supporting information - wiley-vch · from trifluoroacetate complex precursors to monodisperse...

15
Supporting Information © Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006

Upload: vucong

Post on 14-Feb-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006

From Trifluoroacetate Complex Precursors to Monodisperse Rare-Earth

Fluoride and Oxyfluoride Nanocrystals with Diverse Shapes via Controlled

Fluorination in Solution Phase

Xiao Sun,[a] Ya-Wen Zhang,*[a] Ya-Ping Du,[a] Zheng-Guang Yan,[a] Rui Si,[a]

Li-Ping You,[b] Chun-Hua Yan*[a]

[a] X. Sun, Prof. Dr. Y. -W. Zhang, Y.-P. Du, Dr. Z.-G. Yan, Dr. R. Si, Prof. Dr. C.-H. Yan

Beijing National Laboratory for Molecular Sciences

State Key Laboratory of Rare Earth Materials Chemistry and Applications

PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry

Peking University

Beijing 100871 (P.R. China)

E-mail: [email protected]; [email protected]

Fax: +86-10-6275-4179

[b] Prof. L. P. You

Electron Microscopy Laboratory

Peking University, Beijing 100871 (China)

S2

Table S1. Crystal Structure, Morphology and Size of the As-Synthesized REF3 (RE = La to Lu, Y) Nanocrystals via the Thermolysis of RE(CF3COO)3 (1 mmol) in Oleic Acid (OA)/Oleylamine (OM)/1-Octadecene (ODE) (40 mmol).

OA:OM:ODE T [°C] t [h] Structure Morphology Size [nm] LaF3 1:0:1 280 1 trigonal triangular

nanoplate (2.0±0.1)×(16.0±0.4)[a]

CeF3 1:0:1 280 1 trigonal triangular nanoplate

(1.4±0.2)×(14.4±0.5)

PrF3 1:0:1 300 0.5 trigonal truncated- triangular nanoplate

(1.8±0.2)×(5.2±0.7)×(8.5±1.1)

NdF3 1:0:1 300 0.5 trigonal truncated- triangular nanoplate

(1.7±0.3)×(2.9±0.5)×(8.0±1.0)

SmF3 1:0:1 305 1 trigonal hexagonal nanoplate

(1.8±0.2)×(12.7±0.5)

EuF3 1:0:1 305 1 trigonal hexagonal nanoplate

(2.2±0.2)×(11.5±1.0)

GdF3 1:0:1 300 0.5 trigonal polygonal nanoplate

(3.0±0.3)×(8.7±0.9)

1:0:1 310 1 orthorhombic zigzag-shaped nanoplate

(2.1±0.2)×(11.6±1.3) ×(51.1±5.1)

TbF3 1:0:1 300 1 trigonal polygonal nanoplate

(2.4±0.3)×(8.5±0.9)

1:0:9 310 1 orthorhombic quadrilateral nanoplate

(6.3±1.0)×(9.2±1.3)

DyF3 1:0:1 320 1 trigonal polygonal nanoplate

(2.9±0.3)×(7.6±0.9)

5:3:0 330 1 orthorhombic quadrilateral nanoplate

(11.8±1.7)×(15.9±2.6)

HoF3 1:0:1 305 1 trigonal polygonal nanoplate

8.1±0.9

5:3:0 330 1 orthorhombic quadrilateral nanoplate

(8.1±0.6)×(9.6±0.4)

YF3 1:0:1 305 1 orthorhombic quadrilateral nanoplate

(3.0±0.2)×(8.3±1.0)×(10.4±1.2)

ErF3 5:3:0 330 1 orthorhombic quadrilateral nanoplate

(13.4±2.7)×(15.7±3.2)

TmF3 1:0:1 300 2 orthorhombic quadrilateral nanoplate

(7.2±0.9)×(10.5±1.5)

YbF3 1:0:1 310 1 orthorhombic quadrilateral nanoplate

(12.8±2.6)×(16.3±4.2)

LuF3 1:0:9 318 1 orthorhombic (predominate)

quadrilateral nanoplate

(8.3±0.9)×(10.0±1.1)

[a] The standard deviation statistic from at least 50 particles.

