sustainable bio-based structural materials:

44
Professor Lawrence T. Drzal Professor Lawrence T. Drzal Dept of Chemical Engineering and Materials Science Dept of Chemical Engineering and Materials Science Composite Materials and Structures Center Composite Materials and Structures Center 2100 Engineering Building 2100 Engineering Building Michigan State University Michigan State University East Lansing, MI East Lansing, MI - - 48824 48824 [email protected] SUSTAINABLE BIO SUSTAINABLE BIO - - BASED BASED STRUCTURAL MATERIALS: STRUCTURAL MATERIALS: OPPORTUNITIES AND CHALLENGES OPPORTUNITIES AND CHALLENGES

Upload: trinhnhi

Post on 01-Jan-2017

220 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Professor Lawrence T. DrzalProfessor Lawrence T. Drzal

Dept of Chemical Engineering and Materials ScienceDept of Chemical Engineering and Materials ScienceComposite Materials and Structures CenterComposite Materials and Structures Center

2100 Engineering Building2100 Engineering BuildingMichigan State UniversityMichigan State UniversityEast Lansing, MIEast Lansing, MI--4882448824

[email protected]

SUSTAINABLE BIOSUSTAINABLE BIO--BASED BASED STRUCTURAL MATERIALS: STRUCTURAL MATERIALS:

OPPORTUNITIES AND CHALLENGESOPPORTUNITIES AND CHALLENGES

Page 2: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Why Why ‘‘SustainableSustainable’’ Materials?Materials?• Reduction in the use of petroleum• Increasing cost of petroleum • Reduction in the amount of energy used for manufacturing and the

production of materials• Reduction in ‘Greenhouse’ gases• Structural Applications and Weight reduction (Higher fuel efficiency)• Consumer ‘pull’ toward sustainability• State of Michigan Economy

What is a What is a ‘‘SUSTAINABLESUSTAINABLE’’Material?Material?• Made from RENEWABLE resources• Recyclable• Biodegradable (end-of-life)• Economically Viable• Environmentally Acceptable

Page 3: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Opportunities – Sustainable,Structural Bio-Composites

If Properties, Processing and Performance are attained• Transportation *• Furniture *• Office/Storage *• Marine *• Housing *• Recreation• Infrastructure *• +1,500,000 tons/yr

Page 4: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

BioPolymers come from…

Future:

SugarSugar FermentationFermentation

Lactic Acid

Monomer Monomer ProductionProduction

Lactide

Polymer Polymer ProductionProduction

PLA

Polymer Polymer ConversionConversion

Ref.: B. S. Glasbrenner (Natureworks) Antec 2005 Ref.: B. S. Glasbrenner (Natureworks) Antec 2005

Page 5: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

BioBio--Based Polymers Based Polymers -- Commercial ProductsCommercial Products

Poly(lactic acid)Poly(lactic acid) Cargill & Mitsui ChemicalsCargill & Mitsui ChemicalsStarch plasticsStarch plastics Novamont, National StarchNovamont, National StarchCellulosic PlasticCellulosic Plastic Eastman ChemicalEastman ChemicalBacterial polyesterBacterial polyester MetabolixMetabolix--ADMADM

Aliphatic / aliphaticAliphatic / aliphatic--aromatic copolyesteraromatic copolyesterEaster BioEaster Bio EastmanEastmanBiomax DuPontBiomax DuPontEcoflex BASFEcoflex BASFBAK BayerBAK BayerBionolle Showa High PolymerBionolle Showa High Polymer

Petroleum blend with Renewable ResourcesPetroleum blend with Renewable ResourcesSorona (DuPont)Sorona (DuPont)BioBio--based polyurethanesbased polyurethanesBioBio--based Epoxy/Polyesterbased Epoxy/Polyester

FromFromRenewablesRenewables

FromFromPetroleumPetroleum

FromFromBioBio--+ Petro+ Petro

Ref. A. K. Mohanty, M. Misra, G. Hinrichsen, Macromol. Mater. Sci. Eng. 276/277, 1-24 (2002)

Page 6: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

BioBio--Based Polymers!?Based Polymers!?• Advantages of Bio-Based Polymers:

– Biodegradable– Made from renewable, sustainable Resources– Very Good processability– Good mechanical properties– Eco-friendly

• Shortcomings:– Biodegradable – Brittle– Water Sensitivity– Low HDT– Thermally Degrade– have an inherent variability in composition, properties, quality– primarily for textiles, packaging and disposables

• Strategy for improving structural properties and performance:– Bio-Composite Materials

• Addition of reinforcing fibers or nanoparticles to improve mechanical, thermal properties and durability

– Control of reinforcement orientation and concentration ‘optimizes’ properties– Adding biobased reinforcing fibers reduces cost

Page 7: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

DIFFERENT FORMS OF COMPOSITES(reinforcing element + matrix)

- - - -- - - -- - - -

Alignedshort fiber

Alignedlong fiber

Randomshort fiber

Fiber inFabric form

Continuous fiber

Randomplatelet

NANO-platelet

NANO-whisker

Page 8: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Elements of a Structural Elements of a Structural ‘‘GreenGreen’’Composite SystemComposite System

Fabrication Process

Biofiber Reinforcement

SurfaceTreatment of Biofibers

BioPolymer Matrix

Page 9: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

REINFORCEMENTS

Page 10: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

BioBio--FIBERSFIBERS

FLAXFLAX ““IndustrialIndustrial”” HEMPHEMP

COIRCOIR

WOODWOOD

JUTEJUTE HENEQUENHENEQUEN

KENAFKENAF

Woven Woven JUTE ClothJUTE Cloth

‘‘NativeNative’’GRASSGRASSCORNCORN

Page 11: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

REINFORCING BIOFIBERS

Non-woodBioFibers

StrawBioFibers

WoodBioFibers

CelluloseNano-whiskers

BAST LEAF SEED/FRUIT

Kenaf, Flax,Jute,Hemp,Grasses

Corn,Wheat,Rice Straw

Sisal, Henequen,

Pineapple Leaf Fiber

Cotton, Coir

Wood& Non-wood

Fibers ThroughAFEX

ConiferousDeciduous

Page 12: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Cellulose NanowhiskersCellulose Nanowhiskers

monocrystalline cellulose domains parallel to the microfibril axis composed of cellulose chains in a cellulose lattice bonded laterally and surrounded by surface chains forming a paracrystalline envelope

