supporting information a facile soft-template-morphology

26
Supporting Information A Facile Soft-Template-Morphology-Controlled (STMC) Synthesis of ZnIn 2 S 4 Nanostructures and Excellent Morphology Dependent Adsorption Properties Afaq Ahmad Khan, Arif Chowdhury, Sunita Kumari and Sahid Hussain* Department of Chemistry, Indian Institute of Technology Patna, Bihta, 801103 Email address: [email protected] Tel: +91-612-302 8022, Fax: +91-612-2277383 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Upload: others

Post on 11-Mar-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Supporting Information

A Facile Soft-Template-Morphology-Controlled (STMC)

Synthesis of ZnIn2S4 Nanostructures and Excellent

Morphology Dependent Adsorption Properties

Afaq Ahmad Khan, Arif Chowdhury, Sunita Kumari and Sahid Hussain*

Department of Chemistry, Indian Institute of Technology Patna, Bihta, 801103

Email address: [email protected] Tel: +91-612-302 8022, Fax: +91-612-2277383

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2019

Table S1 Comparison of MG adsorption on ZIS-3 with other reported materials.

S.

No.

Adsorbent pH Qm (mg.g-1

) Reference

01 CO2 -activated porous carbon

Undefined 284 1

02 r-GO

3.7 476.2 2

03 Chitosan beads 7 360 3

04 Si-POPs 6 757 4

05 Fe-Cu based adsorbent 6.58 1399 5

06. Fe3O4@MgSi 4.8 125.15 6

07 TiO2/γCD NPs Undefined 244 7

08 Ternary Mg/(Al + Fe)

Layered Double Hydroxides 4 1072.82 8

09 Magnetic phosphate nanocomposites 5 192.31 9

10 AgOH‐AC nanoparticles 8 57.13 10

11 MgO/Fe3O4 nanoparticles

6 4031.96 11

12 PAC/graphene nanocomposite

Undefined 1862.6 12

13 ZnIn2S4 NS 4.3 1525 This work

Table S2 Comparison of Cr2O7

2- adsorption on ZIS-3 with other reported materials.

S.

No.

Adsorbent pH Qm (mg.g-1

) Reference

01 Fe3O4 microspheres undefined 68.7 13

02 Magnetic carbon nanocomposite 7 3.74 14

03. TiO2 microspheres 2 ~6.80 15

04 Bt/Bc/α-Fe2O3 nanoparticles undefined 81.7 16

05 NH2-GO/ZnO-ZnFe2O4 nanomaterials 4 109.89 17

06 Fe/C composites 5 107 18

07 Fe3O4-FeB nanocomposite 6.3 38.9 19

08 MnO2 5.9 0.89 20

09 NiO nanoparticles undefined 4.73 21

10 Zr(IV)-MOF, BUT-39 3 212 22

11 CON-LDU2 Undefined 325 23

12 CS-IL conjugation 7 91.2 24

13 ZnIn2S4 NS 7 313 This work

Table. S3 Reaction condition for preparation of ZnIn2S4 NS

Fig. S1 P-XRD pattern of standard cubic and rhombohedral ZnIn2S4 (a), P-XRD of ZIS-3 with

standard hexagonal ZnIn2S4 (b) and reused ZIS-3 (c).

S.

No.

Sample

Name

Sulfur

source

(5 mmol)

Soft-template

(Surfactant)

Temp &

Time

(min)

mmol

In(OAc)3 Zn(OAc)2.2H2O

1. ZIS-1

Thiourea

Glycerol

150°C, 180

1

1 3. ZIS-2 PEG-200

4. ZIS-3 PEG-PPG-

PEG

10 20 30 40 50 60 70 80

(116)(022)

(110)

(102)

(006)

JCPDF No.: 065-2023

Inte

nsi

ty (

a.u

.)

2 theta (degree)

ZIS-3

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

2 theta (degree)

Hexagonal ZnIn2S

4

JCPDF No.: 065-2023 Inte

nsi

ty (

a.u

.)

Reused ZIS-3

(a) (b)

(c)

Fig. S2 XPS spectra; C1s spectra of ZIS-1 (a), C1s spectra (b), survey spectra (c), core-level

In3d spectra (d), core-level Zn 2p spectra (e), core-level S2p spectra (f), of reused ZIS-3 and

far-IR spectra of ZIS-3 (g).

