sustainability of tall buildings: structural design and intelligent technologies

45
Sustainability of tall buildings: structural design and intelligent technologies Konstantinos Gkoumas Dipartimento di Ingegneria Strutturale e Geote July 11 2014 Dipartimento di Ingegneria Strutturale e Geotecnica Faculty of Architecture (Room11B), Via Antonio Gramsci 53, Rome

Upload: konstantinos-gkoumas

Post on 06-May-2015

1.189 views

Category:

Engineering


8 download

DESCRIPTION

Presentation at the Department of Structural and Geotechnical Engineering of the Sapienza University of Rome.

TRANSCRIPT

Page 1: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Konstantinos Gkoumas Dipartimento di Ingegneria Strutturale e Geotecnica

July 11 2014Dipartimento di Ingegneria Strutturale e GeotecnicaFaculty of Architecture (Room11B), Via Antonio Gramsci 53, Rome

Page 2: Sustainability of tall buildings: structural design and intelligent technologies

Konstantinos Gkoumas11/07/2014

Sustainability of tall buildings:structural design and intelligent technologies

Page 2

Personal profile

Appointments

2011-present Research Fellow (PostDoc), Department of Structural and Geotechnical Engineering - Sapienza University of Rome. Research on dependability and energy harvesting for structures and infrastructures.

2009-’10 Postdoctoral Fellow (German Academic Exchange Service), Institut für Numerische und Angewandte Mathematik, Universität Göttingen, Germany.

2005-’08 Professional Engineer (part-time) at Co.Re. Ingegneria Srl., Rome.

2004-’07 PhD Student, Department of Hydraulics, Transportation and Roads - Sapienza University of Rome.

Page 3: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 3

SustainabilityOverview

SUSTAINABILITY

SOCIAL

ENVIRONMENTAL

ECONOMIC

SUSTAINABLE DEVELOPMENT: “Development that meets the needs of the present without compromising the ability of future generations to meet their own needs.” (Brundtland Commission, 1987)

Konstantinos Gkoumas11/07/2014

Page 4: Sustainability of tall buildings: structural design and intelligent technologies

Steel Material

• 40% of resources from recycling

• Manufacturing process with controlled environmental impact

• Material durability

• High recycling rate

Construction Phase

• prefabrication/ offsite manufacture

Design and

Service Life

• Weight reduction of structure

• Creation of versatile spaces

• Longevity and robustness of steel components

• Simple incorporation of renewable energy generation systems

End of Life

• Easy dismantling

• Reusability/Reciclability

Source: Foster + Partners Hearst Tower USA, 2000 - 2006

Sustainability of tall buildings:structural design and intelligent technologies

Page 4

SUSTAINABILITY

INSTRUCT

URES

MaterialUsed

Resource

Efficient

SitePlanning

NonPollution

EnergyEfficienc

y

Structural

Form

SustainabilityUse of steel and structural form

Konstantinos Gkoumas11/07/2014

Page 5: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 5

SUSTAINABILITY

INSTRUCT

URES

MaterialUsed

Resource

Efficient

SitePlanning

NonPollution

EnergyEfficienc

y

Structural

Form

SustainabilityBuilding automation and energy harvesting

Konstantinos Gkoumas11/07/2014

Page 6: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 6

SUSTAINABILITY

INSTRUCT

URES

MaterialUsed

Resource

Efficient

SitePlanning

NonPollution

EnergyEfficienc

y

Structural

Form

SustainabilityDiagrid, building automation and energy harvesting

Diagrid: double façade - chimney effect

Konstantinos Gkoumas11/07/2014

Page 7: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 7

SustainabilityTall buildings

Ali, M. M., Moon, K. S. (2007). Structural Development in Tall Buildings: Current Trends and Future Prospects. Architectural Science Review, Vol. 50, pp. 205-223.