Eichhorn et al. 2001

• Cellulose Iβ• Highly crystalline-95%• Highly aligned• Dimensions

– 2-5 nm x 150-300 nm– “Several μm” length– Aspect ratio: 100+– Modulus ~130 GPa– Strength ~10 GPa

• Estimated $5-10/lb

Page 13: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Benefits of ‘Grass’ Biomass

Perennial grasses provide additional below-ground carbon sequestration because of the deep penetration of grass roots

Produce good bio-massNo fertilizerGrows in wet or dry soilPotential for seed production

AtmosphericCO 2

Cycling

Below ground CarbonSequestration

Page 14: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Selected Michigan CropsNet Revenue per Acre

$-

$20.00

$40.00

$60.00

$80.00

$100.00

$120.00

$140.00

$160.00 Oats

Corn Grain

Soybeans

Wheat

Barley

Switchgrass-Fiber forbiocomposites

Switchgrass fiber sold for a projected premium price of $.05/lbs. would generate profits comparable and even exceeding many commonly grown crops in Michigan. Value ~$300M/yr

Values from: Ag. Econ. Report No. 609. 2001 Crops and Livestocks Budgets Estimates for Michigan.

Switchgrass revenues derived from: Oak Ridge Energy Crop County Level Database. December 20th, 1996 version.

All crop values represent Mid-Level crop yield.

Page 15: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Motivation for BioFibersMotivation for BioFibers

Energy savings

6,500

23,500

05,000

10,00015,00020,00025,00030,000

Glass Kenaf

E (B

TUs)

/1 lb

. fib

erWeight savings

1.3

2.6

0

1

2

3

4

Glass Biofiber

Den

sity

, g/c

m3

- Mechanical PERFORMANCE- Biodegradable and Recyclable- CO2 Neutral & Sequesterization

Cost comparison

70

25

020406080

100120

Glass Biofiber

U.S

. Cen

ts/lb

.

Biodegradable Biodegradable MaterialsMaterials

Page 16: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Elements of a Structural Elements of a Structural ‘‘GreenGreen’’Composite SystemComposite System

Fabrication Process

Biofiber Reinforcement

SurfaceTreatment of Biofibers

BioPolymer Matrix

Page 17: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Fiber Treatments

Surface modification – To improve wetability, adhesion, strength, impact resistance, and durability.

ScouringBleachingFire-RetardantHydrophobicAnti-RotAnti-Mildew“Woolenize”

Page 18: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Elements of a Structural Elements of a Structural ‘‘GreenGreen’’Composite SystemComposite System

Fabrication Process

Biofiber Reinforcement

SurfaceTreatment of Biofibers

BioPolymer Matrix

Page 19: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

BioComposite Manufacturing BioComposite Manufacturing Process Requirements Process Requirements • Preserve BioFiber Mechanical Properties

– minimize attrition – minimize mixing degradation– Processing temperature <200oC

• High Degree of BioFiber Dispersion and Wettability• Maximize BioFiber Volume Fraction• Control BioFiber Orientation• High Speed• Low Cost• Environmentally Benign

– No organic solvent – Water process or Dry process

• Low energy consumption

Page 20: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Lower Carrier Sheet

Lower Resin Pot

Twin Screw Feeder

Upper Carrier Sheet Supply Roll

Fiber Distribution

Chute

Vibratory Feeder

Randomly Oriented Fiber Being Deposited

On Top Of Resin

Upper resin PotResin Final Sheet

Material Cut To Length

Friction Grip Wheel

Compaction Rollers

Upper Carrier Sheet

Feed Hopper

Lower Carrier Sheet Supply Roll

BIOCOMPOSITE SHEET MOLDING COMPOUND BIOCOMPOSITE SHEET MOLDING COMPOUND MANUFACTURING PROCESSMANUFACTURING PROCESS

Page 21: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Modified PAPER Process

Thin sheets of partially consolidated cellulose fiber-pp (50/50) sheet composite

Stored for furtherCompression molding

PROFAX 6501 EQUISTAR FP-800-00

Average size: 550 µmAverage size 40 µm

Mixing of PP powder and Paper Stock in the Beater

Hollander Beater

Fourdrinier (Wet) Continuous Process: 160 lb/h

Page 22: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

2.9 3

4.65.9 6.2

11

0

3

6

9

12

A B C D E F

Mod

ulus

(MPa

)

EXAMPLE: EXAMPLE: Kenaf/Soy Plastic BiocompositesKenaf/Soy Plastic Biocomposites

A= 30% kenaf 6mm fiber/ soy composites injection molding B= 33% Kenaf 6mm fiber/ soy compression molding C= 55% Kenaf 2mm fiber/ soy compression molding D= 56% Kenaf 6mm fiber/ soy compression molding E= 57% Kenaf 2 inch fiber /soy compression molding F= 54% Kenaf long fiber/ soy compression molding

50

125

184

370

92

289

0.8

2.7

0.2

2.0

1.2

0.7

0

50

100

150

200

250

300

350

400

A B C D E F

Impa

ct s

tren

gth

(J/m

)

0

0.5

1

1.5

2

2.5

3

Fibe

r len

gth

on Im

pact

su

rfac

e (m

m)

Impact strengthFiber length on impact surface

Page 23: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Sustainable Structural BioCompositesSustainable Structural BioComposites

Partial Biodegradable Completely Biodegradable

ThermoplasticBioComposites

(Biofiber+Poly-propylene/Poly-ethylene etc.)

ThermosetBioComposites(Biofiber+Epoxy,Polyester, etc.)

Biofiber-BiopolymerBioComposites

(Biofiber+Soy plastic/Starch plastic/

Cellulosic Plastic/PLA)

Biofiber-PetroPolymerBioComposites(Biofiber+aliphatic

co-polyesterPolyesteramides)

HYBRID BIO-COMPOSITESThermoplastic/Thermoset/bio-polymers

Reinforced with Two or more Bio-fibers toBalance BioComposite Properties & Cost

Page 24: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Opportunities – Sustainable,Structural Bio-Composites

If Properties, Processing and Performance are attained• Transportation *• Furniture *• Office/Storage *• Marine *• Housing *• Recreation• Infrastructure *• +1,500,000 tons/yr

Page 25: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

OpportunitiesOpportunities……Plant Derived Fiber and Crop Derived PlasticsPlant Derived Fiber and Crop Derived Plastics

Biopolymer growth is expected to exceed~25 percent over the next 3 years

Global demand for biopolymers is forecast ~338,000 tons by 2008 with U.S. market ~$490 million today

