surfaces with moebius syndrrome

Upload: thodoris-yuruba-bombadill

Post on 06-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Surfaces With Moebius Syndrrome

    1/8

  • 8/18/2019 Surfaces With Moebius Syndrrome

    2/8

    672   Li H. Z. and Wang C. P.

    (ii)   The standard flat minimal surfaces in an odd dimensional unit sphere  S n with  n ≥ 5;(iii)   The pre-image of the stereographic projection of the circular cylinder in  R3;

    (iv)   The standard flat torus in  S 3;

    (v)   The pre-image of the stereographic projection of the circular cone in  R3.

    We organize the paper as follows. In §1, we give Moebius invariant system and structureequations for surfaces in  S n. In §2, we prove the main theorem.

    1 Moebius Invariants for Surfaces in  S n

    In this section, we give Moebius invariants and structure equations for surfaces in   S n. For

    details refer to [2] and [1].

    Let Rn+21   be the Lorentz space  Rn+2 with the inner product ,  given by

    X, Y  = −x0y0 + x1y1 + · · · + xn+1yn+1,   (1.1)

    where   X   = (x0, x1, . . . , xn+1),   Y   = (y0, y1, . . . , yn+1) ∈   Rn+2. We denote by   C n+1+   the half cone in  Rn+21   :

    C n+1+   = {X  ∈ Rn+2|X, X  = 0, x0  =  p(X ) >  0},   (1.2)where p  :  Rn+21   → R  is the projection of  X  to its first coordinate x0. We denote by O+(n + 1, 1)the Lorentz group of  Rn+21   preserving the inner product ,  and  C n+1+   invariant.

    Let   x   :   M  →   S n be a umbilic-free surface with   I   and   II   as the first and the secondfundamental form. We define the positive function  ρ  :  M  →  R  by

    ρ =√ 

    2II  − HI .Then the map Y   = ρ(1, x) = (ρ,ρx) : M 

     → C n+1+   is called the canonical lift of  x. The following

    result is a key theorem in the study of surface theory:

    Theorem 1.1   Two surfaces  x,  x̃ :  M  →  S n are Moebius equivalent if and only if there exists T  ∈  O+(n + 1, 1)  such that their canonical lifts  Y   and  Ỹ   satisfy  Y   =  Ỹ T   : M  →  C n+1+   .

    Let Y  be the canonical lift of  x. The Moebius invariant g  = dY,dY  =  ρ2dx · dx   is calledthe Moebuis metric of  x. We denote by ∆ the Laplacian of  g  and define  N   : M  →  Rn+21   by

    N   = −12

    ∆Y  −  18∆Y, ∆Y Y ; (1.3)

    then we have

    Y, Y  = N, N  = 0,   Y, N  = 1,   N,dY  = dN,Y  = 0.   (1.4)Now let {e1, e2} be a local orthonormal basis of Moebius metric. We denote by  V  the Lorentzianorthogonal complement to the subspace

    span{Y, N } ⊕ span{e1(Y ), e2(Y )} ⊂ Rn+21   .Then we have

    Rn+21   = span{Y, N } ⊕ span{e1(Y ), e2(Y )} ⊕ V.   (1.5)We call  V  the Moebius normal bundle of  M . Let {E α} be a local orthonormal basis of  V   with

  • 8/18/2019 Surfaces With Moebius Syndrrome

    3/8

    Surfaces with Vanishing Moebius Form in  S n 673

    respect to the Lorentz metric in  Rn+21   . Then we have a Moebius moving frame {Y , N , ei(Y ), E α}in Rn+21   for x  :  M  →  S n. Using this Moebius frame we can give structure equations and Moebiusinvariants for surfaces in  S n.

