surface tension of asphalt using afm

52
Surface Tension of Asphalt using AFM Appy Beemer, Troy Pauli, and Julie Miller Pavement Performance Prediction Symposium Adhesion and Cohesion in Asphalt Pavements June 23-25, 2005 Cheyenne, WY

Upload: hendri-hadisi

Post on 01-Oct-2015

16 views

Category:

Documents


3 download

DESCRIPTION

measuring surface tension asphalt using AFM

TRANSCRIPT

  • Surface Tension of Asphalt using AFM

    Appy Beemer, Troy Pauli, and Julie Miller

    Pavement Performance Prediction SymposiumAdhesion and Cohesion in Asphalt PavementsJune 23-25, 2005Cheyenne, WY

  • Overview

    Definition of terms AFM Background Contact Mechanics Theory Experimental Data Analysis of Data Conclusions

  • Definitions Surface Tension

    Force from the bulk molecules on a surface line of a liquid

    Surface Energy Work or energy required to create a unit of surface area of a

    solid

    Work of Cohesion Work required to separate a material from itself at an

    arbitrary boundary

    Work of Adhesion Work required to separate two dissimilar materials at their

    interface

    Munson, Bruce R., Donald F. Young, and Theodore H. Okiishi. Fundamentals of Fluid Mechanics, 3rd ed. John Wiley & Sons, Inc. New York: 1998, p 26-28.

  • Importance for asphalt

    Asphalt surface tension gives: Cohesive properties Adhesive properties

    Time and temperature susceptible

    Cohesive strength property may need further investigation

  • Making the Measurement

    Make an asphalt toluene solution Initial solution concentration ~0.167g/mL

    Spin cast solution onto a glass microscope slide

    Volume deposited to slide - 2.0L Spin rate - 600 to 800 rpm

  • Roto-FilmSolution Spin

    Casting Device

  • Filmetrics Thin-film Measurement System

  • Storing Conditions

    Use ~ 1.0 m films Keep samples in dry box Purge box with nitrogen gas Keep samples at room temperature

  • The Operation of a Scanning Probe Microscope

    1. Red Laser2. Quad-Photo Detector3. Piezo-tube Scanner4. Micro-Cantilever

    12

    3

    4 Z

    YX

  • THERMAL STAGE Atomic Force MicroscopeQuesant Q-Scope 250

  • AFM Force Curve Measurements

    BimorphCantilever

    Sample

    Z

    Y

    X

  • Z-distance (nm)

    0 500 1000 1500 2000

    Z

    -

    d

    e

    f

    l

    e

    c

    t

    i

    o

    n

    (

    n

    m

    )

    -600

    -400

    -200

    0

    200

    400

    600

  • Z-distance (nm)

    0 500 1000 1500 2000

    Z

    -

    d

    e

    f

    l

    e

    c

    t

    i

    o

    n

    (

    n

    m

    )

    -600

    -400

    -200

    0

    200

    400

    600

  • Z-distance (nm)

    0 500 1000 1500 2000

    Z

    -

    d

    e

    f

    l

    e

    c

    t

    i

    o

    n

    (

    n

    m

    )

    -600

    -400

    -200

    0

    200

    400

    600

  • Z-distance (nm)

    0 500 1000 1500 2000

    Z

    -

    d

    e

    f

    l

    e

    c

    t

    i

    o

    n

    (

    n

    m

    )

    -600

    -400

    -200

    0

    200

    400

    600

  • Z-distance (nm)

    0 500 1000 1500 2000

    Z

    -

    d

    e

    f

    l

    e

    c

    t

    i

    o

    n

    (

    n

    m

    )

    -600

    -400

    -200

    0

    200

    400

    600

  • Z-distance (nm)

    0 500 1000 1500 2000

    Z

    -

    d

    e

    f

    l

    e

    c

    t

    i

    o

    n

    (

    n

    m

    )

    -600

    -400

    -200

    0

    200

    400

    600

  • Z-distance (nm)

    0 500 1000 1500 2000

    Z

    -

    d

    e

    f

    l

    e

    c

    t

    i

    o

    n

    (

    n

    m

    )

    -600

    -400

    -200

    0

    200

    400

    600

    12RW

    F offpull

    =n

  • Z-position, m0.0 0.5 1.0 1.5 2.0

    F

    o

    r

    c

    e

    ,

    n

    N

    -7500

    -7000

    -6500

    -6000

    -5500

    -5000

    ApproachRetract

    Deflection to Force

    Detectors measure cantilever deflection Spring Constant x Deflection = Force Interested in load and pull-off force