Structural composites (consumer) ~2-3 million tons by 2008 Market demand for bio-based composites is being driven by:

Replace/Substitute Glass Fiber Petroleum Based Composites Compete on a modulus, strength and impact basis Require less energy to produce and processRenewability, Biodegradable, RecyclabilityMore competitive price structureDegradability standardsGovernment / legislative tractionConsumer education & adoptionExpanded Market - Agricultural Industry

Page 26: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

BioBased Materials are a Value Added Product of a BIOREFINERY

FeedstocksCornSoyWheatCanolaSugarFlaxSunflowerGrassesBiomass

Oils

Carbohydrate

Glycerol

Fatty acids

Glucose

Fermentationfeedstocks

Modifiedstarches

Citric acidItaconateLysineLactic acidEthanolIsosorbide

LubricantsCoatingsPolyolsPlasticizersThermoplasticsUrethanesPolyestersPlastic

intermediatesBioComposites

Origin Processing Refining Intermediates Products

BioFibersCellulose

Nanowhiskers

Page 27: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Automotive Applications

A.K. Bledzki, O. Faruk,V. E. Sperber, Macromol. Mater. Eng. 2006, 291, 449–457

HEMP

– 90% Natural Fiber/10% Binder– 250 G/M2

Page 28: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

ChallengesChallengesConsistent Biofiber Material Properties

Biofibers stable during storage, shipment, use Biodegradable/Recyclable ‘on demand’Hybridization of Matrix and ReinforcementStructural Design with Higher degree of variabilityIntegrate Life Cycle Analysis into Part and Process DesignPreform Technology that maximizes biofiber properties Modify processing technology to enhance translation of biofiber properties to the composite Domestic source and Infrastructure for Bast Fibers’

Page 29: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:
Page 30: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Utilize agricultural residue such as wheat straw as feedstocks in the extraction of cellulose nanowhiskers (CNW).

Produce high stiffness and low density CNW reinforced nanocomposites.

Improve the mechanical and thermal properties of the nanocomposites surface modification.

MSU Cellulose Nanowhisker Research

Page 31: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

In North America, a large amount of agricultural residue is produced every year after harvesting. Although part of these residuals has to remain in the field to prevent soil erosion and enhance fertility, the excess is available for industrial use.

Wheat strawAbout 1.0-1.1 tons of straw are produced per ton of wheat grain. Wheat straw contains about 35% cellulose.

Ref. [Jim Hettenhaus, The Carbohydrate Economy, v4, n2, 1, 8-10(2002)]

WHEAT STRAW

Page 32: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

TEM - Cellulose nanowhiskers extracted from wheat straw

Transmission electron micrographs showing cellulose nanowhiskers extracted from wheat straw.

200nm

Page 33: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Preliminary results (Wheat straw)

At 80 °C, a 36% improvement in the storage modulus at 3wt% CNW loading.

Dynamic Mechanical PropertiesComparison of the storage modulus at 25 °C

0

1000

2000

3000

4000

5000

6000

Neat PVOHfilm

1wt% WS-CNW/PVOH

3wt% WS-CNW/PVOH

Stor

age

mod

ulus

(MPa

)

Comparison of the storage modulus at 80 °C

0

20

40

60

80

100

120

140

160

180

Neat PVOH film 1wt% WS-CNW/PVOH

3wt% WS-CNW/PVOH

Stor

age

mod

ulus

(MPa

)

Page 34: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

The storage modulus at 80 °CComparison with Halpin-Tsai model

0

20

40

60

80

100

120

140

160

180

Neat PVOH film 1wt% WS-CNW/PVOH

3wt% WS-CNW/PVOH

Stor

age

mod

ulus

(MPa

)

Wheat straw cellulose nanowhiskers:(1) The modulus ~ 150 GPa;(2) The aspect ratio: 15.

Comparing with the Halpin-Tsai model

Page 35: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Thermal stability

Preliminary results (Wheat straw)

TGA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

Temperature (°C)

Wei

ght p

erce

ntag

e

Neat PVOHfilm1wt% WS-CNW/PVOH3wt% WS-CNW-PVOH

Page 36: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

SummarySummary

Cellulose nanowhiskers were extracted from wheat straw;

Cellulose nanowhisker reinforced PVOH composite films were prepared with good dispersion of the whiskers in the polymer matrix.

Preliminary characterization of the composite films showed a significant improvement of modulus.

Page 37: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Professor Lawrence T. DrzalProfessor Lawrence T. Drzal

Dept of Chemical Engineering and Materials ScienceDept of Chemical Engineering and Materials ScienceComposite Materials and Structures CenterComposite Materials and Structures Center

2100 Engineering Building2100 Engineering BuildingMichigan State UniversityMichigan State University

East Lansing, MIEast Lansing, [email protected]

517-353-5466

Page 38: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Lawrence T. Drzal University Distinguished Professor

Chemical Engineering and Materials Science Director, Composite Materials and Structures Center

2100 Engineering Building East Lansing, Mi 48824-1226

Tel. 517-353-5466 Fax 517-432-1634 Email: [email protected]

http://myprofile.cos.com/drzal

BIOBASED MATERIALS PUBLICATIONS (in the area of Bioplastics, Biocomposites and Green Nanocomposites)

---2007---

1. Han, S. O. and Drzal, L. T., Chapter 1. “Curing Characteristics and Water Absorption Behavior of

Glucose Based Polymers”; pp. 1-26, Frontiers in Polymer Research, R. K. Bregg, ed., (2007). 2. Miloaga, D., Hosein, H. A., Misra, M., Han, S. O. and Drzal, L. T., Chapter 1. “Curing

Characteristics and Water Absorption Behavior of Glucose Based Polymers”; pp. 1-26, Frontiers in Polymer Research, R. K. Bregg, ed., (2007).

3. Huda, M. S.,Drzal, L. T., Mohanty, A. K., Misra, M., “The Effect of Silane Treated- and Untreated- Talc on the Mechanical and Physico-mechanical Properties of Poly(lactic acid)/Newspaper fibers/Talc Hybrid Composites”, Composites Part B: Engineering: 38, pp 367-379 (2007).

4. Liu, W., Drzal, L. T., Mohanty, A. K.and Misra, M. "Influence of Processing Methods and Fiber Length on Physical Properties of Kenaf Fiber Reinforced Soy Based BioComposites", Composites Part B: Engineering , 38, pp 352-359 (2007).