S3

Table S2. Crystal Structure, Morphology and Size of the As-Synthesized REOF (RE = La to Lu, Y) Nanocrystals via the Thermolysis of RE(CF3COO)3 (1 mmol) in Oleic Acid (OA)/Oleylamine (OM )/1-Octadecene (ODE) (40 mmol).

OA:OM:ODE T [°C] t [h] Structure Morphology Size [nm] LaOF 0:1:0 330 1 cubic polyhedron 3.7±0.6 CeOF 1:7:0 330 1 cubic polyhedron 4.5±0.4 PrOF 1:5:0 330 1 cubic polyhedron 4.4±0.4

NdOF 1:4:0 330 1 cubic polyhedron 4.8±0.4

SmOF 3:5:0 330 1 cubic polyhedron 4.1±0.4 EuOF 3:5:0 330 1 cubic polyhedron 3.4±0.5 5:3:0 310 1 cubic rod (4.4±0.5) ×(11.0±1.2) GdOF 3:5:0 330 1 cubic polyhedron 4.7±0.6 5:3:0 310 1 cubic rod (3.4±0.4) ×(9.8±1.3) TbOF 3:5:0 330 1 cubic polyhedron 6.6±1.5 DyOF 3:5:0 330 1 cubic polyhedron 10.2±0.9 HoOF 3:5:0 310 1 cubic polyhedron 4.9±0.8 YOF 3:5:0 310 1 cubic polyhedron 10.2±1.7 ErOF 1:0:1 335 1 cubic polyhedron 7.6±0.7 TmOF 1:0:1 320 1 cubic polyhedron 7.5±0.8 YbOF 1:0:1 335 1 cubic polyhedron 7.3±0.6 LuOF 1:0:1 320 1 cubic polyhedron 8.5±0.5 Table S3. Synthetic Conditions and Several Products of HoF3/HoOF. Sample Precursor OA:OM:ODE T [ºC] t [h] Product H1 1 mmol Ho(CF3COO)3 1:0:1 280 1 cubic HoOF H2 1 mmol Ho(CF3COO)3 1:0:1 305 1 trigonal HoF3 H3 1 mmol Ho(CF3COO)3 1:0:1 320 1 mainly orthorhombic HoF3 plus

cubic HoOF H4 1 mmol Ho(CF3COO)3 1:0:1 335 1 cubic HoOF H5 1 mmol Ho(CF3COO)3 1:0:9 320 1 orthorhombic HoF3 H6 1 mmol H5 1:0:1 335 1 cubic HoOF H7 1 mmol Ho(CF3COO)3 0:0:1 320 1 orthorhombic HoF3 Table S4. Crystal Structure, Morphology and Size of Some Cubic REOF (RE = Gd to Er, Y) Nanocrystals via the Thermolysis of RE(CF3COO)3 (1 mmol) in Oleic Acid (OA)/Oleylamine (OM )/1-Octadecene (ODE) (40 mmol).

OA:OM:ODE T [°C] t [h] Structure Morphology Size [nm] GdOF 1:0:1 290 1 cubic polyhedron 5.6±0.3 TbOF 1:0:1 335 1 cubic polyhedron 9.6±1.2 DyOF 1:0:1 335 1 cubic polyhedron 14.6±1.4 HoOF 1:0:1 280 1 cubic polyhedron 6.1±0.6 1:0:1 335 1 cubic polyhedron 10.3±1.5 YOF 1:0:1 335 1 cubic polyhedron 10.5±1.0 ErOF 1:0:1 305 1 cubic polyhedron 5.3±0.4 1:0:1 335 1 cubic polyhedron 7.6±0.7

S4

Figure S1. XRD patterns of trigonal REF3 (RE = Pr, Eu, Tb, Dy, Ho) nanoplates.

Figure S2. Plots of the measured lattice volume over the number of REF3 or REOF molecules (Z) in one unit cell against the rare-earth series.

S5

Figure S3. TEM images of trigonal TbF3 (a), DyF3 (b) and HoF3 (c) polygonal nanoplates.

Figure S4. XRD patterns of orthorhombic REF3 (RE = Tb, Dy, Er) nanoplates.

S6

Figure S5. (a) TEM and HRTEM (inset) images of orthorhombic TbF3 quadrilateral nanoplates. TEM images of orthorhombic DyF3 (b) and ErF3 (c) quadrilateral nanoplates.