166 164 162 160 158 156

1.26 eV

S 2p

Raw

Fitted

2p3/2

2p1/2

In

ten

sit

y (

a.u

.)

Binding energy (eV)

1050 1045 1040 1035 1030 1025 1020 1015 1010

22.95 eV

In

ten

sit

y (

a.u

.)

Binding energy (eV)

Raw

Fitted

2p3/2

2p1/2

Zn 2p

454 452 450 448 446 444 442 440 438 436

In

ten

sit

y (

a.u

.)

Binding energy (eV)

Raw

Fitted

3d5/2

3d3/2

In 3d 7.51 eV

1200 1000 800 600 400 200 0

In

MN

N

In

4d

S L

MM

In

3s

S2s S2p

3/2

Zn

LM

M

Zn

2p

1/2 Z

n2p

3/2

In

3p

1/2

In

3p

3/2

C1s

In

3d

3/2

In

3d

5/2

In

ten

sit

y (

a.u

.)

Binding energy (eV)

O1

s

Survey

294 292 290 288 286 284 282 280 278 276

Raw

Fitted

C-O/C-N

C-C

C=C

In

ten

sit

y (

a.u

.)

Binding Energy (eV)

C1s

294 292 290 288 286 284 282 280 278 276

C 1s

Raw

Fitted

C-C

In

ten

sit

y (

a.u

.)

Binding energy (eV)

(a) (b) (c)

(d) (e)

(g)

(f)

Fig. S3 FE-SEM micrograph: SE2 mode at 100K magnification (a), InLens mode at 100K

magnification (b), InLens mode at 200K magnification (c) of ZIS-1; InLens mode at 100K inset

with SE2 mode at 200K magnification (d) of ZIS-2; SE2 mode at 100K magnification (e),

InLens mode at 50.52K magnification (f) of ZIS-3; TEM micrograph of ZIS-3 (g-i).

Fig. S4 EDS line spectra of ZIS-1 (a) and ZIS-2 (b).

(a) (b) (c)

(g) (h) (i)

(a) (b)

(d) (e) (f)

Fig. S5 AFM topography of the ZIS-1 (a), ZIS-2 (b) and ZIS-3 (c).

(a) (b)

(c)

Fig. S6 Thickness profile curve of the ZIS-1 (a), ZIS-2 (b) and ZIS-3 (c).

(c)

(b)

(a)

Fig. S7 Fitted Langmuir adsorption isotherm model of ZIS-1 (a), ZIS-2 (b), ZIS-3 (c) for MG

adsorption and ZIS-1 (d), ZIS-2 (e), ZIS-3 (f) for the adsorption of Cr2O72-.

0 200 400 600 800 1000 1200 1400 1600 1800 20000

5

10

15

20

25

30

R2= 0.9921

MG

Linear fit

Ce/Q

e (

g.L

-1)

Ce (mg.L-1)

0 200 400 600 800 1000120014001600180020000

2

4

6

8

10 R2= 0.9885

MG

Linear fit

Ce/Q

e (

g.L

-1)

Ce (mg.L-1)

0 200 400 600 800 1000 1200 1400

0.4

0.6

0.8

1.0

1.2R

2= 0.9554

MG

Linear fit

Ce/Q

e (

g.L

-1)

Ce (mg.L-1)

0 200 400 600 800 10000

1

2

3

4

5

R2= 0.9558

Cr2O

7

2-

Linear fit

Ce/Q

e (

g.L

-1)

Ce (mg.L-1)

0 200 400 600 800 10000

1

2

3

4

5

6

7

8

R2= 0.9975

Cr2O

7

2-

Linear fit

Ce/Q

e (

g.L

-1)

Ce (mg.L-1)

0 200 400 600 800 10000.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R2= 0.9480

Cr2O

7

2-

Linear fit

Ce/Q

e (

g.L

-1)

Ce (mg.L-1)

(a) (b)

(c)

(e) (f)

(d)

Fig. S8 Fitted Freundlich adsorption isotherm model of ZIS-1 (a), ZIS-2 (b), ZIS-3 (c) for the

MG adsorption and ZIS-1 (d), ZIS-2 (e), ZIS-3 (f) for the adsorption of Cr2O72-.