5. Huda, M. S., Balan, V, Drzal, L. T., Chundawat, S. P. S., Dale, B. E. and Misra, M., “Effect of Ammonia Expansion (AFEX) and Silane Treatments on Corncob Granules on the Properties of Renewable Resource Based Biocomposites”, J. Biobased Materials Bioenergy, 1, no.1, 1-10 (2007).

6. Zampaloni, M., Pourboghrat, F., Yankovich, S. A., Rodgers, B. N., Moore, J. Drzal, L. T., Mohanty, A.K. and Misra, M. “Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions", Composites Part A: Appl Sci Manuf, 38 (6) pp 1569-1580, (2007).

7. Miyagawa, H., Mohanty, A. K., Burgueño, R., Drzal, L. T. and Misra, M., “Novel Biobased Resins from the Blends of Functionalized Soybean Oil and Unsaturated Polyester Resin”, Journal of Polymer Science Part B: Polymer Physics, 45, No.6, p 698 – 704, 2007.

8. Miloaga, D., H. A. Hosein, Misra, M., Drzal, L. T., “Crystallization of Poly (3-hydroxybutyrate) by Exfoliated Graphite Nanoplatelets”, J. Appl. Polym. Sci., v. 106. No. 4, pp 2548-2558 (2007).

9. Huda, M., Drzal, L. T., Mohanty, A. K. and Misra, M., “Effect of Fiber Surface Treatment on The Properties of Laminated Biocomposites From Poly(Lactic Acid) And Kenaf Fibers” Comp Sci Tech., accepted for publication , June 23, 2007.

10. Huda, M., Drzal, L. T., Mohanty, A. K. and Misra, M., "Effect of Chemical Modifications of The Pineapple Leaf Fiber Surfaces On The Interfacial And Mechanical Properties of Laminated Biocomposites," Comp Interf., accepted for publication, April 19, 2007.

11. Desai, S., Misra, M., Mohanty, A. K. and Drzal, L. T. “Effect of Compatibilizer on Nanostructure of biodegradable Polyhydroxybutyrate-Layered Silicate Nanocomposites” accepted for Polymer, September 2006.

12. Liu, W., Thayer, K., Misra, M. Mohanty, A. K. and Drzal, L. T.; “Processing and Physical Properties of Native Grass Reinforced Biocomposites”, Polymer Engineering and Science, (In press September 2006).

13. Tummala, P., Liu, W., Misra, M., Drzal, L. T., Mohanty, A. K., “Influence Of Plasticizer On Thermal, Mechanical Properties And Morphology Of Soy Flour Based Bioplastic”, Industrial & Engineering Chemistry Research, (In press, September 2006).

Page 39: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

14. Desai, S. M., Mohanty, A. K., Misra, M. and Drzal, L. T. “Solvent-free functionalization of Polyhydroxybutyrate by Reactive Extrusion: Synthesis and Properties” (submitted to Biomacromolecules, December 2005).

15. Lu, J., Askeland, P., and Drzal, L. T.; “Surface Modification of Microfibrillated Nano-Web Cellulose for Epoxy Composite Applications”, submitted to Polymer, July 13, 2007.

16. Lu, J., and Drzal, L. T.; “Microfibrillated Cellulose/Cellulose Acetate Composites: Effect of Surface Treatment” submitted to Biomacromolecules, July 16, 2007

17. Lu, J., and Drzal, L. T.; “Preparation And Properties of Polyvinyl Alcohol Composite Films Based on Microfibrillated Cellulose With Nano-Web Structure" submitted to Composites Part A, April, 2007.

18. Wibowo, A. C., S. M. Desai, Mohanty, A. K., Drzal, L. T., Misra, M., “A solvent free graft copolymerization of maleic anhydride onto cellulose acetate butyrate bioplastic by reactive extrusion”, Macromolecular Materials and Engineering 291, 90–95, (2006).

19. Bhardwaj, R., Mohanty, A. K., L.T. Drzal, F. Pourboghrat and Misra, M. “Renewable Resource based Green Composites from Recycled Cellulose Fiber and Poly (3-hydroxybutyarte-co-3-hydroxyvalerate) Bioplastic”, Biomacromolecules,7(6) pp. 2044-2051 (2006).

20. Wibowo, A., Misra, M., H.M. Park, Drzal, L. T., R. Schalek, Mohanty, A. K., “Biodegradable nanocomposites from cellulose acetate: Mechanical, morphological, and thermal properties”, Composite Part A: applied science and manufacturing, 37A(9), 1428-1433 (2006).

21. Huda, M. S., Drzal, L. T., Mohanty, A. K., Misra, M., “Wood Fiber Reinforced Poly(lactic acid) Composites: Physico-Mechanical and Morphological Properties Evaluation”, Journal of Applied Polymer Science, J. Appl Poly Sci.,102, No.3, pp. 4856-4869 (2006).

--2006—

22. (Chapter) Han, S. O; Drzal, L. T.; “Curing Characteristics And Water Absorption Behavior Of

Glucose Basedpolymers” in Frontiers in Polymer Research, pg 1-26, 2006 23. Wibowo, A. C., Mohanty, A. K., Misra, M. and Drzal, L. T., “Hemp Fiber Reinforced Cellulosic

Plastic Bio-composites: Thermo-Mechanical and Morphological Characterization” (submitted to Industrial and Engineering Chemistry Research – 2005).

24. Park, Hwan-Man; Mohanty, A.K.; Misra, M.; and Drzal, L.T., “Effect of Sequential Mixing Methods & Pre-plasticizing Times on Environmentally Benign Injection Molded ‘Green’ Cellulose Acetate” Nanocomposites, Polymer Engineering Science (in press)-2005.

25. Miyagawa, H.,Mohanty, A. K., Burgueño, R., Drzal, L. T., and Misra, M.; “Characterization and Thermophysical Properties of Unsaturated Polyester-Layered Silicate Nanocomposites”, J Nanosci and Nanotech (2006).

26. Huda, M. S., Drzal, L. T., Mohanty, A. K., and Misra, M., “Chopped Glass and Recycled Newspaper as Reinforcement in Injection Molded Poly(lactic acid) (PLA) Composites: A Comparative Study”, Composites Science and Technology (In Press, Available on line 6 December 2005, http://www.sciencedirect.com).

27. Park, Hwan-Man; Misra, M.; Mohanty, A.K.; and Drzal, L.T., “Effect of compatibilizer on injection molded ‘green’ cellulose acetate nanocomposites”, Macromolecular Rapid Communication.