    Load

    Pull-off Force

  • Z-position, m0.0 0.5 1.0 1.5 2.0

    F

    o

    r

    c

    e

    ,

    n

    N

    -7500

    -7000

    -6500

    -6000

    -5500

    -5000

    -4500ApproachRetract

    Zero-Load Curve

  • Z-position, m0.0 0.5 1.0 1.5 2.0

    F

    o

    r

    c

    e

    ,

    n

    N

    -7500

    -7000

    -6500

    -6000

    -5500

    -5000

    -4500ApproachRetract

    Negative-Load Curve

  • R2

    R1

    121

    1

    )(

    111

    RRRR+=

  • R1

    aH

    a

  • R1

    a = 2R/3

  • Viscoelastic Material

    -12000

    -10000

    -8000

    -6000

    -4000

    -2000

    0-2.5 -1.5 -0.5 0.5 1.5 2.5

    Z position, um

    L

    o

    a

    d

    F

    o

    r

    c

    e

    ,

    n

    N

    .

    050

    100150200250300

    0 5 10 15 20 25 30

    Distance, umH

    e

    i

    g

    h

    t

    ,

    n

    m

  • Viscoelastic Material

    -14000

    -12000

    -10000

    -8000

    -6000

    -4000

    -2000

    0

    2000

    -2.5 -1.5 -0.5 0.5 1.5 2.5

    Z Distance, um

    L

    o

    a

    d

    F

    o

    r

    c

    e

    ,

    n

    N

    050

    100150

    200250

    300

    0 5 10 15 20 25 30

    Distance, um

    H

    e

    i

    g

    h

    t

    ,

    n

    m

  • RaE

    34 3*Phertz =

    Contact Mechanics Model of an Interface

    Hertzian Contact between Rigid Surfaces

    Shull, K. R., (Nov. 2004), shullgroup.northwestern.edu/pdfpublic/ref054.pdf

    Frictionless, ideal contact

  • REPR a

    DMT 12*

    4 / 94lim

    2

    ==

    REPR a

    JKR 12*

    /33lim

    2

    ==

    Contact Mechanics Model of an Interface

    At the JKR and DMT Limits

    ( ) +++=2

    *3 363

    43 GRGRPGRPERa

    P 0

  • Contact Mechanics Model of an Interface

    At the JKR and DMT Limits JKR

    Adds load to the model Does not account for adhesion outside the contact area Large probe, very soft surface, high surface energy

    DMT Adds friction as well as load to the model Accounts for adhesion outside the contact area

    Wetting

    Small probe, hard surface, low surface energy

  • Drift Procedure

    Make contact with surface (low force)Allow several force curve cycles (save each)Decrease the z scan range (decrease the force)Save another series of force curvesRepeat until no contact

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    -200 0 200 400 600 800 1000 1200 1400

    Load, P, nN

    S

    u

    r

    f

    a

    c

    e

    T

    e

    n

    s

    i

    o

    n

    ,

    ,

    d

    y

    n

    e

    /

    c

    m

    .

  • Load-Unload Procedure

    Increase z scan range to contact surfaceSave force curve at initial contactIncrease the z scan range (increase the load)Save force curveRepeat until at desired loadDecrease the z range (decrease the load) Save force curve Repeat until no contact

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    -200 0 200 400 600 800 1000 1200 1400

    Load, P, nN

    S

    u

    r

    f

    a

    c

    e

    T

    e

    n

    s

    i

    o

    n

    ,

    ,

    d

    y

    n

    e

    /

    c

    m

    .

  • 010

    20

    30

    40

    50

    60

    70

    -200 0 200 400

    Load, P, nN

    S

    u

    r

    f

    a

    c

    e

    T

    e

    n

    s

    i

    o

    n

    ,

    ,

    d

    y

    n

    e

    /

    c

    m

    .

    AAB-1 Set

    = 46.9 (Avg. 47.9)

  • AAD-1 Set

    = 42.7 (Avg. 45.0)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    -100 0 100 200 300 400 500

    Load, P, nN

    S

    u

    r

    f

    a

    c

    e

    T

    e

    n

    s

    i

    o

    n

    ,

    ,

    d

    y

    n

    e

    /

    c

    m

    .

  • AAF-1 Set

    = 48.4 (Avg. 47.9)

    0

    10

    20

    30

    40

    50

    60

    70

    -200 -100 0 100 200 300 400

    Load, P, nN

    S

    u

    r

    f

    a

    c

    e

    T

    e

    n

    s

    i

    o

    n

    ,

    ,

    d

    y

    n

    e

    /

    c

    m

    .