Interior structures

Konstantinos Gkoumas11/07/2014

Page 8: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 8

SustainabilityTall buildings

Ali, M. M., Moon, K. S. (2007). Structural Development in Tall Buildings: Current Trends and Future Prospects. Architectural Science Review, Vol. 50, pp. 205-223.

Interior structures Exterior structures

Konstantinos Gkoumas11/07/2014

Page 9: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 9

Diagrid structureDiagrid module

Mele, E., Toreno, M., Brandonisio, G. and Del Luca, A. (2014). Diagrid structures for tall buildings: case studies and design considerations. The Structural Design of Tall and Special Buildings. Wiley Online Library, Vol. 23, No. 2, pp. 124-145.

effect of gravity load

effect of overturning moment

effect of shear force

Konstantinos Gkoumas11/07/2014

Page 10: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 10

Diagrid structureInitial configuration and diagrid schemes

Outrigger Structure Diagrid Structures

42° 60° 75°

160

m

36 m

Konstantinos Gkoumas11/07/2014

Page 11: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 11

Original Structure:Outrigger

Improved Structure:Diagrid

PerimetralStructure

InternalStructure

Diagrid structureStructural configuration

Konstantinos Gkoumas11/07/2014

Page 12: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 12

SLS Dead Gk Tamp Qk Qn W+X W-X W+Y W-Y

COMB5 1 1 1 0,7 0,5 1 - - -

COMB6 1 1 1 0,7 0,5 - 1 - -

COMB7 1 1 1 0,7 0,5 - - 1 -

COMB8 1 1 1 0,7 0,5 - - - 1

ULS Dead Gk Tamp Qk Qn W+X W-X W+Y W-Y

COMB5 1,3 1,3 1,3 1,05 0,75 1,5 - - -

COMB6 1,3 1,3 1,3 1,05 0,75 - 1,5 - -

COMB7 1,3 1,3 1,3 1,05 0,75 - - 1,5 -

COMB8 1,3 1,3 1,3 1,05 0,75 - - - 1,5

Acronym Description Color

Outrigger Outrigger Structure

Diagrid 42°Diagrid Structure with inclination of diagonal members of 42°

Diagrid 60°Diagrid Structure with inclination of diagonal members of 60°

Diagrid 75°Diagrid Structure with inclination of diagonal members of 75°

Outrigger 42° 60° 75°

P(ton)

8052 6523 5931 5389

Saving(%)

- 19 26 33

0

1000

2000

3000

4000

5000

6000

7000

8000

9000Weight

P (

ton

)

Diagrid structureAnalyses and comparisons

Konstantinos Gkoumas11/07/2014

Page 13: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 13

Diagrid structureModal analysis

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Outrigger 3.741908 3.624657 2.478095 1.162387 1.084865 0.795965 NaN NaN NaN NaN NaN NaN

Diagrid 42° 3.105204 3.083854 1.724092 0.994648 0.958515 0.782728 NaN NaN NaN NaN NaN NaN

Diagrid 60° 3.308391 3.286263 1.941394 1.028297 0.989485 0.943294 NaN NaN NaN NaN NaN NaN

Diagrid 75° 3.650044 3.614059 2.824054 1.273738 1.236856 1.175041 NaN NaN NaN NaN NaN NaN

0.25

0.75

1.25

1.75

2.25

2.75

3.25

3.75

First six periods

T (

s)