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.8

3.9

4.0

4.1

4.2

4.3 R2= 0.9395

MG

Linear fit

lnQ

e

lnCe

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.04.7

4.8

4.9

5.0

5.1

5.2

5.3

R2= 0.9515

MG

Linear fit

lnQ

e

lnCe

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

7.2

R2= 0.9987

MG

Linear fit

lnQ

e

lnCe

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

4.4

4.6

4.8

5.0

5.2

5.4

R2= 0.9146

Cr2O

7

2-

Linear fit

lnQ

e

lnCe

(a) (b)

(c) (d)

4.0 4.5 5.0 5.5 6.0 6.5 7.04.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

R2= 0.9881

Cr2O

7

2-

Linear fit

lnQ

e

lnCe

(e)

4.0 4.5 5.0 5.5 6.0 6.5 7.04.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

R2= 0.9963

Cr2O

7

2-

Linear fit

lnQ

e

lnCe

(f)

Table S4 Separation factor (RL) of MG adsorption on ZnIn2S4 NS.

Adsorbent

RL

MG concentration (mg.L-1

)

200 500 1000 1500 2000

ZIS-1 0.5013 0.2868 0.1674 0.1182 0.0913

ZIS-2 0.3959 0.2077 0.1159 0.0803 0.0615

ZIS-3 0.7542 0.5511 0.3803 0.2904 0.2348

Table S5 Separation factor (RL) of Cr2O72-

adsorption on ZnIn2S4 NS.

Adsorbent

RL

Cr2O72-

concentration (mg.L-1

)

100 200 500 800 1000

ZIS-1 0.5824 0.4108 0.2181 0.1484 0.1224

ZIS-2 0.4388 0.2811 0.1352 0.0890 0.0725

ZIS-3 0.7713 0.6017 0.3767 0.2742 0.2321

Table S6 Kinetic parameters of the adsorption of MG dyes on ZnIn2S4 NS

Pseudo-first-order model Pseudo-second-order model

Adsorbent Conc.

(mg.L-1

)

qe,exp

(mg.g-1

)

K1 qe,cal

(mg.g-1

)

R2 K2 qe,cal

(mg.g-1

)

R2

ZIS-1

50 17.89 0.0068 12.14 0.9477 0.0028 17.42 0.9806

100 30.15 0.0071 19.55 0.7888 0.0017 28.92 0.9633

ZIS-2

50 49.73 0.0123 41.83 0.9403 0.0007 51.57 0.9701

100 60.39 0.0096 39.76 0.9303 0.0011 60.31 0.9913

ZIS-3

50 74.99 0.0656 8.09 0.7664 0.0505 75 1

100 124.65 0.0114 43.62 0.8477 0.0014 125 0.9988

Fig. S9 Fitted pseudo-first order kinetic rate model of MG 20 mg/L (a), MG 50 mg/L (b), MG

100 mg/L (c) and fitted pseudo-second order kinetic rate model of MG 20 mg/L (d), MG 50

mg/L (e), MG 100 mg/L (f) in the presence of ZIS-1.

0 50 100 150 200 250 300

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0 R2= 0.9591

20 mg/L

Linear fit

ln(q

e-q

t)

Time (min)

0 50 100 150 200 250 300

0.5

1.0

1.5

2.0

2.5

3.0 R2= 0.9477

50 mg/L

Linear fit

ln(q

e-q

t)

Time (min)

0 50 100 150 200 250 300

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 R2= 0.7888

100 mg/L

Linear fit

ln(q

e-q

t)

Time (min)

0 50 100 150 200 250 300 350 400

0

5

10

15

20

25

R2= 0.9664

20 mg/L

Linear fit

t/q

t (m

in.g

.mg

-1)

Time (min)

0 50 100 150 200 250 300 350

0

5

10

15

20

25

R2= 0.9806

50 mg/L

Linear fit

t/q

t (m

in.g

.mg

-1)

Time (min)

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14 R2= 0.9636

100 mg/L

Linear fit

t/q

t (m

in.g

.mg

-1)

Time (min)

(a) (b)

(c) (d)

(e) (f)

Fig. S10 Fitted pseudo-first order kinetic rate model of MG 20 mg/L (a), MG 50 mg/L (b), MG

100 mg/L (c) and fitted pseudo-second order kinetic rate model of MG 20 mg/L (d), MG 50

mg/L (e), MG 100 mg/L (f) in the presence of ZIS-2.