  • AAM-1 Set

    = 50.3 (Avg. 49.9)

    0

    20

    40

    60

    80

    100

    120

    140

    -200 0 200 400 600 800

    Load, P, nN

    S

    u

    r

    f

    a

    c

    e

    T

    e

    n

    s

    i

    o

    n

    ,

    ,

    d

    y

    n

    e

    /

    c

    m

    .

  • 010

    20

    30

    40

    50

    60

    -125 -100 -75 -50 -25 0 25 50

    Load, P, nN

    S

    u

    r

    f

    a

    c

    e

    T

    e

    n

    s

    i

    o

    n

    ,

    ,

    d

    y

    n

    e

    /

    c

    m

    .

    AAB

    Average Surface Tensions

    : 47.9 1.2

  • 010

    20

    30

    40

    50

    60

    -125 -100 -75 -50 -25 0 25 50

    Load, P, nN

    S

    u

    r

    f

    a

    c

    e

    T

    e

    n

    s

    i

    o

    n

    ,

    ,

    d

    y

    n

    e

    /

    c

    m

    .

    AABAAD

    Average Surface Tensions

    : 47.9 1.2: 45.0 2.6

  • 010

    20

    30

    40

    50

    60

    -125 -100 -75 -50 -25 0 25 50

    Load, P, nN

    S

    u

    r

    f

    a

    c

    e

    T

    e

    n

    s

    i

    o

    n

    ,

    ,

    d

    y

    n

    e

    /

    c

    m

    .

    AABAADAAF

    Average Surface Tensions

    : 47.9 1.2: 45.0 2.6: 47.7 2.2

  • 010

    20

    30

    40

    50

    60

    -125 -100 -75 -50 -25 0 25 50

    Load, P, nN

    S

    u

    r

    f

    a

    c

    e

    T

    e

    n

    s

    i

    o

    n

    ,

    ,

    d

    y

    n

    e

    /

    c

    m

    .

    AAB

    AAD

    AAF

    AAM

    Average Surface Tensions

    : 47.9 1.2: 45.0 2.6: 47.7 2.2: 49.9 1.6

  • 010

    20

    30

    40

    50

    60

    -125 -100 -75 -50 -25 0 25 50

    Load, P, nN

    S

    u

    r

    f

    a

    c

    e

    T

    e

    n

    s

    i

    o

    n

    ,

    ,

    d

    y

    n

    e

    /

    c

    m

    .

    AAB

    AAD

    AAF

    AAM

    JKR

    JKR/DMT

    JKR/DMT

    DMT

    JKR DMT

  • Average Surface TensionsLeast Cohesive

    Most Cohesive

    Least Cohesive

    Most Cohesive

    Wc = 2

    AAD-1 45.0 2.4AAF-1 47.7 2.2AAB-1 47.9 1.2AAM-1 49.9 1.6

    AAD-1 Neat 40.9 1.0AAD-1 PAV 240 h 44.7 1.3AAD-1 PAV 480 h 43.7 1.4AAD-1 PPA & PAV 96 h 46.2 0.5AAD-1 PPA & PAV 184 h 47.0 0.7

  • Conclusions Neat asphalt adhesive properties:

    Long-range, wetting forces Short-range, non-wetting forces

    Neat asphalt cohesive properties Least cohesive asphalts (AAD) Moderately cohesive asphalts (AAB & AAF) Most cohesive asphalts (AAM)

    Modified asphalt cohesive properties Least cohesive (Neat) Moderately cohesion (PAV) Most cohesive (PPA Modified)

  • Future Work

    Explore other parameters Temperature Rate Aging Additives

    Adhesion-cohesion balance

    Continue to refine experimental procedures

  • ACKNOWLEDGEMENTS

    FHWA for their Financial Support under Contract No. DTFH61-99C-00022

  • Questions?

    OverviewDefinitionsImportance for asphaltMaking the MeasurementStoring ConditionsDeflection to ForceZero-Load CurveNegative-Load CurveViscoelastic MaterialViscoelastic MaterialContact Mechanics Model of an InterfaceAt the JKR and DMT LimitsDrift ProcedureLoad-Unload ProcedureAAB-1 SetAAD-1 SetAAF-1 SetAAM-1 SetAverage Surface TensionsAverage Surface TensionsAverage Surface TensionsAverage Surface TensionsAverage Surface TensionsConclusionsFuture WorkQuestions?