Traslational in Y

direction

Traslational in X

direction

Rotationalaround Z

axis

Traslational in Y

direction

Traslational in X

direction

Rotationalaround Z

axis

Konstantinos Gkoumas11/07/2014

Page 14: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 14

Diagrid structureSLS - load combinations

SLS Dead Gk Tamp Qk Qn W+X W-X W+Y W-Y

COMB5 1 1 1 0,7 0,5 1 - - -

COMB6 1 1 1 0,7 0,5 - 1 - -

COMB7 1 1 1 0,7 0,5 - - 1 -

COMB8 1 1 1 0,7 0,5 - - - 1

HORIZONTAL DISPLACEMENTS

COMB

Out

rigge

r

Dia

grid

42°

Dia

grid

60°

Dia

grid

75°

Acronym Description Color

Outrigger Outrigger Structure

Diagrid 42°

Diagrid Structure with inclination of diagonal members of

42°

Diagrid 60°

Diagrid Structure with inclination of diagonal members of

60°

Diagrid 75°

Diagrid Structure with inclination of diagonal members of

75°

Konstantinos Gkoumas11/07/2014

Page 15: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 15

Diagrid structureHorizontal displacements

0

16

32

48

64

80

96

112

128

144

160

0 20 40 60 80 100 120 140 160 180

Diagrid 42° Diagrid 60° OutriggerDiagrid 75° SLS limit

U1 (m)

Z (

m)

Out

rigge

r

Dia

grid

42°

Dia

grid

60°

Dia

grid

75°

Konstantinos Gkoumas11/07/2014

Page 16: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 16

Diagrid structureULS - load combinations, pushover

Out

rigge

r

Dia

grid

42°

Dia

grid

60°

Dia

grid

75°

Acronym Description Color

Outrigger Outrigger Structure

Diagrid 42°

Diagrid Structure with inclination of diagonal members of

42°

Diagrid 60°

Diagrid Structure with inclination of diagonal members of

60°

Diagrid 75°

Diagrid Structure with inclination of diagonal members of

75°

ULS Dead Gk Tamp Qk Qn W+X W-X W+Y W-Y

DEAD 1 - - - - - - - -

VERT 1 1 1 - - - - - -

+STATIC PUSHOVER FORCES

PUSHOVER

DEAD VERT

Konstantinos Gkoumas11/07/2014

Page 17: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 17

Diagrid structureCOMB 5 U.L.S.

DIAGRID 42°

DIAGRID 60°

DIAGRID 75°

Diagrid 42° Interior Columns

3%

97%

Shear

Interior Columns

Diagrid

11%

89%

Normal

Interior Columns

Diagrid

2%

97%

1%

ShearInterior ColumnsDiagrid/ Edge Col-umnsCorner Columns

11%

45%

44%

NormalInterior ColumnsDiagrid/ Edge Col-umnsCorner Columns

5%

95%

Shear

Interior Columns

Diagrid

7%

93%

Normal

Interior Columns

Diagrid

Diagrid 60°

Diagrid 75°

Interior Columns

Interior Columns

Konstantinos Gkoumas11/07/2014

Page 18: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 18

Diagrid structureDiagrid 60°: Pushover (YZ Sections)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

20000

40000

60000

80000

100000

120000

140000

160000

180000Pushover

Step25

Step28

Step37

Step44

Step51

Step67

U1 (m)

F (

kN)

Step 67Step 51Step 44Step 37Step 25

Konstantinos Gkoumas11/07/2014

Page 19: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 19

Diagrid structureDiagrid 60°: Pushover+Vert (YZ Sections)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

20000

40000

60000

80000

100000

120000

140000

160000

180000

Pushover+Vert

Step11

Step16

Step39

Step47

Step55

U1 (m)

F (

kN)

Step 47 Step 55Step 39Step 11

VERT

Konstantinos Gkoumas11/07/2014

Page 20: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 20

Diagrid structureComparison of capacity curves

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

20000

40000

60000

80000

100000

120000

140000

160000

180000

Pushover

U1 (m)

F (

kN)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Pushover+Vert

Outrigger

Diagrid 42°

Diagrid 60°

Diagrid 75°

U1 (m)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Pushover+Dead

U1 (m)

DEAD VERT

Konstantinos Gkoumas11/07/2014

Page 21: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 21

Diagrid structureDefinition of significant properties

R=Fmax (Strength)

K=Fy/Dy

(Stiffness)

m=Dmax/Dy (Ductility)