0 50 100 150 200 250 300

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 R2= 0.9730

20 mg/L

Linear fit

ln(q

e-q

t)

Time (min)

0 50 100 150 200 250 300

0

1

2

3

4R

2 = 0.9404

50 mg/L

Linear fit

ln(q

e-q

t)

Time (min)

0 50 100 150 200 250 3000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R

2 = 0.9303

100 mg/L

Linear fit

ln(q

e-q

t)

Time (min)

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

16

R2= 0.9954

20 mg/L

Linear fit

t/q

t (m

in.g

.mg

-1)

Time (min)

0 50 100 150 200 250 300 350 400

0

1

2

3

4

5

6

7

8

50 mg/L

Linear fit

t/q

t (m

in.g

.mg

-1)

Time (min)

R2 = 0.9701

0 50 100 150 200 250 300 350 400

0

1

2

3

4

5

6

7

R2 = 0.9913

100 mg/L

Linear fit

t/q

t (m

in.g

.mg

-1)

Time (min)

(a)

(c)

(b)

(d)

(e) (f)

Fig. S11 Fitted pseudo-first order kinetic rate model of MG 20 mg/L (a), MG 50 mg/L (b), MG

100 mg/L (c) and fitted pseudo-second order kinetic rate model of MG 20 mg/L (d), MG 50

mg/L (e), MG 100 mg/L (f) in the presence of ZIS-3.

0 1 2 3 4 5-2

-1

0

1

2

3

4

R2= 0.5932

20 mg/L

Linear fit

ln(q

e-q

t)

Time (min)

0 50 100 150 200 250 300

0

1

2

3

4

5 R2= 0.8477

100 mg/L

Linear fit

ln(q

e-q

t)

Time (min)

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

R2= 1

20 mg/L

Linear Fit

t/q

t (m

in.g

.mg

-1)

Time (min)

0 50 100 150 200 250 300 350 400

0.0

0.5

1.0

1.5

2.0

2.5

3.0 R2= 0.9988

100 mg/L

Linear fit

t/q

t (m

in.g

.mg

-1)

Time (min)

(a) (b)

(c) (d)

(e) (f)

0 20 40 60 80 100-4

-3

-2

-1

0

1

2

3

4

5

R2= 0.7664

50 mg/L

Linear fit

ln(q

e-q

t)

Time (min)

-50 0 50 100 150 200 250 300 350 400

0

1

2

3

4

5

R2= 1

50 mg/L

Linear fit

t/q

t (m

in.g

.mg

-1)

Time (min)

Fig. S12 Fitted pseudo-first order kinetic rate model of ZIS-1 (a), ZIS-2 (b), ZIS-3 (c) and fitted

pseudo-first order kinetic rate model of ZIS-1 (d), ZIS-2 (e), ZIS-3 (f)using 20 mg.L-1

solution of

Cr2O72-

.

0 20 40 60 80 100

-2

-1

0

1

2

3

4

R2 = 0.5386

Cr2O

7

2-

Linear fit

ln(q

e-q

t)

Time (min)

0 50 100 150 200 250 300

-3

-2

-1

0

1

2

3

4

R2 = 0.9375

Cr2O

7

2-

Linear fit

ln(q

e-q

t)

Time (min)

0 50 100 150 200 250 300

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R2 = 0.8843

Cr2O

7

2-

Linear fit

ln(q

e-q

t)

Time (min)

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14 R2 = 0.9993

Cr2O

7

2-

Linear fit

t/q

t (m

in.g

.mg

-1)

Time (min)

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

Cr2O

7

2-

Linear fit

t/q

t (m

in.g

.mg

-1)

Time (min)

R2 = 0.9664

(a) (b)

(c)

(e) (f)

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12 R2 = 1

Cr2O

7

2-

Linear fit

t/q

t (m

in.g

.mg

-1)

Time (min)

(d)

Fig. S13 Effect of contact time on the adsorption of MG using ZIS-1 (a), ZIS-2 (b), and ZIS-3

(c) at the solution concentration of 50 mg.L-1

and 100 mg.L-1

.

