supporting information for the manuscriptsupporting information for the manuscript facile...

36
Supporting information for the manuscript Facile N-functionalization and strong magnetic communication in a diuranium(V) bis-nitride complex Luciano Barluzzi a , Lucile Chatelain a , Farzaneh Fadaei-Tirani a , Ivica Zivkovic b and Marinella Mazzanti* a a Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. b Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Upload: others

Post on 25-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Supporting information for the manuscript

    Facile N-functionalization and strong magnetic communication in a diuranium(V) bis-nitride complex

    Luciano Barluzzia, Lucile Chatelaina, Farzaneh Fadaei-Tirania, Ivica Zivkovicb and Marinella

    Mazzanti*a

    aInstitut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. bLaboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

    Electronic Supplementary Material (ESI) for Chemical Science.This journal is © The Royal Society of Chemistry 2019

  • Contents

    A) NMR SPECTRA .......................................................................................................................... 3

    B) IR SPECTRA ............................................................................................................................. 26

    C) X-RAY CRYSTALLOGRAPHIC DATA .......................................................................................... 28

    D) MAGNETIC DATA .................................................................................................................... 30

    E) UV-VIS DATA .......................................................................................................................... 35

  • A) NMR spectra

    Fig. S1: 1H-NMR (400 MHz) at 298 K in d8-thf of the crude reaction mixture between [U(OSi(OtBu)3)3]2, 1 and one equivalent of KN3 in thf after 4 days at -40°C leading to a mixture of complex [K{[U(OSi(OtBu)3)3]2(μ-N)}], 2 and complex [K2{[U(OSi(OtBu)3)3]2(μ-N)(μ-N3)}], 3

    Fig. S2: 1H-NMR (400 MHz) at 298 K in d8-thf of isolated [K{[U(OSi(OtBu)3)3]2(μ-N)}], 2

    -8-7-6-5-4-3-2-1012345678f1(ppm)

    -1.58

    -0.68

    1.73

    2.60

    3.58

    thf[K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-N3)}], 3[K{[U(OSi(OtBu)3)3]2(μ-N)}], 2[U(OSi(OtBu)3)3]2, 1

    -2.2-2.0-1.8-1.6-1.4-1.2-1.0-0.8-0.6-0.4-0.20.00.20.40.60.81.01.21.41.61.82.02.22.42.62.83.03.23.43.63.84.04.2f1(ppm)

    -0.67

    1.73

    3.58

    thf[K{[U(OSi(OtBu)3)3]2(μ-N)}], 2

  • Fig. S3: 1H-NMR (400 MHz) at 298 K in d8-thf of the reaction mixture between [U(OSi(OtBu)3)3]2, 1 and two equivalents of

    KN3 in thf at -40°C for 5 days forming complex [K2{[U(OSi(OtBu)3)3]2(μ-N)(μ-N3)}], 3

    Fig. S4: 1H-NMR (400 MHz) at 298 K in d8-thf of isolated [K2{[U(OSi(OtBu)3)3]2(μ-N)(μ-N3)}], 3

    -5.5-5.0-4.5-4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.0f1(ppm)

    -1.58

    thf[K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-N3)}], 3

    -5.5-5.0-4.5-4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1(ppm)

    -1.58

    thf[K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-N3)}], 3

  • Fig. S5: 13C-NMR (400 MHz) at 298 K in d8-thf of isolated [K2{[U(OSi(OtBu)3)3]2(μ-N)(μ-N3)}], 3

    Fig. S6: Evolution of the 1H-NMR (400 MHz) at 298 K in d8-tol of isolated [K2{[U(OSi(OtBu)3)3]2(μ-N)(μ-N3)}], 3 at room

    temperature

    -4.5-4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.0f1(ppm)

    tol[K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4[U(OSi(OtBu)3)4][K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-N3)}], 3

    immediately

    7h

    24h

    3d

    5d

  • Fig. S7: 1H-NMR (400 MHz) at 298 K in d8-tol of isolated [K2{[U(OSi(OtBu)3)3]2(μ-N)(μ-N3)}], 3 after 24h at 70°C affording

    complex [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4

    Fig. S8: 1H-NMR (400 MHz) at 298 K in d8-tol of [K2{[U(OSi(OtBu)3)3]2(μ-N)(μ-N3)}], 3, after 5 days at RT (top) and after

    24h at 70°C (bottom).