    Let z  =  u + iv  be a local complex coordinate on  M  with respect to  g . We can write

    g = 1

    2e2ω(dz ⊗ dz̄ + dz̄ ⊗ dz) = e2ω|dz|2 (1.6)

    for some locally defined smooth function  ω . From (1.6) and the fact  g  = dY,dY   we get

    Y z, Y z = Y ̄z, Y ̄z = 0,   Y z, Y ̄z =  12

    e2ω.   (1.7)

    We denote by  K   the Gaussian curvature of  g . Then by (1.6), we have

    ∆Y   = 4e−2ωY zz̄, K  = −4e−2ωωzz̄.   (1.8)It follows from Theorem 1.2 and (2.1) in [1] that

    ∆Y, ∆Y  = 1 + 4K.   (1.9)Since {Y , N , Y  z, Y ̄z, E α}   is a moving frame in   Rn+21   , for any vector   W  ∈   Rn+21   we have theformula

    W   = W, N Y   + W, Y N  + 2e−2ωW, Y ̄zY z

    + 2e−2ωW, Y zY ̄z +n−2α=1

    W, E αE α.   (1.10)

    We define

    ψ = 2N z, Y z, φα = N z, E α,   (1.11)Ωα = 2Y zz , E α, Aαβ  = (E α)z, E β = −Aβα .   (1.12)

    It is clear that Ψ =  ψdz2, Φc  =

    α φαdz ⊗ E α  and Ω = α Ωαdz2 ⊗ E α   are globally definedMoebius invariants. Using the formula (1.9) and Equations (1.3)–(1.12) we can write the

    structure equations as follows (see [2]):

    N z  = 1

    8(1 + 4K )Y z + e

    −2ωψY ̄z +α

    φαE α,

    Y zz  = −12

    ψY   + 2ωzY z + 1

    2

    α

    ΩαE α,

    Y zz̄  = − 116

    e2ω(1 + 4K )Y  −  12

    e2ωN 

    (E α)z  = −φαY  − e−2ωΩαY ̄z +β

    AαβE β .   (1.13)

    Using the identities   N zz̄   =   N ̄zz ,   Y zzz̄   =   Y zz̄z   and (E α)zz̄   = (E α)z̄z , we get the following

    integrability conditions for the linear PDE system (1.13):

    ψz̄  = 1

    2e2ωK z −

    α

    Ωαφ̄α,   (1.14)

    (φα)z̄ − 12

    e−2ω ψ̄Ωα +β

    φβ  Āβα  = (φ̄α)z̄ − 12

    e−2ωψΩ̄α +β

    φ̄βAβα ,   (1.15)

  • 8/18/2019 Surfaces With Moebius Syndrrome

    4/8

    674   Li H. Z. and Wang C. P.

    e−4ωα

    |Ωα|2 =  14

    ,   (1.16)

    (Ωα

    )z̄

     = −β Ωβ

     Āβα −

    e2ωφα

    ,   (1.17)

    (Aαβ)z̄ − ( Āαβ)z  = 12

    e−2ω(ΩαΩ̄β − Ω̄αΩβ) +γ 

    ( Āαγ Aγβ − Aαγ  Āγβ).   (1.18)

    According to [1], we define Moebius form Φ =

    iα C αi  ωi⊗E α, where C αi   = −ρ−2{H αi  +

    j(h

    αij−

    H αδ ij)ej(log ρ)}. It can be reformulated as Φ =

    αdN,E αE α. Since  dN   =  N zdz +  N ̄zdz̄,we get in the surface case that

    Φ =α

    (φαdz + φαdz̄) ⊗ E α.   (1.19)

    Thus  x  :  M  →  S n has vanishing Moebius form if and only if  φα = N z, E α = 0 for all  α.

    Remark 1.1   Let x  :  M  →  S n be a surface. The Willmore functional for x  is defined byW (x) =

     M 

    (||II ||2 − 2||H ||2)dM,   (1.20)

    where dM  is the volume form for x. It is known that W (x) is a Moebius invariant (see Willmore

    [3] and references there). The Euler–Lagrange equation for the Willmore functional  W (x) can

    be written as (cf. also Weiner [4], Burstall–Pedit–Pinkall [5])

    (φα)z̄ − 12

    e−2ω ψ̄Ωα +β

    φβ  Āβα  = 0,   ∀ α.   (1.21)

    x   :  M  →  S n is called a   Willmore surface   if it satisfies (1.21). About the results of Willmoresurfaces, readers can see Bryant [6], Castro–Urbano [7], Li [8], Montiel [9] and Pinkall [10], etc.