28. Park, Hwan-Man; Mohanty, A.K.; Misra, M.; and Drzal, L.T., “Effect of Clay Types and Content on injection molded ‘green’ cellulose acetate nanocomposites”, Polymer.

29. Miyagawa, H.; Mohanty, A. K.; Misra, M.; Drzal, L. T.; “Novel Nanocomposites From Carbon Nanofiber Reinforced Biobased Epoxy: Thermophysical And Fracture Properties Evaluation” submitted to Indian Conf.

30. Han, S. O.; Cho, D; Park, W. H. and Drzal, L. T.; “Henequen/Poly(butylene succinate) Biocomposites: Electron Beam Irradiation Effects on Henequen Fiber and the Interfacial Properties of Biocomposites” (submitted to Composite Interfaces July 2005).

31. Seoa, Y. B.; Han, S. O.; Lee, C. H.; Cho, D.; Drzal, L. T.; “Cellulose Degradation of Electron Beam Irradiated Natural Fibers” (submitted to Polymer Degradation, March 2005).

32. Miyagawa, H., Mohanty, A. K., Burgueño, R. Drzal, L. T. and Misra, M., “Novel Biobased Resins from the Blends of Functionalized Soybean Oil and Unsaturated Polyester Resin”, Journal of Polymer Science Part B: Polymer Physics, (Under revision, January 2006).

33. Huda, M. S., Drzal, L. T., Mohanty, A. K., Misra, M., “Wood Fiber Reinforced Poly(lactic acid)

Page 40: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Composites: Physico-Mechanical and Morphological Properties Evaluation”, Journal of Applied Polymer Science, (Under revision, January 2006).

34. Shrojal Desai, Manjusri Misra, Amar K. Mohanty, and Lawrence T. Drzal, “Effect of Compatibilizer on Nanostructure of biodegradable Polyhydroxybutyrate-Layered Silicate Nanocomposites” submitted to Macromolecules Rapid Communications

35. Park, H. M., Mohanty, A. K., Drzal, L. T., Lee, E., Mielewski, D., and Misra, M., "Effect of Sequential Mixing and Compounding Conditions on Cellulose Acetate/ Layered Silicate Nanocomposites", Journal of Polymer and Environment, (In Press 2005).

36. Miyagawa, H. , Mohanty, A. K., R. Burgueno, Drzal, L. T., Misra, M., “Characterization and Thermophysical Properties of Unsaturated Polyester-Layered Silicate Nanocomposites”, Journal of Nanoscience and Nanotechnology (In Press 2005).

37. Mehta, G., Drzal, L. T., Mohanty, A. K. and Misra, M., "Effect of Fiber Surfaces Treatment on Biocomposites from Nonwoven Industrial Hemp Fiber mats and Unsaturated Polyester resin" J. Applied Polymer Science (In Press 2005).

38. Wibowo, S. M. Desai, Mohanty, A. K., Drzal, L. T., Misra, M., “A solvent free graft copolymerization of maleic anhydride onto cellulose acetate butyrate bioplastic by reactive extrusion”, Macromolecular Materials and Engineering (In Press 2005).

39. Miyagawa, H. , Mohanty, A. K., R. Burgueño, Drzal, L. T., Misra, M., “Development of Biobased Unsaturated Polyester Containing Functionalized Linseed Oil”, Industrial & Engineering Chemistry Research, (In Press 2005).

40. Miyagawa, H. , R. J. Jurek, Misra, M., Drzal, L. T., Mohanty, A. K., "Biobased Epoxy/Clay Nanocomposites as a new matrix for CFRP”, Composite Part A: applied science and manufacturing, (In Press 2005).

41. Bhardwaj, R., Mohanty, A. K., L.T. Drzal, F. Pourboghrat and Misra, M. “Renewable Resource based Green Composites from Recycled Cellulose Fiber and Poly (3-hydroxybutyarte-co-3-hydroxyvalerate) Bioplastic”, Biomacromolecules (Under revision, January 2006).

42. Liu, K. Thayer, Misra, M., Mohanty, A. K., Drzal, L. T., “Processing and Physical Properties of Native Grass Reinforced Biocomposites”, Polymer Engineering and Science, (Communicated October 17, 2005).

43. Tummala, P., Liu, W., Misra, M., Drzal, L. T., Mohanty, A. K., 2005. Influence of plasticizer on thermal, mechanical properties and morphology of soy flour based bioplastic, to be submitted.

44. Liu, W., Mohanty, A. K., Misra, M., Drzal, L. T., 2005. Functional monomer modified soy protein plastic, to be submitted.

45. Liu, W., Thayer K., Misra, M., Drzal, L. T., 2005. Structure, morphology and properties of ammonia fiber explosion treated pineapple leaf fiber, to be submitted.

---2005---

46. Khan, M. A.; Hassan, M. M.; Drzal, . L. T. “Effect of 2-hydroxyethyl methacrylate (HEMA) on the

mechanical and thermal properties of jute-polycarbonate composite”, Composites Part A: g, 36(1) 71-81, (2005).

47. Burgueño, R.; Quagliata, M. J.; Mohanty, A. K.; Mehta, G.; Drzal L. T.; Misra, M. “Hierarchical Cellular Designs For Load-Bearing Biocomposite Beams And Plates”, Mater. Sci. Engin. A, 390(1-2) 178-187, (2005).

48. Lee, S. M.; Cho, D.; Park, W. H.; Lee, S. G.; Han, S. O.; Drzal, L. T. “Novel Silk/Poly(Butylene Succinate) Biocomposites: The Effect Of Short Fibre Content On Their Mechanical And Thermal Properties”, Composites Science and Technology, 65(3-4),647-657 (2005).

49. Burgueño, R.; Quagliata, M. J.; Mohanty, A. K.; Mehta, G.; Drzal L. T.; Misra, M. “Hybrid biofiber-based composites for structural cellular plates”, Composites Part A: Applied Science and Manufacturing, 36(1) 1–13 (2005).

50. Miyagawa, H.: Misra, M.; Drzal, L. T.; Mohanty, A. K.; “Fracture Toughness and Impact Strength of Anhydride-cured Biobased Epoxy”, Polym. Engin. Sci., 45 (4) 487-495, (2005).

51. Mehta, G.; Drzal, L. T.; Mohanty, A. K.; Misra, M.; Thayer, K..; “Novel Biocomposites Sheet Molding Compounds for Low Cost Housing Panel Applications” J. Polym, Environ. 13 (2) (2005).

