    8, 353-426 (1931); Communication No. 55 from the Experimental Station of the E. I. du Pont de Nemours and Company.Received March 21, 1931. Published June 1931.

    Key questions

    � On what factors do the relative

    rates k1 and k2 depend ?

    � What is the importance of general

    acid catalysis in these reactions?

    � Can larger oligomers undergo

    thermolysis to large rings?

    � If ring formation limits chain growth

    reaction, is there an alternative

    method to make high molecular weight linear aliphatic polyesters ?

  • DIRECT CATALYTIC POLYCONDENSATION OF L(+)- LACTIC

    ACID

    CH O

    O CH

    H3C

    CH3

    O OLewis acid

    heat-----(2)

    nC O CH C OH

    CH3

    OO

    CH

    CH3

    HO__

    -----(1)HO CH C OH

    CH3

    O

    H O CH C OH

    CH3

    OnH2O

    Lewis acid

    Issues

    � Water tolerant Lewis acid catalyst

    � Water removal is rate limiting

    � Reversible ester hydrolysis of polymer

    � Competing lactide and macrocycle

    formation : Loss of reactive end groups

    CH O

    O CH

    H3C

    CH3

    O OLewis acid

    heat-----(2)

    nC O CH C OH

    CH3

    OO

    CH

    CH3

    HO__

    -----(1)HO CH C OH

    CH3

    O

    H O CH C OH

    CH3

    OnH2O

    Lewis acid

    CH O

    O CH

    H3C

    CH3

    O OLewis acid

    heat-----(2)

    nC O CH C OH

    CH3

    OO

    CH

    CH3

    HO__

    -----(1)HO CH C OH

    CH3

    O

    H O CH C OH

    CH3

    OnH2O

    Lewis acid

    Water Tolerant Lewis Acid

    CH O

    O CH

    H3C

    CH3

    O OLewis acid

    heat-----(2)

    nC O CH C OH

    CH3

    OO

    CH

    CH3

    HO__

    -----(1)HO CH C OH

    CH3

    O

    H O CH C OH

    CH3

    OnH2O

    Lewis acid

  • O CHH

    CH3

    C

    O

    OH

    n

    n = 5 - 24< 150 oC

    150 - 190 oC O CHH

    CH3

    C

    O

    OH

    n

    n = 14 - 30

    O CH

    CH3

    C

    O

    n

    +

    > 190 oC O CH

    CH3

    C

    O

    n

    n = 13 - 40

    solvent Temp. C Conv.,% Lactide,% Mn,VPO Mw/Mn

    Xylene 143 96 Nil 800 2.0

    Mesitylene 165 76 27 1800 4.0

    Decalin 190 82 15 5500 4.7

    Mixtures of linear and cyclics

    Exclusively cyclics !

    Oligomer structures

    established by 13 C NMR and

    MALDI TOF MS

    DIRECT CATALYTIC POLYCONDENSATION OF L(+)- LACTIC ACID

    Shyamroy, Garnaik and Sivaram, J. Polymer Science: Part A: Polymer Chemistry, 43,2164 (2005)

  • SYNTHESIS OF PBA BY POLYCONDENSATION OF DIMETHYL ADIPATE (DMA) AND 1,4-BUTANEDIOL (BD)