    Remark 1.2   Some related results about Moebius hypersurfaces in   S n+1 can be found in

    Hu–Li [11], Li–Liu–Wang–Zhao [12] and Liu–Wang–Zhao [13].

    2 The Classification of Surfaces in  S n with  Φ = 0

    Let   x   :  M  →  S n be a surface in an   n-dimensional unit sphere with vanishing Moebius form,i.e.,

    φα = 0,   1 ≤ α ≤ n − 2.   (2.1)

    Then from (1.14)–(1.17) we obtain

    ψz̄  =  12

    e2ωK z,   (2.2)

    ψ̄Ωα =  ψΩ̄α,   (2.3)

    e−4ωα

    |Ωα|2 =  14

    ,   (2.4)

    (Ωα)z̄  = −β

    Ωβ  Āβα .   (2.5)

  • 8/18/2019 Surfaces With Moebius Syndrrome

    5/8

  • 8/18/2019 Surfaces With Moebius Syndrrome

    6/8

    676   Li H. Z. and Wang C. P.

    unit sphere  S n (also see Calabi [16] and Wallach [17]); (ii) the flat minimal surfaces in an odd

    dimensional unit sphere S n as an orbit of a 2-dimensional abelian subgroup of  SO(n + 1) (also

    see Kenmotsu [18]).

    If   η   is light-like, we have 

    η, η

      = −

    1

    4

    (1 + 4K ) = 0. Thus we can find a transformation

    T  ∈  O+(n + 1, 1) such that ηT   = (−1, 1, 0). By making a Moebius transformation, if necessary,we may assume that η = (−1, 1, 0). It follows from (2.8), (1.3) and (1.9) that

    η = (−1, 1, 0) = N   = −12

    ∆Y.   (2.11)

    We write x  = (x0, x1) ∈ R ×Rn. Then Y   = ρ(1, x) = (ρ,ρx0, ρx1). From the second equation of (2.9) we get ρ(1+x0) = 1. Thus x0 = −1 and (−1, 0)   /∈ x(M ) ⊂ S n. Now let σ  :  Rn∪{∞} → S nbe the stereographic projection

    x =  σ(u) =

    1 − |u|21 + |u|2 ,

      2u

    1 + |u|2

    .   (2.12)

    We define  u  =  σ−1

    ◦x :  M 

     → Rn. Since  ρ  = 1/(1 + x0) = (1 +

    |u|2)/2, by a direct calculation,

    we get

    g =  ρ2dx · dx =  du · du.   (2.13)

    Thus the induced metric of  u   :  M  →  Rn is exactly the Moebius metric  g   of  x  :  M  →  S n. Inparticular, it has constant curvature. Comparing with the third coordinate in (2.11), we get

    ∆u = ∆(ρx1) = 0,

    which implies that  u  :  M  →  Rn is a minimal surface with constant curvature. By Proposition4.1 of Bryant [15] we know that it is a part of a 2-plane in  Rn, thus  x :  M  →  S n is a part of around 2-sphere, which contradicts our assumption that  x   is umbilic-free. Therefore, this case

    cannot occur.If   η   is space-like, we write η, η   = − 14 (1 + 4K ) =   r2 with   r   =   12

     −(1 + 4K )   >   0. Bymaking a Moebius transformation, if necessary, we may assume that   η   = (0, r, 0). We write

    x = (x0, x1), then  Y   = (ρ,ρx0, ρx1). From the second equation of (2.9) we get  ρrx0 = 1, which

    implies that  x0  >  0, thus  x(M ) contains in the half sphere  S n+  of  S 

    n. Now let

    H n = {(y0, y1) ∈ R+ × Rn | −y20 + y1 · y1  = −1}be the n-dimensional hyperbolic space. We define a conformal map  τ   : H n → S n+  by

    x = (x0, x1) = τ (y0, y1) =

     1

    y0, y1y0

    .   (2.14)