Figure S6. XRD patterns of cubic REOF (RE = La, Pr, Nd, Eu, Tb, Dy, Ho, Er, Tm, Yb, Y) nanopolyhedra.

S7

S8

Figure S7. TEM images of cubic LaOF (a), PrOF (b), NdOF (c), and EuOF (d) nanopolyhedra. (e) TEM image of cubic EuOF nanorods. TEM images of cubic GdOF (f), TbOF (g), DyOF (h), HoOF (i) and YOF (j) nanopolyhedra. TEM and HRTEM (inset) images of cubic ErOF (k), TmOF (l), and YbOF (m) nanopolyhedra.

S9

Figure S8. (a) 1H NMR (CDCl3) spectrum of the as-synthesized CeOF nanopolyhedra, recorded on Varian Mercury 200 MHz spectrometers with the number of transmit of 64, and referenced to TMS as internal-standard. δ 5.35(2H, br), 2.00(4H, br), 1.26(20H, sharp with a shoulder), 0.88(3H, t), indicating the presence of capping ligands on the surface of the CeOF nanocrystals. (b) FTIR spectra of EuF3 nanoplates and EuOF nanopolyhedra.

S10

Figure S9. Crystal structures of trigonal REF3, orthorhombic REF3 and cubic REOF built by CERIUS2 software (Ref.: Http://www.accelrys.com/cerius2).

S11

Figure S10. XPS patterns of EuF3 nanoplates and EuOF nanopolyhedra: (a) XPS survey spectra, (b) Eu 4d, (c) F 1s and (d) O 1s, whose measurements were carried out in an ion-pumped chamber (evacuated to 2×10−9 Torr) of an Escalad5 (U.K.) spectrometer, employing Al-Kα radiation (BE = 1486.6 eV). The binding energy (BE) for the samples was calibrated by setting the measured BE of C1s to 284.6 eV. From this figure, the atomic ratio of F to Eu was determined as 2.4 for EuF3 nanoplates and 0.91 for EuOF nanopolyhedra, and the peak at 529.14 eV belonging to the lattice oxygen in EuOF could be identified (Ref.: Ryzhkov, M. V.; Gubanov, V. A.; Butzman, M. P., Hagström, A. L.; Kurmaev, E. Z.; J. Electron. Spectrosc. Relat. Phenom. 1980, 21, 193; Barreca, D.; Gasparotto, A.; Maragno, C.; Tondello, E.; Bontempi, E.; Depero, L. E.; Sada, C.; Chem. Vap. Deposition 2005, 11, 426).

S12

Figure S11. GC-MS (Finnigan-MAT GCQ, USA) spectra of the gas components from the thermolysis of Ho(CF3COO)3 at 280 ºC in oleic acid/octadecene (1:1) under an Ar atmosphere, using the column of DB-5MS (30 m × 0.25 mm). The column temperature was 200-280 ºC. From the mass spectrum of low molecular components (Figure 11b), peaks corresponding to CF3

+ (mass 69), CF2H+ (mass 51), and CO2 (mass 44) coming from the thermolysis of CF3COO- ligands in OA/ODE could be identified.

Figure S12. TEM images of some Ho samples: (a) S5 (1 mmol Ho(CF3COO)3, 320 °C, OA:ODE = 1:9, 1 h) and (b) S7 (1 mmol Ho(CF3COO)3, 320 °C, OA:ODE = 0:40, 1 h).

S13

Figure S13. XRD patterns of trigonal SmF3 nanoplates synthesized at 305 °C under OA:ODE = 4:1 for 1 h, and orthorhombic GdF3 nanoplates synthesized at 310 °C under OA:ODE = 1:1 for 40 min.

Figure S14. XRD patterns of trigonal LaF3 nanoplates synthesized at 300 °C under OA:ODE = 1:1 for different times.

S14

Figure S15. Particle size distribution histograms of trigonal LaF3 nanoplates synthesized at 300 °C under OA:ODE = 1:1 for different times: (a) 10 min (9.0±0.8 nm), (b) 20 min (10.6±1.0 nm), (c) 30 min (9.6±1.0 nm) and (d) 60 min (9.1±1.7 nm).