    Transesterification reaction

    Polycondensation reaction

    Stage 2

    Stage 1

    + (CH2)4 OHHO(CH2)4 CCCH3O OCH3

    O O

    +(CH2)4 CCO O

    O O

    (CH2)4 (CH2)4HO OH CH3OH2

    (CH2)4 CCO O

    O O

    (CH2)4 (CH2)4HO OHn

    +(CH2)4 CCO O

    O O

    CH3 (CH2)4 O Hn(n-1) (CH2)4 OHHO

    Back-biting reaction

    Ring-closure reaction

    THF formation

    C

    O

    (CH2)4 C O

    O

    CH2CH2

    CH2

    CH2HO

    O

    C

    O

    (CH2)4 C

    O

    OH+

    O (CH2)4 O C

    O

    (CH2)4 C

    O

    HO OCH3n nO (CH2)4 O C (CH2)4 C

    O O

    O C

    O

    +

    OH

    C

    O

    (CH2)4 C

    O

    O (CH2)4 O OHn

    O (CH2)4 O C (CH2)4 C

    O O

    O C

    O

    n

    All these reactions result in loss of end groups needed for

    chain growth reaction

  • 17

    EFFECT OF REACTION TEMPERATURE ON POLYCONDENSATION REACTION

    No. Temp. (0C)

    Conv.a

    (%mol)Conv.b

    (%)Yield c

    (% wt.)THF d

    (%mol) Mn

    e

    (VPO) Mw/Mn

    e Tme

    (0C) Tc

    e

    (0C)

    1 125 88 95 27 3.0 3980 1.6 58 22

    2 150 92 97 75 3.7 7060 1.5 60 25

    3 180 94 98 85 3.7 9010 1.5 61 20

    4 200 95 97 86 4.4 7720 1.6 60 21

    5 220 93 98 86 3.8 8120 1.6 61 21

    a : conversions based on moles of methanol formed as determined by GC

    b : % conversion calculated using the Carothers equation Xn = 1/1-p

    c: yield of methanol insoluble fraction calculated based on the total weight of polymer obtained

    d :THF calculated based on moles of BD from GC; e- Mn , Mw/Mn , Tm & Tc of methanol insoluble fraction

    Neeta Kulkarni, PhD Thesis, 2007

  • 18

    Peak End group Structure

    a hydroxy-ester

    b hydroxy-hydroxy

    c ester-ester

    d No end group

    e carboxy –hydroxy

    H BA OCH3n

    H BA O (CH2)4 OHn

    C

    O

    (CH2)4CCH3O

    O

    BA OCH3n

    (CH2)4

    [BA]n O

    O (CH2)4

    O

    O

    H BA OHn

    • MALDI-ToF MS analysis shows formation of varying amounts of cyclic oligomers and carboxylic end groups which result in loss of end groups and thereby limiting further step growth polymerization

    • Cyclics of DP : 2 were detected even at 1250C whereas cyclics of DP 2 to 12 were detected at 180-2200C

    • Structure of the oligomers changes from linear oligomers with hydroxy-ester end groups to cyclics with no end groups

    MALDI-TOF MS of PBA, 1250C

    MeOH Insoluble MeOH soluble

  • RING OPENING POLYMERIZATION OF CYCLIC ESTERS

    Only practical way to polymerize glycolic or lactic acid is via their corresponding cyclic esters

  • GENERAL ACID CATALYZED SELF POLYMERIZATION OF LACTIC ACID

    � Commercial 90 % lactic acid in water contains : HL = 60 % HL2+ oligomers = 27 % and LL = 13 %� Purification by crystallization possible only via Lactide� Lactide has a mp 96 0C and sublimes� Difficult to copolymerize Lactide by any other mechanism except ROP� Methyl Lactate is a volatile liquid with a bp of 144 0C