Page 41: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

52. Pandey, J. K.; Kumar, A. P.; Misra, M.; Mohanty, A. K.; Drzal, L. T.; Singh, R. P.; "Recent Advances in Biodegradable Nanocomposites" J. Nanosci. & Nanotechnol., 5 (4) 497-525, (2005).

53. Shi, G.; Drzal, L. T., “Effect of Matrix Polymer Properties on the Interfacial Adhesion between Cellulose Fiber and Polypropylene” J. Adhes Soc Japan, 41 (2) 1-7, (2005).

54. Mehta, G; Drzal, L. T.; Mohanty, A. K.; Misra, M; “Effect of Fiber Surface Treatment on the Properties of Biocomposites from Non woven Industrial Hemp Fiber mats and Unsaturated Polyester Resin” accepted for publication, J.Appl.Poly Sci (2005).

55. Liu, W., Mohanty, A. K., Drzal, L. T. and Misra, M. and “Novel Biocomposites from Native Grass and Soy Based Bioplastic: Processing and Properties Evaluation”, Ind. Chem. Eng. Res. 44, 7105-7122 (2005).

56. Miyagawa, H.; Mohanty, A. K.; Burgueño, R.; Drzal, L. T.; and Misra, M.: “Development of Biobased Unsaturated Polyester Containing Functionalized Linseed Oil”, Industrial & Engineering Chemistry Research, (Accepted, November 28, 2005).

57. Huda, M. S., Drzal, L. T., Misra, M. Mohanty, A. K. Williams, K. and Mielewski, D. F. “A Study on ‘Green’ Composites from Recycled Newspaper Fiber Reinforced Poly(lactic acid)”. Journal of Industrial & Engineering Chemistry Research, 44, 5593-5601, 2005.

58. Huda, M. S., Drzal, L. T., Misra, M. Mohanty, A. K. and Schut, E.“‘Green’ Composites From Recycled Cellulose and Poly(lactic acid): Physico-Mechanical and Morphological Properties Evaluation”. Journal of Materials Science, 40 (16), 4221-4229, 2005.

59. Liu, W., Misra, M., Askeland, P. Drzal, L. T. and Mohanty, A. K.. “Green composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation”. Polymer (2005), 46(8), 2710-2811.

60. Liu, W., Mohanty, A. K., Misra, M., Drzal, L. T., Kurian, J. V., Miller, R. W., and Strickland, N., “Glass Fiber Reinforced Poly (trimethylene terephthalate) Composites: Preparation and Properties Evaluation”, Industrial & Engineering Chemistry Research, (2005), 44(4), 857-862.

61. Mohanty, A. K., Tummala, P. Liu, W., Misra, M. and Drzal, L. T., “Green composites from soy protein based bioplastic and hemp fiber”, Journal of Polymer and Environmental (2005),13(3), 279-285.

62. Miyagawa, H. , Mohanty, A. K., Misra, M., and Drzal, L. T., “Novel Biobased Nanocomposites from Functionalised Vegetable oil and Organically-modified Layered Silicate clay", Polymer, 46(2), 445-453 (2005).

63. Miyagawa, H. , Misra, M., Drzal, L. T., Mohanty, A. K., "Biobased Epoxy/Layered Silicate Nanocomposites: Thermophysical Properties and Fracture Behavior Evaluation", Journal of Polymers and the Environment, 13(2), 87-96 (2005).

64. Miyagawa, H. , Misra, M., Mohanty, A. K., “Mechanical Properties of Carbon Nanotubes and Their Polymer Nanocomposites: A Review”, Journal of Nanoscience and Nanotechnology, 5 (10), 1593-1615 (2005).

65. K. Mohanty, P. Tummala, W. Liu, Misra, M., P.V. Mulukutla, L.T. Drzal “Injection Molded Biocomposites from Soy Protein Based Bioplastic and Short Industrial Hemp Fiber”, Journal of Polymers and the Environment, 13 (3), 279-285 (2005).

66. Miyagawa, H. , Mohanty, A. K., Drzal, L. T., and Misra, M., “Nanocomposites from Biobased Epoxy and Single-Walled Carbon Nanotubes: Synthesis, Mechanical and Thermophysical Properties Evaluation” Nanotechnology 16, 118-124, (2005).

67. R. Burgueño, M. J. Quagliata, Mehta, G., Mohanty, A. K., Misra, M., and Drzal, L. T., “Sustainable Cellular Biocomposites from Natural Fibers and Unsaturated Polyester Resin for Housing Panel Applications,” Journal of Polymers and the Environment, 13 (2), 139-149 (2005).

68. W. Liu, Mohanty, A. K., Drzal, L. T., Misra, M., “Novel Biocomposites from Native Grass and Soy Based Bioplastics: Processing and Properties Evaluation”. Industrial and Engineering Chemistry Research, 44 (18), 7105-7112 (2005).

69. J. S. Choi, S.T. Lim, H. J. Choi, Mohanty, A. K., Misra, M., Drzal, L. T., A. Wibowo, "Rheological, thermal, and morphological characteristics of plasticized cellulose acetate composite with natural fibers" Macromolecular Symposia, (224) 297-307, 2005.

70. (Book) Natural Fibers, Biopolymers and Biocomposites, ( Total 27 chapters, 875 pages) Editors: Mohanty, A. K., Misra, M., Drzal, L. T., CRC Press, Taylor & Francis Group, Boca Raton, FL, April, 2005.

71. (Chapter) Mohanty, A. K., Misra, M., Drzal, L. T., S. E. Selke, B. R. Harte and G. Hinrichsen, “Natural

Page 42: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

Fibers, Biopolymers, and Biocomposites: An Introduction’ in Natural Fibers, Biopolymers and Biocomposites, Editors: Amar K. Mohanty, Manjusri Misra, Lawrence T. Drzal, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2005; p. 1-36.

72. (Chapter) Mohanty, A. K., W. Liu, P. Tummala, Drzal, L. T., Misra, M., and R. Narayan, “Soy Protein-Based Plastics, Blends, and Composites” in Natural Fibers, Biopolymers and Biocomposites, Editors: Amar K. Mohanty, Manjusri Misra, Lawrence T. Drzal, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2005, p. 699-725.