    -3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1(ppm)

    -1.76

    tol

    [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4

    -2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.0f1(ppm)

    tol[K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4[U(OSi(OtBu)3)4][K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-N3)}], 3

    after 5d at RT

    after 24h at 70°C

  • Fig. S9: 1H-NMR (400 MHz) at 298 K in d8-tol of isolated [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4

    Fig. S10: 13C-NMR (400 MHz) at 298 K in d8-tol of isolated [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4

    -4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1(ppm)

    -1.76

    -1.14

    -0.86

    1.40

    1.63

    2.09

    7.02

    7.10

    tol

    [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4

  • Fig. S11: 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction mixture 6h after the addition of one equivalent of CS2 to

    [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4 affording complex [K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-S)(µ-NCS)}], 5

    Fig. S12: 1H-NMR (400 MHz) at 298 K in d8-tol of isolated [K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-S)(µ-NCS)}], 5

    -4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1(ppm)

    0.39

    0.60

    0.720.98

    1.06

    2.08

    6.97

    7.01

    7.12

    toluene

    [K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-S)(µ-NCS)}], 5

    -0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.0f1(ppm)

    0.39

    toluene

    [K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-S)(µ-NCS)}], 5

  • Fig. S13: 13C-NMR (400 MHz) at 298 K in d8-tol of isolated [K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-S)(µ-N13CS)}], 13C-5

    Fig. S14: 13C-NMR (400MHz) at 298 K in d6-dmso of isolated [K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-S)(µ-N13CS)}], 13C-5

  • Fig. S15: Evolution of the 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction mixture between [K2{[U(OSi(OtBu)3)3]2(μ-

    N)2}], 4 and 10 equivalents of 13CS2 affording complex [K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-S)(µ-N13CS)}], 13C-5 and an unidentified precipitate

    Fig. S16: 13C-NMR (400 MHz) at 298 K in d8-tol of the reaction mixture between [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4 and 10

    equivalents of 13CS2

    -1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1(ppm)

    toluene[K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-S)(µ-NCS)}], 5

    immediately

    24h

    2030405060708090100110120130140150160170180190f1(ppm)

    toluenesiloxide (C(CH3)3)

    siloxide (C(CH3)3)NCS in complex 5unknown

    CS2

  • Fig. S17: Quantitative 13C-NMR (600 MHz) at 298 K in d6-dmso of the reaction mixture between [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4 and 10 equivalents of 13CS2

    Fig. S18: 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction mixture immediately after the addition of one equivalent of

    CO2 to [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4 affording complex [K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-O)(µ-NCO)}], 6

    2030405060708090100110120130140150160170180f1(ppm)

    1.38

    1.00

    d6-dmso

    KNCS

    toluene

    CH313COONa

  • Fig. S19: 1H-NMR (400 MHz) at 298 K in d8-tol of isolated [K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-O)(µ-NCO)}], 6

    Fig. S20: 13C-NMR (400 MHz) at 298 K in d8-tol of isolated [K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-O)(µ-N13CO)}], 13C-6

    -2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.0f1(ppm)

    0.18

    2.08

    6.97

    7.01

    7.09

    toluene[K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-O)(µ-NCO)}], 6

  • Fig. S21: 13C-NMR (400 MHz) at 298 K in D2O using d6-dmso as a reference of isolated [K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-O)(µ-N13CO)}], 13C-6

    Fig. S22: 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction mixture immediately after the addition of 2 equivalents of CO2 to complex [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4

    -3.5-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1(ppm)

    0.19

    1.06

    toluene[K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-O)(µ-NCO)}], 6[U(OSi(OtBu)3)4]

  • Fig. S23: 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction mixture immediately after the addition of 10 equivalents of

    13CO2 to complex [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4

    Fig. S24: 13C-NMR (400 MHz) at 298 K in d6-dmso of the reaction mixture after the addition of 10 eqvs of 13CO2 to complex

    [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4

    -9-8-7-6-5-4-3-2-1012345678910f1(ppm)