    General Acid Catalysis

    Need An AB monomer, which has a bp above 250 0C, high vapor pressure, easily

    purified, hydrophobic , preferably a methyl ester

  • SYNTHESIS OF A LINEAR DIMER FROM L(+)-LACTIC ACID

    AND METHYL-L-LACTATE

    60 %

    4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 600.0

    7.5

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    120

    130

    140

    150

    160

    170

    180

    190

    200.1

    cm-1

    %T

    -C=O

    -OH

    -C-H stretching

    -C-O stretching

    3441.77

    2991.79 1456.04

    1376.66

    1227.07

    1205.88 1130.85

    1098.51

    1047.71

    977.73

    919.60

    823.32

    681.09

    Tue5av2#047.001.001.1r.esp

    7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

    0.220.042.204.690.780.222.483.000.041.121.050.16

    0.0

    0

    1.4

    51

    .49

    1.5

    21

    .55

    1.5

    81

    .66

    1.7

    61.7

    9

    2.1

    4

    3.2

    4

    3.7

    63

    .83

    4.2

    94.3

    24

    .35

    4.3

    94

    .42

    5.1

    45

    .18

    5.2

    15

    .25

    7.2

    8

    • bp : 107 0C at 5 mm• Can be purified by distillation

  • TRANS-ESTERIFICATION OF LINEAR DIMER

    Titanium IsopropoxideTwo stage polymerization150-190 0C

    Negligible Cyclization !

    Neware and sivaram, research in progress

  • SYNTHESIS OF HIGH MOLECULAR WEIGHT LINEAR

    ALIPHATIC POLYESTERS

    � Coupling of preformed oligomer chains with suitably disposed end groups� Converting a reversible chain growth reaction into an irreversible reaction� Use of conformationally constrained cyclo-aliphatic diacid or diol monomers

  • HOMO COUPLING OF POLY(ACTIC ACID)S OLIGOMERSACTIVATED POLYCONDENSATION

    O

    O

    H3C

    O

    H

    H

    15DP = 15

    O

    O

    H3C

    O

    H

    H

    500

    DIPC

    DPTS (0.1 eq.)

    CH2Cl2, 300C, 12 h

    Mn increases from 15,000 to 50,000 !

    RCOOH R' N C N R'+

    R' NH C N R'

    O C

    O

    R

    R"OH

    R' NH C

    O

    NH R' RCOOR"+esterurea

    Shyamroy, Garnaik and Sivaram, Polymer Chemistry , 2013

  • CHAIN TERMINATION VIA N-ACYL UREA FORMATION

    M = (CH3)2CH-NH-CO-N(CH(CH3)2)-(CO-CH(CH3)-O)n-H-----Na+

    = 72n + 143 + 23Also 72n + 143 + 39 found (K+ )

    M = (CH3)2N-C5H10NH+ -O-(CO-

    CH-(CH3)-O)n-H-----Na+

    = 72n + 51 + 23Also 72n + 51 + 39 found (K+ )

    R N H C N R O C

    O

    R'

    6.9 (O - acylurea) 6.9'(N - acylurea)

    R N H C N R

    C R'

    O O

  • SYNTHESIS AND CHARACTERIZATION OF HYDROXYL

    TERMINATED POLY(BUTYLENE ADIPATE)

    1,4 Butanediol/Titanium isopropoxide

    1500C /30 min

    OO

    O

    O

    n

    OHPBAHO

    HOO

    O

    O

    OO

    H

    n

    HOOH + CH3O

    O

    O

    OCH3Titanium isopropoxide

    1500C

    (5)

    ηinh in chloroformat 250C (dL/g)

    Mn(VPO)

    Mn(31P NMR)

    Mn (GPC) Mw(GPC)

    Mw/Mn Tm(0C)

    0.211 2700 2430 7600 11,900 1.57 55

    •Concentration of hydroxyl end groups as determined by 31P NMR was found to be 8.232 x 10-4 mol / g, corresponding to 1.9 hydroxyl groups per molecule

    • The telechelic oligomer was found to be thermally stable up to 2000C by TGA.

  • 27

    Repeat unit structure

    Sum of end groups (observed)

    Structure of end groups

    Series

    89-91 1114,1314,1513,…Na+ adduct

    89-91 1130,1329,1530,…K+ adduct

    33-34 1056,1456,1656,…Na+ adduct

    O (CH2)4 O C

    O

    (CH2)4 C

    O

    n

    H BA OCH3n

    H BA O (CH2)4 OHn

    H BA O (CH2)4 OHn

    Poly(butylene adipate) oligomers contain mainly chains with hydroxyl end groups along with small amounts of hydroxy ester end groups

    END GROUP ANALYSIS OF PBA TELECHELIC BY MALDI-TOF MS

  • CHAIN EXTENSION WITH DIVINYL ADIPATE : FIRST

    EXAMPLE OF IRREVERSIBLE POLYCONDENSATION

    The reaction by product cannot reactwith the growing polymer chain !