73. (Chapter) J P Latere Dwan’Isa, Mohanty, A. K., Misra, M., and Drzal, L. T., “Biobased Polyurethanes and Their Composites: Present Status and Future Perspective”, in Natural Fibers, Biopolymers and Biocomposites, Editors: Amar K. Mohanty, Manjusri Misra, Lawrence T. Drzal, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2005, p. 775-805.

---2004---

74. Mehta, G.; Mohanty, A. K.; Misra, M.; Drzal, L. T. “Effect of Novel Sizing on the Mechanical and

Morphological Characteristics of Natural Fiber Reinforced Unsaturated Polyester Resin based Bio-Composites”, J. Mater.Sci., 39(8), 2961-2964, (2004).

75. Mohanty, A. K.; Wibowo, A.; Misra, M.; Drzal, L. T. “Effect of Process Engineering on the Performance of Natural Fiber Reinforced Cellulose Acetate Biocomposites” Composites Part A, 35(3), 363 – 370, (2004).

76. Mehta, G.; Mohanty, A. K.; Misra, M.; Drzal, L. T. “Biobased Resin As A Toughening Agent For Biocomposites”, Green Chemistry, 6, 254-258, (2004).

77. Burgueno, R.; Quagliata, M. J.; Mohanty, A. K.; Mehta, G.; Drzal, L. T.; Misra, M. “Load-Bearing Natural Fiber Composite Cellular Beams And Panel”, Composites Part A:, 35(6), 645-656, (2004).

78. Mishra, S.; Mohanty, A. K.; Drzal, L. T.; Misra, M.; Hinrichsen, G. “A Review on Pineapple Leaf Fibers, Sisal Fibers and Their Biocomposites”, Macromol. Mater. Eng. 289, 955–974, (2004).

79. Miyagawa, H.; Mohanty, A. K.; Drzal, L. T.; Misra, M. “Effect of Clay and Alumina-Nanowhisker Reinforcements on the Mechanical Properties of Nanocomposites from Biobased Epoxy: A Comparative Study”, Ind. Eng. Chem. Res. 43(22), 7001-7009, (2004).

80. Dwan’isa, J-P. Latere; Mohanty, A. K.; Misra, M.; Drzal, L. T.; Kazemizadeh, M. “Novel Soy Oil Based Polyurethane Composites: Fabrication and Dynamic Mechanical Properties Evaluation”, J. Mater. Sci. 39(5), 1887-1890, (2004).

81. Dwan’isa, J-P, Latere; Mohanty, A. K.; Misra, M.; Drzal, L. T.; Kazemizadeh, M. “Biobased Polyurethane and Its Composite with Glass Fiber”, J. Mater. Sci. 39(6), 2081-2087, (2004).

82. Joshi, S.; Drzal, L. T.; Mohanty, A. K.; Arora, S. “Are Natural Fiber Composites Environmentally Superior To Glass Fiber Reinforced Composites”, Composites: Part A 35(3,) 371–376, (2004).

83. Miyagawa, H.; Mohanty, A. K.; Misra, M.; Drzal, L. T. “Thermo-physical and Impact Properties of Epoxy Containing Epoxidized Linseed Oil: Part 1: Anhydride-cured Epoxy”, Macromolecular Mater. Engin., 289, 629-635 (2004).

84. Miyagawa, H.; Mohanty, A. K.; Misra, M.; Drzal, L. T. “Thermo-physical and Impact Properties of Epoxy Containing Epoxidized Linseed Oil: Part 2: Amine-cured Epoxy”, Macromolecular Mater. Engin., 289, 636-641 (2004).

85. Drzal, L. T.; Mohanty, A. K.; Burgueno, R.; Misra, M., “Biobased Structural Composite Materials for Housing and Infrastructure Applications: Opportunities and Challenges", NSF-PATH Housing Research Agenda Workshop, Proceedings and Recommendations, (M. G. Syal, M. Hastak and A. A. Mullens eds.) 129-140,(2004).

86. Khan, M. A.; Drzal, L. T. “Characterization of 2-hydroxyethyl methacrylate (HEMA)-treated jute surface cured by UV Radiation”, J.Adh. Sci. Tech., 18(3), 381-393,(2004)

87. Park, H.; Mohanty, A. K.; Misra, M.; Drzal, L. T. “Green" Nanocomposites from Cellulose Acetate Bioplastic and Clay: Effect of Eco-Friendly Triethyl Citrate Plasticizer, Biomacromolecules, 5(6), 2281-2288, (2004).

88. Park, H.; Liang, X.; Mohanty, A. K.; Misra, M.; Drzal, L. T. “Effect of Compatibilizer on Nanostructure of the Biodegradable Cellulose Acetate/Organoclay Nanocomposites”, Macromolecules, 37(24), 9076-9082, (2004).

Page 43: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

89. Wibowo, A. C.; Mohanty, A. K.; Misra, M.; Drzal, L. T. “Chopped Industrial Hemp Fiber Reinforced Cellulosic Plastic Bio-composites: Thermo-Mechanical and Morphological Characterization”, Ind. Engin. Chem. Res., 43(16), 4883-4888, (2004).

90. Liu, W.; Mohanty, A. K.; Drzal, L. T.; Misra, M. “Influence Of Fiber Surface Treatment On Morphology And Properties Of Indian Grass Reinforced Soy Protein Based Composites.” Polymer, 45(22), 7589-7596, (2004).

91. Choi, J. S.; Lim, S. T.; Choi, H. J.; Mohanty, A. K.; Drzal, L. T.; Misra, M.; Wibowo, A. “Preparation And Characterization Of Plasticized Cellulose Acetate Biocomposite With Natural Fiber”, J. Mater. Sci., 39(21), 6631-6633, (2004).

---2003---

92. Khan, Mubarak A. , Sirai, M. S., Rahman, M. M. and Drzal, L. T., “Improvement of Mechanical

Properties of Coir Fiber (Cocus nucifera) with 2-Hydroxyethyl Methacrylate (HEMA) by Photocuring”, Poly Plast Tech Eng, 42(2) 253 - 265 (2003).

93. Han, S. O. and Drzal, L. T., “Water Absorption Effects On Hydrophilic Polymer Matrix Of Carboxyl Functionalized Glucose Resin And Epoxy Resin” Europ. Polym. J., 39:9:1791-1799 (2003).

94. Mohanty, A. K.,Wibowo, A., Misra, M. and Drzal, L. T., “Development of Renewable Resource Based Cellulose Acetate Bioplastic: Effect of Process Engineering on the Performance of Cellulosic Plastics” Polymer Engineering and Science (January 2003).