    0.45

    0.741.06

    1.56

    2.08

    6.97

    7.09

    toluene

  • Fig. S25: 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction mixture immediately after the addition of 1 eqv of CO to complex [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4

    Fig. S26: 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction mixture immediately after the addition of 3 eqvs of CO to

    complex [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4 affording complex [K2{[U(OSi(OtBu)3)3]2(µ-CN)(μ-O)(µ-NCO)}], 7

    -6-5-4-3-2-10123456789f1(ppm)

    -1.76

    0.78

    toluene

    [K2{[U(OSi(OtBu)3)3]2(μ-CN)(µ-O)(µ-NCO)}], 7[K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4

    -2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1(ppm)

    0.78

    toluene

    [K2{[U(OSi(OtBu)3)3]2(μ-CN)(µ-O)(µ-NCO)}], 7

  • Fig. S27: 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction mixture immediately after the addition of 1 atm of CO to complex [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4 affording complex [K2{[U(OSi(OtBu)3)3]2(µ-CN)(μ-O)(µ-NCO)}], 7

    Fig. S28: 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction mixture immediately after the addition of 6 atm of CO to

    complex [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4

    -6-5-4-3-2-10123456789f1(ppm)

    0.78

    toluene

    [K2{[U(OSi(OtBu)3)3]2(μ-CN)(µ-O)(µ-NCO)}], 7

    -1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1(ppm)

    0.12

    0.98

    1.00

    0.42

    -0.52

    0.26

    0.78

    1.06

    1.34

    toluene

    [K2{[U(OSi(OtBu)3)3]2(μ-CN)(µ-O)(µ-NCO)}], 7[U(OSi(OtBu)3)4]

  • Fig. S29: 1H-NMR (400 MHz) at 298 K in d8-tol of isolated [K2{[U(OSi(OtBu)3)3]2(µ-CN)(μ-O)(µ-NCO)}], 7

    Fig. S30: 13C-NMR (400 MHz) at 298 K in d8-tol of isolated [K2{[U(OSi(OtBu)3)3]2(µ-13CN)(μ-O)(µ-N13CO)}], 13C-7

    -7-6-5-4-3-2-101234567891011f1(ppm)

    -0.64

    0.77

    2.08

    3.10

    6.80

    6.97

    7.01

    7.09

    toluene

    [K2{[U(OSi(OtBu)3)3]2(μ-CN)(µ-O)(µ-NCO)}], 7

    -160-140-120-100-80-60-40-20020406080100120140160180200220f1(ppm)

    -158.48

    30.72

    73.12

    214.19

    toluenesiloxide (C(CH3)3)

    siloxide (C(CH3)3)

    CN

    NCO

    oror

  • Fig. S31: Quantitative 13C-NMR (600 MHz) at 298 K in d6-dmso of isolated [K2{[U(OSi(OtBu)3)3]2(µ-13CN)(μ-O)(µ-N13CO)}],

    13C-7

    Fig. S32: 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction between complex [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4 and 1 atm

    of H2 heated up at 60°C for 1h affording complex [K2{[U(OSi(OtBu)3)3]2(μ-NH)2}], 8

    3035404550556065707580859095100105110115120125130135140145150155160165170175f1(ppm)

    0.96

    1.00

    d6-dmsoKNCOKCN

  • Fig. S33: Evolution of the 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction mixture between [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4 and 1 atm of H2 affording complex [K2{[U(OSi(OtBu)3)3]2(μ-NH)2}], 8

    Fig. S34: 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction between complex [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4 and 1 atm of H2 after 16h at RT affording complex [K2{[U(OSi(OtBu)3)3]2(μ-NH)2}], 8

    toluene[K2{[U(OSi(OtBu)3)3]2(μ-NH)2}], 8

    2.41

    1.00

    -1.77

    -0.86

    -0.23

    2.08

    6.97

    7.01

    7.09

    0.68

    1.00

    -1.78

    -0.87

    -0.23

    2.08

    6.97

    7.01

    7.09

    -0.87

    -0.22

    2.086.97

    7.017.09

    [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4

    1.00 2.41

    1.00 0.68

    immediately

    8h

    16h

    -2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1(ppm)