    GPC of telechelic and the polyester chain extended with divinyl adipate (DVA)

    +OOH

    O

    O

    O

    OH

    n

    OO

    O

    O

    n

    OO

    O

    O

    O

    OO

    O

    O m

    OO

    O

    O+

    OHCH3 CHO

    Mn : 2700

    Mn : 36,500, Tm: 59°°°° C

    Neeta Kulkarni and Sivaram, Macromol. Chem, 2013

  • HO (CH2)n OH n = 3, 3, 4

    CH2OH

    CH2OH

    CH2OH

    CH2OH

    CH2OHHO2HC

    CH2OH

    HOH2C OHHO

    OHHO

    CH2OH

    CH2OH

    CH2OH

    CH2OH

    CH2OH

    CH2OH

    CH2OHHOH2C CH2OHHOH2C

    ALIPHATIC POLYESTERS BASED ON CONFORMATIONALLY

    CONSTRAINED MONOMERS

    CC

    O O

    OHHOCC

    O O

    OCH3H3CO

    C

    O

    OH

    C

    O

    HO

    C

    C

    O

    O

    OCH3

    OCH3

    C

    O

    OCH3

    C

    O

    OCH3

    C

    C

    O

    OCH3

    O

    OCH3

    DIOLS

    DIACIDS

  • Sandhya, Ramesh and Sivaram, Macromolecules, 40, 6906 (2007)

    ALIPHATIC POLYESTERS: SYNTHESIS

    (i) Transesterification 180-230°C/6-10h(ii) Polycondensation 210-260°C/10-12 h/0.02 mbar

    (i), (ii)

    COOCH3

    COOCH3

    COOCH3H3COOC

    OC COO (CH2)4 O( )n+

    COOCH3

    H3COOC

    (CH2)4 OHHO

    (

    )n

    COO

    OC

    (CH2)4 O

    n)( OC COO (CH2)4 O

    Catalyst : Titanium Isopropoxide

  • STRUCTURE –PROPERTY RELATIONSHIPS IN ALIPHATIC

    POLYESTERS

    ee: ae Mn Tm, ºC Tg, ºC IDT, ºC

    100 20,000 163 31 403

    70:30 16,500 56 -10 400

    cis: trans Mn Tm, ºC Tg, ºC IDT, ºC

    100 57,000 - -44 400

    50:50 36,000 - -15 408

    cis: trans Mn Tm, ºC Tg, ºC IDT, ºC

    100 36,000 - -24 500

    Mn Tm, ºC Tg, ºC IDT, ºC

    exo-endo

    37,000 - -56 480

  • � Slow rate of crystallizationAnnealing and cold crystallization

    Nucleation

    � Very brittle material ; Elongation : 3-4 %, Plasticization

    Copolymerization

    � Poor heat stabilityStereo-complexation

    Copolymerization

    � Poor chain entanglement in melt state leading to poor melt viscosities

    CSIR Proprietary

    PLLA : MAJOR PROPERTY DEFICITS AND METHODS FOR

    IMPROVEMENT

    CrosslinkingBranching

  • ISOSORBIDE: A BIO DERIVED RENEWABLE MONOMER

    Hydrogenation

    Acid catalyzed dehydration

  • L(+) LA- ISOSORBIDE COPOLYMER : SYNTHESIS

    B. B. Idage, S.B. Idage and Sivaram, WO 151843, 2012 ( covered in US, Europe, China and Japan)

    Mn : 80,000Melt or Solution70 to 150 o C

    ROP

    Solid State Polymerization (SSP)