Konstantinos Gkoumas11/07/2014

Page 22: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 22

Diagrid structureComparison of significant properties

Outrigger Diagrid 42° Diagrid 60° Diagrid 75°

Pushover+Vert Pushover+Vert Pushover+Vert Pushover+Vert

Strength(R) – kN 94775 110185 104972 97131

Stiffness(K) – kN/m 77143 80615 71306 60897

Ductility(m) 1,535 3,587 5,681 2,564

Weight(P) - Ton 8052 6523 5931 5389

Weighted average (W.A.) of significant properties 

Outrigger Diagrid 42° Diagrid 60° Diagrid 75°

Pushover+Vert Pushover+Vert Pushover+Vert Pushover+Vert

Strength(R) – kN 94775 110185 104972 97131

Stiffness(K) – kN/m 77143 80615 71306 60897

Ductility(m) 1,535 3,587 5,681 2,564

Weight(P) - Ton 8052 6523 5931 5389

W.A. 4,20 5,97 7,25 5,08

Konstantinos Gkoumas11/07/2014

Page 23: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 23

Diagrid structureComparison of Mechanical Properties

R/R0

K/K0

m/m0

1,2 ((P0-P)/P0+1) 0

2

4

Pushover+Vert

Outrigger Diagrid 42° Diagrid 60° Diagrid 75°

Konstantinos Gkoumas11/07/2014

Page 24: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 24

Diagrid structureDiagrid 60°: Robustness checks

D1,L1

D1,L2

D2,L1

D2,L2

D3,L1

D3,L2

0 0.5 1 1.5 2 2.5 30

20000

40000

60000

80000

100000

120000

140000

Pushover

D1,L1D1,L2D2,L1D2,L2D3,L1D3,L2INTATTA

U1 (m)

F (

kN

)

Konstantinos Gkoumas11/07/2014

Page 25: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 25

DiagridFuture research – apply simplified robustness indexes (1)

Olmati, P., Gkoumas, K., Brando, F. and Cao, L., (2013). Consequence-based robustness assessment of a steel truss bridge. Steel and Composite Structures, Vol. (14), No (4), pp. 379-395.

Konstantinos Gkoumas11/07/2014

Page 26: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 26

DiagridFuture research – apply simplified robustness indexes (2)

Kun λiun

Eigenvalues

Kdam λidam

Consequence factor

Robustness index

Nafday, A.M. (2011), “Consequence-based structural design approach for black swan events”, Structural Safety, Vol. 33, No. (1), pp. 108-114.

Olmati, P., Gkoumas, K., Brando, F. and Cao, L., (2013). Consequence-based robustness assessment of a steel truss bridge. Steel and Composite Structures, Vol. (14), No (4), pp. 379-395.

Konstantinos Gkoumas11/07/2014

Page 27: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 27

DiagridFuture research – apply simplified robustness indexes (3)

d1d2d3

d4d5

d7

d6

37

5942 45

35 3823

63

4158 55

65 6277

0

20

40

60

80

100

1 2 3 4 5 6 7

Rob

ustn

ess

%

ScenarioCf max Robustness

83 87 88

5360

86

64

17 13 12

4740

14

36

0

20

40

60

80

100

1 2 3 4 5 6 7

Rob

ustn

ess

%

ScenarioCf max Robustness

Damage scenario Damage scenariod1 d2 d3 d4 d5 d6 d7 d1 d2 d3 d4 d5 d6 d7

Pier 6Pier 7

North

Pier 6

Konstantinos Gkoumas11/07/2014

Page 28: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 28

Energy harvestingIntroduction

Fonte:

Konstantinos Gkoumas11/07/2014

Page 29: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 29

Energy Harvesting (EH) can be defined as the sum of all those processes that allow to capture the freely available energy in the environment and convert it in (electric) energy that can be used or stored.