    -0.87

    -0.22

    2.08

    6.97

    7.01

    7.09

    toluene[K2{[U(OSi(OtBu)3)3]2(μ-NH)2}], 8

  • Fig. S35: 1H-NMR (400 MHz) at 298 K in d8-tol of isolated [K2{[U(OSi(OtBu)3)3]2(μ-NH)2}], 8

    Fig. S36: 1H-NMR (400 MHz) at 298 K in d8-tol of isolated [K2{[U(OSi(OtBu)3)3]2(μ-NH)2}], 8 on a broader spectral window

    -11-10-9-8-7-6-5-4-3-2-10123456789101112f1(ppm)

    -0.87

    0.26

    2.08

    6.97

    7.077.09

    toluene[K2{[U(OSi(OtBu)3)3]2(μ-NH)2}], 8

    -30-20-100102030405060708090100110120130140150160170180190200f1(ppm)

    162.00

    1.69

    -0.88

    2.08

    6.95

    7.07

    176.46

    toluene

    [K2{[U(OSi(OtBu)3)3]2(μ-NH)2}], 8[K2{[U(OSi(OtBu)3)3]2(μ-NH)2}], 8

  • Fig. S37: 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction between complex [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4 and D2 heated up at 60°C for 1h affording complex [K2{[U(OSi(OtBu)3)3]2(μ-ND)2}], 8

    Fig. S38: 13C-NMR (400 MHz) at 298 K in d8-tol of isolated [K2{[U(OSi(OtBu)3)3]2(μ-NH)2}], 8

    -100102030405060708090100110120130140150160170180f1(ppm)

    -0.85

    2.08

    6.97

    7.01

    7.09

    toluene

    [K2{[U(OSi(OtBu)3)3]2(μ-ND)2}], 8

  • Fig. S39: 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction between complex [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4 and 5.5

    atm of H2 after 3h at RT

    Fig. S40: 1H-NMR (400 MHz) at 298 K in d6-dmso of the volatiles and the headspace of the reaction between complex [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4 and 5.5 atm of H2 after 3h at RT collected in a frozen 2M solution of HCl in Et2O

    -1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1(ppm)

    0.80

    1.01

    1.171.201.241.32

    1.35

    1.571.62

    1.65

    2.04

    2.08

    2.11

    toluene

    -3.5-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0f1(ppm)

    1.04

    3.42

    4.22

    Et2O

    dmso

  • Fig. S41: 1H-NMR (400 MHz) at 298 K in d6-dmso of the reaction mixture between solid complex 4 and an excess of a 2M

    solution of HCl in Et2O

    Fig. S42: 1H-NMR (400 MHz) at 298 K in d6-dmso of the reaction mixture between solid complex 8 and an excess of a 2M

    solution of HCl in Et2O

    -1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1(ppm)

    23.07

    6.24

    2.99

    7.33

    NH4Cldimethylsulfonedmso

    -5-4-3-2-1012345678910f1(ppm)

    89.00

    5.64

    NH4Cldimethylsulfonedmso

  • Fig. S43: 1H-NMR (400 MHz) at 298 K in d6-dmso of the reaction mixture between solid complex 8 and an excess of a 2M

    solution of HCl in Et2O in presence of excess KC8

    Fig. S44: Evolution of the 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction mixture between [K2{[U(OSi(OtBu)3)3]2(μ-

    N)2}], 4 and 1 eq of PyHOTf

    -0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1(ppm)

    16.93

    4.00

    3.00

    7.187.26

    NH4Cldimethylsulfonedmso

    -4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1(ppm)

    tol[K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4

    immediately

    24h

    3d

    4d

    5d

    6d

    7d

    10d

  • Fig. S45: Evolution of the 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction mixture between [K2{[U(OSi(OtBu)3)3]2(μ-NH)2}], 8 and 1 eq of PyHOTf

    Fig. S46: 1H-NMR (400 MHz) at 298 K in d6-dmso of the volatiles and the headspace of the reaction mixture between between [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4 and 30 eq of H2O in thf collected in a frozen 2M solution of HCl in Et2O

    -3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.0f1(ppm)

    tol

    [K2{[U(OSi(OtBu)3)3]2(μ-NH)2}], 8

    immediately

    12h

    24h

    36h

    48h

    60h

    72h

    -1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1(ppm)

    12.10

    0.19

    7.03

    7.167.29

    NH4Cldimethylsulfonedmso

  • Fig. S47: Evolution of the 1H-NMR (400 MHz) at 298 K in d8-tol of the reaction mixture between [K2{[U(OSi(OtBu)3)3]2(μ-

    N)2}], 4 and 1 eq of Si2Me6. The formation of an unidentified yellow precipitate is also observed.