    Then y  =  τ −1

    ◦ x :  M  →  H n

    is a surface. Since  ρ  =  r−1

    x−10   , we have

    Y   = (ρ,ρx0, ρx1) =

    y0r

     , 1

    r, y1

    r

    ,   (2.15)

    which implies that

    g  = dY,dY  =  r−2(−dy0 · dy0 + dy1 · dy1) := r−2gM .Since  g   is of constant curvature  K , then the induced metric  gM   of  y   :  M  →  H n has constantcurvature. We denote by ∆M  the Laplacian of  gM , then we have ∆M   = r

    −2∆. It follows from

  • 8/18/2019 Surfaces With Moebius Syndrrome

    7/8

    Surfaces with Vanishing Moebius Form in  S n 677

    (2.8) with  η  = (0, r, 0) and (1.3) that ∆M y − 2y  = 0. Thus  y   : M  →  H n is a minimal surfaceof constant curvature. By Theorem 4.2 of Bryant [15] we know that  y(M ) is totally geodesic

    in  H n, which implies that  x(M ) is totally umbilic in  S n and thus contradicts our assumption.

    This case cannot occur. Thus we have completed the discussion for the case (a).

    Now we come to discuss the case (b): the zero points of Ψ are isolated. In this case we can

    cut M   by some disjoint curves  C i  to get a simply connected domain  U  = M \

    i C i   such that

    x :  U  →  S n is a surface with Ψ = 0 on  U .Since Ψ =   ψdz2 = 0 is a holomorphic 2-form on the simply connected domain   U , by

    changing complex coordinate, if necessary, we may assume that  ψ ≡  1 on  U . It follows from(2.6) and (2.7) that  K  = −4e−2ωωzz̄  = 0. By (2.3), we know that {Ωα}   are real functions. Wedefine a global real vector field  E  ∈ V   by

    E  = 2e−2ωα

    ΩαE α,   (2.16)

    then by (2.4), we have 

    E, E 

     = 1. By choosing a local orthonormal basis {

    E 1

    , E 2

    , . . . , E  n−2}in the Moebius normal bundle V   with  E 1 ≡ E  we get

    Ω1  = 1

    2e2ω,   Ω2 = · · · = Ωn−2  = 0.   (2.17)

    Using (1.17) and (2.17), we get

    (Ω1)z̄  = −n−2β=1

    Ωβ  Āβ1  = −Ω1 Ā11  = 0,   (2.18)

    0 = (Ωα)z̄  = −β=α

    Ωβ  Āβα  = −Ω1 Ā1α, α ≥ 2.   (2.19)

    Thus  ω  is a constant and

    A1α = 0, α = 2, . . . , n − 2.   (2.20)Now the structure equations with respect to the local frame {Y , N , Y  z, Y ̄z, E , E  2, . . . , E  n−2} read

    Y z  = Y z, Y ̄z  =  Y ̄z,   (2.21)

    N z  =  1

    8Y z + e

    −2ωY ̄z, N ̄z  = e−2ωY z +

     1

    8Y ̄z,   (2.22)

    Y zz  = −12

    Y   + Y z + 1

    2e2ωE 1,   (2.23)

    Y zz̄  = − 116

    e2ωY  −  12

    e2ωN,   (2.24)

    Y ̄zz̄  =

     −1

    2

    Y   + Y ̄z + 1

    2

    e2ωE 1,   (2.25)

    (E 1)z  = −12

    Y ̄z,   (E 1)z̄  = −12

    Y z,   (2.26)

    (E α)z  =β=α

    AαβE β ,   (E α)z̄  =β=α

    ĀαβE β, α = 2, . . . , n − 2.   (2.27)

    A surface is said to be full in  S n if  x(M ) does not lie in any totally umbilic   S n−1 of  S n.

    Now we claim that for a full surface in  S n with the assumption of the case (b) we must have

    n = 3.