Resources

Sun

Water

Wind

Temperature differential

Mechanical vibrations

Acoustic waves

Magnetic fields

Extraction systems

Magnetic Induction

Electrostatic

Piezoelectric

Photovoltaic

Thermal Energy

Radiofrequency

Radiant Energy

Energy harvestingSources

Harvesting ConversionUse

Storage

Energy harvesting is the process of extracting energy from the environment or from a surrounding system and converting it to useable electrical energy.

Konstantinos Gkoumas11/07/2014

Page 30: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 30

Image courtesy of enocean-alliance®

http://www.enocean-alliance.org

Energy sustainabilityBAS (Building Automation Systems)

• EH devices are used for powering remote monitoring sensors (e.g. temperature sensors, air quality sensors), also those placed inside heating, ventilation, and air conditioning (HVAC) ducts.

• These sensors are very important for the minimization of energy consumption in large buildings

Konstantinos Gkoumas11/07/2014

Page 31: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 31

Energy sustainabilityBAS (Building Automation Systems)

Currently:

• Power is provided by batteries or EH devices based on thermal or RF methods

• Sensors work intermittently (to consume less power ~ 100µW)

An EH sensor based on piezoelectric material has several advantages being capable to provide up to 10-15 times more power than currently used devices leading to additional

applications or longer operation time.

Image courtesy of enocean-alliance®

http://www.enocean-alliance.org

Konstantinos Gkoumas11/07/2014

Page 32: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 32

Piezoelectric energy harvestingDesign of a piezoelectric bender - issues

Konstantinos Gkoumas11/07/2014

Page 33: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 33

Piezoelectric energy harvestingPiezoelectric bender with tip mass

Air flow

Konstantinos Gkoumas11/07/2014

Page 34: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 34

Piezoelectric benderPrincipal bibliography

Weinstein, L. A., Cacan, M. R., So, P. M. and Wrigth, P. K. (2012). Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows. Smart Materials and Structures. Vol. 21, 10pp.

Wu, N., Wang, Q. and Xie, X. (2013). Wind energy harvesting with a piezoelectric harvester. Smart Materials and Structures, Vol. 22, No. 9.

Konstantinos Gkoumas11/07/2014

Page 35: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 35

Piezoelectric energy harvestingThe vortex shedding effect

A body, immersed in a current flow, produces a wake made of vortices that periodically detach alternatively from the body itself with a frequency ns.

 

 

 

 

 

 

AVOID THE DRAWBACK: By setting the aerodynamic fin to undergo in VS regime it is possible to obtain the maximum efficiency in terms of energy extraction

CNR-DT 207/2008

Konstantinos Gkoumas11/07/2014

Page 36: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 36

Design of a bender made of a certain material with a piezoelectric patch, which can experiment the resonance

(lock-in) with the external force deriving from theVortex Shedding phenomenon.

The lock-in conditions produce the highest level of power.

 

Dimensions

Materials

Configurations

 

Dimensions

Added mass

Design points

Piezoelectric benderParametric analyses

Konstantinos Gkoumas11/07/2014

Page 37: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 37

Piezoelectric benderParametric analyses

LEAD ZIRCONATE TITANATE

Density ρ 7800 kg/m3

Young Modulus E 6.6 x103 N/m2

Poisson ratio υ 0.2

Relative dielectric

constant kT3

1800

Permittivity ε 1.602 x10-8 F/m

Piezoelectric constant d31 -190 x10-12 m/V (C/N)

ELEMENTS DIMENSIONS VALUES (m)

BENDER

l 0.06÷0.2 m

b 0.001÷0.08 m

d 0.02÷0.05 m

a 0.01

PIEZOELECTRIC

PATCH

l1 0.0286

b1 0.0017

d1 0.0127

ADDED MASS

l2 variable

b2 0.01

d2 d

MATERIAL E (N/m2) ρ (kg/m3)

Aluminum

Lead

Konstantinos Gkoumas11/07/2014

Page 38: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 38

Piezoelectric benderVoltage output for different bender lengths

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

ΔV2 (Length)

l=0.15l=0.16l=0.17l=0.18l=0.19l=0.20

t (s) (x10-3)

ΔV2

(V)

Konstantinos Gkoumas11/07/2014

Page 39: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 39

0.02 0.03 0.04 0.058.5

9

9.5

10

10.5

11

Critical Velocity (Width)

d (m)

Cri

tica

l V

elo

city

(m

/s)

The Critical Velocity increases with the thickness and the width, it

decreases with the length.