    B) IR spectra

    Fig. S48: IR spectrum of isolated complex [K2{[U(OSi(OtBu)3)3]2(μ-S)(µ-N)(μ-NCS)}], 5 in a Nujol suspension measured on

    KBr windows.

    -5.0-4.5-4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1(ppm)

    tol[K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4Si2Me6

    immediately

    30 min

    1h

    2h

    6h

    12h

    18h

    1977

  • Fig. S49: IR spectrum of isolated complex [K2{[U(OSi(OtBu)3)3]2(μ-O)(µ-N)(μ-N13CS)}], 5 in a Nujol suspension measured on KBr windows.

    Fig. S50: IR spectrum of isolated complex [K2{[U(OSi(OtBu)3)3]2(μ-O)(µ-N)(μ-NCO)}], 6 in a Nujol suspension measured on

    KBr windows.

    0

    10

    20

    30

    40

    50

    60

    70

    80

    050010001500200025003000350040004500

    %T

    Wavenumber(cm-1 )

    IRspectrumofcomplex[K2{[U(OSi(OtBu)3)3]2(μ-N)(µ-S)(µ-N13CS)}]

    1931

  • Fig. S51: IR spectrum of isolated complex [K2{[U(OSi(OtBu)3)3]2(μ-O)(µ-N)(μ-N13CO)}], 13C-6 in a Nujol suspension measured on KBr windows.

    C) X-Ray crystallographic data 2 3 5

    Formula C72H162KNO24Si6U2 C72H162K2N4O24Si6U2 C73H162K2N2O24S2Si6U2Crystal size (mm3) 0.642x0.503x0.419 0.48×0.31×0.26 0.12×0.06×0.04

    crystal system Monoclinic Monoclinic monoclinicspace group P21/c P21/n P21volume (Å3) 10803(2) 5538.4(16) 5619.3(4)

    a (Å) 14.210(3) 14.382(2) 13.9065(4)b (Å) 28.1537(19) 17.661(3) 18.2338(7)c (Å) 27.910(3) 21.819(4) 22.1810(9)α (deg) 90 90 90β (deg) 104.632(8) 92.012(9) 92.450(4)γ (deg) 90 90 90

    Z 4 2 2 formula weight

    (g/mol) 2109.72 2190.85 2238.96

    density (g cm-3) 1.297 1.314 1.323absorption

    coefficient (mm-1) 3.156 3.118 10.139

    F(000) 4320 2240 2288 temp (K) 100(2) 100(2) 139.99(10)

    total no. reflections 115428 97679 38004unique reflections

    [R(int)] 24309[0.1089] 19106 [0.0447] 13621[0.0881]

  • Final R indices [I > 2σ(I)]

    R1=0.0686,wR2=0.1330

    R1 = 0.0592, wR2 = 0.1241

    R1 = 0.0772, wR2 = 0.1898

    Largest diff. peak and hole (e.A-3) 2.689and-2.107 4.561and -2.717 3.583and-4.163

    GOOF 1.111 1.135 1.074

    6 7 8 Formula C73H162K2N2O26Si6U2 C81H170K2N2O26Si6U2 C79H172K2N2O24Si6U2

    Crystal size (mm3) 0.10×0.06×0.04 0.19×0.09×0.08 0.76×0.42×0.35cryst syst Monoclinic Monoclinic Monoclinic

    space group P21 P21 P21/nvolume (Å3) 5510.8(3) 5673.2(9) 5536.5(3)

    a (Å) 13.9377(5) 13.9927(15) 14.4207(4)b (Å) 17.9175(5) 18.2874(12) 17.5321(5)c (Å) 22.0849(6) 22.208(2) 21.9098(6)α (deg) 90 90 90 β (deg) 92.306(3) 93.321(7) 91.840(3)γ (deg) 90 90 90