  • 8/18/2019 Surfaces With Moebius Syndrrome

    8/8

    678   Li H. Z. and Wang C. P.

    We assume that  n ≥   4. By fixing a point p ∈  U , we can find a constant vector  ξ  ∈  Rn+21with ξ, ξ  = 1 such that

    Y ( p), ξ  = N ( p), ξ  = Y u( p), ξ  = Y v( p), ξ  = E 1( p), ξ  = 0,   (2.28)

    where z =  u + iv  is the complex coordinate on  U . We define real functions

    f 1  = Y, ξ , f 2  = N, ξ , f 3 = Y u, ξ , f 4 = Y v, ξ , f 5  = E 1, ξ .Then by (2.21)–(2.26) we can find constants {aλµ}  and {bλµ}  such that

    (f λ)u  =µ

    aλµf µ,   (f λ)v  =µ

    bλµf µ, 1 ≤ λ, µ ≤ 5.   (2.29)

    By (2.28) and the uniqueness of the linear PDE (2.29) we get   f λ ≡   0. In particular,   f 1   =Y, ξ    = 0 on   U , which implies that Y, ξ   = 0 on   M . Thus  x   :  M  →   S n is not full, whichcontradicts our assumption. Therefore  n   = 3 and   x   :   M  →   S 3 is a surface with vanishingMoebius form. By Theorem 5.1 of Wang [1], we know that   x   is Moebius equivalent to one

    of the following surfaces in  S 3: (iii) the pre-image of the stereographic projection of a circularcylinder in R3; (iv) a standard flat torus in S 3; (v) the pre-image of the stereographic projection

    of a circular cone in  R3.

    Thus we complete the proof of the Main Theorem.

    References

    [1] Wang, C. P.: Moebius geometry of submanifolds in  S n.   Manuscripta Math.,  96,  517–534 (1998)

    [2] Li, H., Wang, C. P., Wu, F.: A Moebius characterization of Veronese surfaces in   S n.   Math. Ann.,   319,

    707–714 (2001)

    [3] Willmore, T. J.: Surfaces in conformal geometry.   Ann. Global Anal. Geom.,  18,  255–264 (2000)

    [4] Weiner, J.: On a problem of Chen, Willmore, et al..   Indiana Univ. Math. J.,  27,  19–35 (1978)

    [5] Burstall, F., Pedit, F., Pinkall, U.: Schwarzian derivatives and flows of surfaces. arXiv. org/math. DG/0111169

    [6] Bryant, R.: A duality theorem for Willmore surfaces.   J. Differential Geom.,  20,  23–53 (1984)

    [7] Castro, I., Urbano F.: Willmore surfaces of  R4 and the Whitney sphere.   Ann. Global Anal. Geom.,   19,

    153–175 (2001)

    [8] Li, H.: Willmore surfaces in  S n.   Ann. Global Anal. Geom.,  21,  203–213 (2002)

    [9] Montiel, S.: Willmore two-spheres in the four-sphere.  Trans. AMS ,  352,   4469–4486 (2000)

    [10] Pinkall, U.: Hopf tori in  S 3.   Invent. Math.,  8, 379–386 (1985)

    [11] Hu, Z. J., Li, H.: Submanifolds with constant Moebius scalar curvature in   S n.   Manuscripta Math.,   111,

    287–302 (2003)

    [12] Li, H., Liu, H. L., Wang, C. P., Zhao, G. S.: Moebius isoparametric hypersurfaces in  S n+1 with two distinct

    principal curvatures.  Acta Math. Sinica, English Series,  18,  437–446 (2002)

    [13] Liu, H. L., Wang, C. P., Zhao, G. S.: Moebius isotropic submanifolds in S n.   Tohoku Math. J.,  53,  553–569

    (2001)

    [14] Takahashi, T.: Minimal immersions of Riemannian manifolds.   J. Math. Soc. Japan ,  18,  380–385 (1966)

    [15] Bryant, R.: Minimal surfaces of constant curvature in  S n.   Trans. AMS ,  290,  259–271 (1985)

    [16] Calabi, E.: Minimal immersions of surfaces in Euclidean spheres.   J. Diff. Geom.,  1, 111–125 (1967)

    [17] Wallach, N.: Extension of locally defined minimal immersions of spheres into spheres.   Arch. Math.,   21,

    210–213 (1970)

    [18] Kenmotsu, K.: On minimal immersions of  R2 into  S n.   J. Math. Soc. Japan ,  28,   182–191 (1976)