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.0080

5

10

15

20

Critical Velocity (Thickness)

b (m)

Cri

tica

l V

elo

city

(m

/s)

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20

10

20

30

40

50

Critical Velocity (Length)

l (m)

Cri

tica

l V

elo

city

(m

/s)

 

Piezoelectric benderParametric analyses

Operational velocity range

Konstantinos Gkoumas11/07/2014

Page 40: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 40

Piezoelectric benderMass (material) parametric analyses – aluminum bender

High frequencies

High critical velocities

Operational velocity range 

Konstantinos Gkoumas11/07/2014

Page 41: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 41

Piezoelectric benderTip-mass parametric analyses

2 2.5 3 3.5 4 4.5 50.00

0.01

0.02

0.03

0.04

0.05

0.06

Mass length (vcr)

Critical Velocity (m/s)

Mas

s L

egn

th (

m)

0.15 0.155 0.16 0.165 0.17 0.175 0.18 0.185 0.19 0.195 0.20

0.02

0.04

0.06

0.08

Mass Length (Bender Length)

l (m)

Mas

s le

ng

th (

m)

0.003 0.0035 0.004 0.0045 0.005 0.0055 0.0060

0.020.040.060.080.1

0.120.14

Mass Length (Bender Thickness)

b (m)

Mas

s le

ng

th (

m)

 

   

 

vcr = 3,5 m/s

vcr = 3,5 m/s

vcr = 2-5 m/s

Konstantinos Gkoumas11/07/2014

Page 42: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 42

FICTICIOUS MATERIAL

Young Modulus

E3.45 x1010 N/m2

Density ρ 7000 kg/m3

 

Piezoelectric benderPower output

Konstantinos Gkoumas11/07/2014

Page 43: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 43

Piezoelectric energy harvestingFuture research (1)

From: NSF Proposal 2013, MECHANICAL MODELS OF LOADS AND DEVICES FOR GREEN ENERGY HARVESTING AND SUSTAINABLE INFRASTRUCTURE SYSTEMS

Paolo Bocchini (Lehigh University), Konstantinos Gkoumas and Francesco Petrini

Air flowFAPED

Flow Activated PiezoElectricDevices

Konstantinos Gkoumas11/07/2014

Page 44: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 44

Piezoelectric energy harvestingFuture research (2)

SAPEB

SqueezingActivatedPiezoElectricBearings

F

F

SAPEB

Kim, S-H, Ahn, J-H, Chung, H-M and Kang, H-W (2011). Analysis of piezoelectric effects on various loading conditions for energy harvesting in a bridge system, Sensors and Actuators A: Physical, Vol. 167, No (2), pp. 468-483.

Ha, D-H, Kim, D, Choo, J.F. and Goo, N.S. (2011). Energy harvesting and monitoring using bridge bearing with built-in piezoelectric material. The 7th International Conference on Networked Computing (INC), pp. 129 – 132.

From: NSF Proposal 2013, MECHANICAL MODELS OF LOADS AND DEVICES FOR GREEN ENERGY HARVESTING AND SUSTAINABLE INFRASTRUCTURE SYSTEMS

Paolo Bocchini (Lehigh University), Konstantinos Gkoumas and Francesco Petrini

Konstantinos Gkoumas11/07/2014

Page 45: Sustainability of tall buildings: structural design and intelligent technologies

Sustainability of tall buildings:structural design and intelligent technologies

Page 45

Sustainability of tall buildings:structural design and intelligent technologies

Thank you!

Konstantinos Gkoumas11/07/2014