    Z 2 2 2formula weight

    (g/mol) 2206.84 2310.98 2256.98

    density (g cm-3) 1.330 1.353 1.354absorption

    coefficient (mm-1) 10.000 3.049 3.121

    F(000) 2256 2368 2316 temp (K) 100.00(10) 120(2) 140.01(10)

    total no. reflections 39631 67143 73741unique reflections

    [R(int)] 17996 [0.0796] 20671 [0.0523] 19069 [0.0618]

    Final R indices [I > 2σ(I)]

    R1 = 0.0640, wR2 = 0.1592

    R1 = 0.0511, wR2 = 0.1029

    R1 = 0.0390, wR2 = 0.0824

    Largest diff. peak and hole (e.A-3) 2.543and -3.689 1.503and -0.802 2.543and -1.684

    GOOF 1.017 1.067 1.060

  • D) Magnetic data

    Fig. S52: c vs T plot for complex [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4

    0 50 100 150 200 250 300Temperature (K)

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    1.4

    1.5-

    0 (e

    mu/

    mol

    Oe)

    10-3

  • Fig. S53: c vs T plot for complex [K2{[U(OSi(OtBu)3)3]2(μ-S)(µ-N)(μ-NCS)}], 5

    Fig. S54: c vs T plot for complex [K2{[U(OSi(OtBu)3)3]2(μ-O)(µ-N)(μ-NCO)}], 6

    0 50 100 150 200 250 300Temperature (K)

    1

    1.5

    2

    2.5

    3

    3.5

    -0

    (em

    u/m

    ol O

    e)

    10-3

    0 50 100 150 200 250 300Temperature (K)

    6

    7

    8

    9

    10

    11

    12

    13

    -0

    (em

    u/m

    ol O

    e)

    10-4

  • Fig. S55: c vs T plot for complex [K{[U(OSi(OtBu)3)3]2(μ-N)}], 2

    0 50 100 150 200 250 300Temperature (K)

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    0.04

    0.045

    0.05

    0.055

    -0

    (em

    u/m

    ol O

    e)

  • Fig. S56: c vs T plot for complex [K2{[U(OSi(OtBu)3)3]2(μ-N)(μ-N3)}], 3

    Fig. S57: c vs T plot for complex [K2{[U(OSi(OtBu)3)3]2(µ-CN)(μ-O)(µ-NCO)}], 7

    0 50 100 150 200 250 300Temperature (K)

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    -0

    (em

    u/m

    ol O

    e)

    0 50 100 150 200 250 300Temperature (K)

    5.8

    6

    6.2

    6.4

    6.6

    6.8

    7

    7.2

    -0

    (em

    u/m

    ol O

    e)

    10-3

  • Fig. S58: c vs T plot for complex [K2{[U(OSi(OtBu)3)3]2(μ-NH)2}], 8

    0 50 100 150 200 250 300Temperature (K)

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    -0

    (em

    u/m

    ol O

    e)

  • Fig. S59: Ortep diagram of the core showing the metrical parameters for the bridging atoms in complexes a) [K2{[U(OSi(OtBu)3)3]2(μ-N)(μ-N3)}], 3; b) [K2{[U(OSi(OtBu)3)3]2(µ-CN)(μ-O)(µ-NCO)}], 7; c) [K2{[U(OSi(OtBu)3)3]2(μ-NH)2}], 8

    E) UV-Vis data

    Fig. S60: UV-Vis absorption spectra in toluene solution of complexes 3-8.

    U1 U1

    N1

    N2

    N3

    N4

    3.6330(6) Å

    124.6(7)°

    91.5(4)°

    U1 U1

    N1

    H1

    3.5687(2) Å

    106.10(12)°

    U1 U2O2A

    N1

    C1A

    O1A

    90.7(6)°

    N2

    115.8(6)°

    92.5(7)°

    C2A

    3.6358(7)Å

    a) b)

    c)

    0

    2000

    4000

    6000

    8000

    10000

    250 750 1250 1750

    ε(M

    -1cm

    -1)

    wavelenght (nm)

    345678

  • Fig. S61: NIR absorption spectra in toluene solution of complexes 3-8.

    0

    20

    40

    60

    80

    100

    120

    450 950 1450 1950

    ε(M

    -1cm

    -1)

    wavelenght (nm)

    345678