    150 o C, 2- 4 h

    Mn : 39,000

    Mn : 69,000

  • 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

    0.670.20 0.030.020.01

    1.6

    0

    1.6

    4

    5.1

    55.1

    8

    5.2

    25.2

    5

    3.8

    0

    3.8

    33

    .853

    .883.9

    03.9

    23

    .94

    3.9

    7

    3.9

    94.0

    1

    4.0

    7

    4.3

    4

    4.3

    8

    4.4

    1

    4.4

    4

    4.4

    6

    4.4

    9

    4.8

    3

    4.8

    6

    4.8

    8

    1

    2

    7,43,8

    6,5

    δ ppm

    1H NMR SPECTRA OF PLA-ISOSORBIDE COPOLYMER IN CDCL3

    Isosorbide Content : 9 %

    Mn Tm,˚C Tg, ˚C

    Before SSP 39,000 140 40

    After SSP 69,000 185 60

  • SYNTHESIS OF STAR BRANCHED POLY( LACTIC ACID)S IONOMER

    Sn(Oct)2

    1800C, 1 h+

    + DCM , 12h, 25˚C

    NaH, THF, 25 ˚C

    Mn : 18,000Mw / Mn; 1.13

    mol ratio : 170 : 1

  • Acid

    Ionomer

    32 31 30 29 28 27 26

    28.4

    928.6

    1

    178 177 176 175 174 173 172 171 170 169 168 167 166

    169.6

    2

    171.6

    2

    175.1

    5

    175.8

    2

    178 177 176 175 174 173 172 171 170 169 168 167 166

    169.6

    2

    172.3

    9

    175.1

    7

    176.5

    9

    32 31 30 29 28 27

    29.1

    6

    29.4

    8

    c

    c

    k

    j.j’

    k

    f

    f j.j’

  • 15 20 25 30

    0

    10

    20

    30

    40

    50

    60

    RI (m

    V)

    Retension volume (mL)

    sPLLA7

    sPLLA7acid2

    sPLLA7ionomer2

    0.1 1 10 100

    102

    103

    104

    105

    G',

    G''

    (Pa

    s)

    S train (%)

    Amruta, Sivaram and Lele, research in progress

    - -

    -

    - -

    -

    -CO2- Na

    -CO2H

    -OH

    MOLECULAR WEIGHT DISTRIBUTION, STORAGE MODULUS AND

    COMPLEX VISCOSITY OF STAR BRANCHED PLLA IONOMERS

  • Financial Support

    � J.C.Bose Fellowship (DST)� S.S.Bhatnagar Fellowship (CSIR)� CSIR’s TAPSUN Programme

    Acknowledgments

    Students

    Dr. Sandhya ShankarDr S. ShyamroyDr Neeta KulkarniMr Yogesh NevareMs Amruta KulkarniMegha DeorkarMaithili DumbreMs Dipti Lai

    Acknowledgments

    Colleagues

    Dr B.B.IdageDr Ms. B. GarnaikDr.Ashish Lele

  • THANK YOU

  • 0.1 1 10 100

    10

    100

    1000

    10000

    Mo

    du

    lus

    G'

    &

    G"

    (Pa

    )

    Strain (%)

    IonDCM+Py(10)12hr

    IonDCM+Py(10)12hrrep

    IonTHF(1.5)12hr

    IonTHF(1.5)24hr

    IonTHF(5)12hr

    IonTHF(5)12hrrep

    Strain Sweep

  • 0.01 0.1 1 10 100

    10

    100

    1000

    10000

    IonDCM+Py(10)4days

    IonDCM+Py(10)4daysrep

    IonTHF(1.5)24hr

    IonTHF(5)12hr

    IonTHF(5)12hrrep

    Frequency (rad/s)

    Frequency Sweep

  • Click reaction on D(+)Click reaction on D(+)--Glucose Glucose propargylpropargyl ether ether using using azidoazido--terminated PLGA terminated PLGA