95. Liu, W., Mohanty, A. K., Drzal, L. T.,Askeland, P. and Misra, M., “Effects of Alkali Treatment on the Structure, Morphology and Thermal Properties of Native Grasses as Reinforcements for Polymer Matrix Composites” accepted, J. Matr Sci Letters (August 11, 2003).

96. Khan, M. A. and Drzal, L. T., “Improvement of Jute surface properties with 2-hydroxyethyl methacrylate (HEMA) by UV Radiation”, J. Adhesion Sci. Technol. (accepted 2003).

97. Khan, M. A., Khabir, H., Ahmed, S. U. and Drzal, L. T., “Effect Of Mercerization On Surface Modification Of Sisal Fiber With 2-Hydroxyethyl Hexyl Methacrylate (HEMA) By UV Radiation”, accepted Cellulose (2003).

98. Mehta, G., Mohanty, A. K., Misra, M. and Drzal, L. T., “Biobased Resins as a Toughening Agent for Biocomposites” (submitted to Green Chemistry December 2003).

99. Desai, S. M., Mohanty, A. K., Misra, M. and Drzal, L. T. “Solvent-free functionalization of Polyhydroxybutyrate by Reactive Extrusion: Synthesis and Properties” (submitted to Biomacromolecules, December 2003).

100. Wibowo, A. C., Mohanty, A. K., Misra, M. and Drzal, L. T., “Hemp Fiber Reinforced Cellulosic Plastic Bio-composites: Thermo-Mechanical and Morphological Characterization” (submitted to Industrial and Engineering Chemistry Research – November, 2003).

101. Shi, G. and Drzal, L. T., “Effect of Matrix Polymer Properties on the Interfacial Adhesion Between Cellulose Fiber and Polypropylene” (submitted to J. Adhesion - 2004).

102. Shi, G. and Drzal, L. T., “Effect of Surface Chemistry and Topography on the Interfacial Adhesion of Natural Fibers to an Epoxy Matrix”, (submitted to J. Adh. Sci & Tech. - 2004).

103. Shi, G. and Drzal, L. T., “Effect of Oxygen Plasma and Silane Treatment on the Interfacial Adhesion Between Cellulose Fiber and Epoxy” (submitted to Intl. J. Adh & Adhesives - 2004).

104. Liu, W., Mohanty, A. K., Misra, M. and Drzal, L. T., “Influence Of Fiber Surface Treatment On Morphology And Properties Of Indian Grass Fiber Reinforced Soy Protein Based Bio-Composites”, (submitted to Macromolecular Materials - 2004)

---2002---

105. Mohanty, A. K., Drzal, L. T. and Misra, M., “Novel Hybrid Coupling Agent As Adhesion Promoter

in Natural Fiber Reinforced Powder Polypropylene Composites”, Journal of Materials Science: Letters” (Accepted July 02, 2002).

106. Mohanty, A. K., Misra, M., and Drzal, L. T., “Sustainable Bio-Composites From Renewable Resources: Opportunities and Challenges in the Green Materials World”, Journal of Polymers and the Environment, 10 (1/2), 19-26 (2002).

Page 44: SUSTAINABLE BIO-BASED STRUCTURAL MATERIALS:

107. Mohanty, A. K., Drzal, L. T and Misra, M., “Engineered Natural Fiber Reinforced Composites: Influence of Surface Modifications and Novel Powder Impregnation Processing”, Journal of Adhesion Science and Technology, 16 (8), 999-1015 (2002).

---2001---

108. Mohanty, A. K., Misra, M., and Drzal, L. T., “Surface modifications of natural fibers and

performance of the resulting biocomposites: An Overview“, Composite Interface, 8(5), 313-343 (2001). (REVIEW ARTICLE)

PATENTS GRANTED 1. Drzal, L. T. and Han, Seoing Ok, “Epoxy Resin and Polyglycoside and Process for The Preparation Thereof”, US Patent No. 6,723,802 B2, April 20, 2004. 2. Mohanty, A. K., Drzal, L. T., Rook, B. P. and Misra, M., “Environmentally friendly polylactide-based composite formulations” US Patent No. 6,869,985, March 22, 2005. 3. Drzal, L. T. and Tummala, P., “Chemical Functionalization of Material Surfaces Using Ultraviolet Light and Water Solutions”, US Patent No. 7,094,451, August 22, 2006. 4. Dwan’Isa, J. P., Drzal, L. T., Mohanty, A. K., and Misra, M., “Polyol Fatty Acid Polyesters Process and Polyurethanes Therefrom”, US Patent No. 7,125,950, October 24, 2006. 5. Drzal, L. T., Mehta, G., Misra, M., Mohanty, A. K., Thayer, K., “Biocomposites sheet molding and methods of making those”, US Patent No. 7,208,221, April 24, 2007. 6. Mohanty, A. K., Drzal, L. T., Park, H., Misra, M and Wibowo, A. C., “Compositions of Cellulose Esters and Layered Silicates for the Preparation Thereof”, US Patent No. 7,253,221, August 7, 2007.

PATENTS PENDING: (US, WO, CA, AND EP) APPLICATIONS

1. Biobased Epoxy, Their Nanocomposites and Methods of making those (Inventors: Drzal, L. T., Misra, M., Miyagawa, H. , Mohanty, A. K., - - WO2005047370 (Patent Pending). 2. Prepreg polyester sheet molding containing natural fibers and methods of making those. (Inventors: Drzal, L. T., Mehta, G., K. Thayer, Misra, M., Mohanty, A. K. - - PCT Int. Appl. (2005), 69 pp. WO 2005037516 A2 (Patent Pending). 3. Anhydride functionalized Polyhydroxy alkanoates, preparation, and use thereof; (Inventors: Mohanty, A. K., Drzal, L. T., S. M. Desai, Misra, M., P. Mulukutla, U S Patent Application filed February 2005) (Patent Pending). 4. Polyhydroxyalkanoate compositions using anhydride-grafted polyhydroxyalkanoates as reactive compatibilizer. (Inventors: Mohanty, A. K., Drzal, L. T., S. M. Desai, Misra, M., P. Mulukutla, PCT Int. Appl. (2005), 79 pp. WO 2005078018 A1) (Patent Pending) 5. Cellulosic Biomass Soy Flour based Biocomposites and Process for Manufacturing Thereof, (Inventors: Drzal, L. T., Mohanty, A. K., W. Liu, Misra, M., U S Patent Application filed August 2005) (Patent Pending).