    Click reaction on D(+)Click reaction on D(+)--Glucose Glucose propargylpropargyl ether ether using using azidoazido--terminated PLGA terminated PLGA

    � Reaction control : Excellent

    � Homogeneous, low temp.

    reaction

    � Well defined structure

    � Reaction control : Excellent

    � Homogeneous, low temp.

    reaction

    � Well defined structure

    nm

    n

    m

  • Poly(DLPoly(DL--LactideLactide--coco--glycolideglycolide))--glucose glucose

    1H-NMR (500 MHz) Spectrum of Poly(D,L)Lactic-glycolicAcid - Star glucose (Mw ~30kDa) polymer in CDCl3 (55% Lactide/ 45% Glycolide mole ratio)

    FTIR : cast-film on KBR salt-plate in transmission mode.

    Polymer Mn (GPC) Mw (GPC) PDI

    PLGA-Glucose 13635 19942 1.46

    GPC analysis Poly(D,L)Lactic - Glycolic Acid - Star glucose copolymer in DCM using Polystyrene standards)

  • 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

    467.51144.40 10.976.00 3.22

    1.5

    5

    3.3

    34.1

    4

    4.3

    4

    5.1

    5

    Star PLA-1H

    c

    b

    e

    f

    a+d

  • 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

    467.51144.40 10.976.00 3.22

    1.5

    5

    3.3

    34.1

    4

    4.3

    4

    5.1

    5

    Star PLA-1H

    c

    b

    e

    f

    a+d

  • sPLLA3 1H

    c

    5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

    1227.66391.70 8.606.00 2.43

    1.5

    8

    3.3

    4

    4.1

    54.3

    7

    5.1

    8

    b e

    f

    a+d

  • 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

    1219.41395.00 24.9511.03 3.962.51

    1.5

    9

    2.7

    2

    3.3

    5

    4.1

    5

    4.3

    8

    5.1

    9

    sPLLA3acid 1H

    c

    b

    f

    g+g’

    a+d

    e

  • Ionomer 1H

    5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

    1257.99395.00 16.98 16.4810.44 1.92

    1.5

    6

    2.6

    4

    3.3

    44.1

    4

    4.3

    5

    5.1

    7

    c

    b

    e fg+g’

    a+d

  • sPLLA3 13C

    c

    hg

    a

    e

    d

    b

    f

    180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

    16.6

    2

    20.5

    0

    43.3

    4

    62.7

    5

    66.6

    9

    69.0

    0

    77.0

    4

    169.5

    9

    175.1

    1

  • 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20

    16

    .63

    20

    .50

    28

    .61

    66

    .69

    69

    .01

    sPLLA3acid 13C

    77

    .05

    16

    9.6

    2

    17

    1.6

    2

    17

    5.1

    5

    17

    5.8

    2 a

    e

    j,j’

    gh

    b

    df

    c

    k

    CDCl3

  • 75 70 65 60

    395.00 7.80

    66

    .69

    69

    .00

    75 70 65 60

    395.00 2.97

    66.6

    9

    69.0

    1

    d

    d

    b

    b

    sPLLA3 13C

    sPLLA3acid 13C

  • 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20

    16.5

    8

    20.3

    9

    29.3

    9

    66.6

    0

    68.9

    5

    77.0

    5

    169.5

    4

    172.3

    1

    175.0

    9176.1

    0

    sPLLA3ionomer 13C

    ck

    f

    d

    b

    g

    j,j’

    h

    a

    e

  • ppm

    2.53.03.54.04.55.05.5 ppm

    168

    170

    172

    174

    176

    178

    sPLLA3ionomer 2D expt

    c

    f

    k

  • Objectives

    Perform curiosity-driven and use-inspired research to expand the sustainable

    chemistry toolbox with new methods and new techniques for next generation

    products

    SUSTAINABLE POLYMERS FROM BIO-DERIVED AND

    BIO-RENEWABLE RESOURCES

    Materials Platform

    Aliphatic Polyesters