0 50 100 150 200 250 300 350

0

5

10

15

20

25

30

35

qt(m

g.g

-1)

Time (min)

50 mg/L

100 mg/L

MG adsorption

0 50 100 150 200 250 300 350 400

0

10

20

30

40

50

60

70

qt (

mg

.g-1

)

Time (min)

50 mg/L

100 mg/L

MG adsorption(a) (b)

(c)

-50 0 50 100 150 200 250 300 350 400

0

20

40

60

80

100

120

140

qt(m

g.g

-1)

Time (min)

50 mg/L

100 mg/L

MG adsorption

Fig. S14 UV-Vis spectra of adsorption of MG at 20 mg/L (a), 50 mg/L (b), 100 mg/L (c) using

ZIS-1 and MG adsorption at 20 mg/L (d), 50 mg/L (e), 100 mg/L (f) using ZIS-2.

200 300 400 500 600 700 8000.0

0.5

1.0

1.5

2.0MG

01

02

05

10

20

30

60

120

180

240

300

360

MG-180min: adsorption

ZIS-1: 10 mg

MG Conc.: 20 mg/L

Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

200 300 400 500 600 700 8000.0

0.5

1.0

1.5

2.0

MG

01

02

05

10

20

30

60

120

180

240

300

340

MG-360min: adsorption

ZIS-1: 10 mg

MG Conc.: 50 mg/L

Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

200 300 400 500 600 700 8000.0

0.5

1.0

1.5

2.0MG

01

02

05

10

20

30

60

120

180

240

300

360

MG-360min: adsorption

ZIS-1: 10 mg

MG Conc.: 100 mg/L

Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

200 300 400 500 600 700 8000.0

0.5

1.0

1.5

2.0MG-360 min: adsorption

ZIS-2: 10 mg

MG Conc.: 20 mg/L

Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

MG

01

02

05

10

20

30

60

120

180

240

300

360

200 300 400 500 600 700 8000.0

0.5

1.0

1.5

2.0MG

01

02

05

10

20

30

60

120

180

240

300

360

MG-360 min: adsorption

ZIS-2: 10 mg

MG Conc.: 50 mg/L

Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

200 300 400 500 600 700 8000.0

0.5

1.0

1.5

2.0

MG-360 min: adsorption

ZIS-2: 10 mg

MG Conc.: 100 mg/L

MG

01

02

05

10

20

30

60

120

180

240

300

360

Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

(a) (b)

(c) (d)

(e) (f)

Fig. S15 UV-Vis spectra of adsorption of MG at 20 mg/L (a), 50 mg/L (b), 100 mg/L (c) using

ZIS-3 and Cr2O72-

adsorption using ZIS-1 (d), ZIS-2 (e) and ZIS-3 (f) at 20 mg/L solution.

200 300 400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

A

bso

rb

an

ce (

a.u

.)

Wavelength (nm)

MG-10 min: adsorption

ZIS-3: 10 mg

MG Conc. = 20 mg/L

MG

01

02

05

10

200 300 400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

MG

01

02

05

10

15

20

30

45

60

90

120

180

240

300

360

MG-360 min: adsorption

ZIS-3: 10 mg

Dye Conc.: 100 mg/L

Ab

sorb

an

ce (

a.u

.)

Wavelength(nm)

200 250 300 350 400 450 5000.0

0.2

0.4

0.6Blank

02

05

10

20

30

60

90

120

ZIS-1: 10 mg

Cr2O72-

sol.: 20 mg/L

Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

200 250 300 350 400 450 5000.0

0.2

0.4

0.6

ZIS-2: 10 mg

Cr2O

7

2- : 20 mg/L

Blank

02

05

10

20

30

60

120

180

240

300

360Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

200 250 300 350 400 450 5000.0

0.2

0.4

0.6

0.8

1.0

Blank

02

05

10

20

30

60

120

180

240

300

360

Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

ZIS-3: 10 mg

Cr2O

7

2- sol.: 20 mg/L

(a)

(d)

(e) (f)

(c)

200 300 400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

MG-180min: adsorption

ZIS-3: 10 mg

MG Conc.: 50 mg/L

MG

02

05

10

15

20

30

45

60

90

120

180

Ab

so

rb

an

ce (

a.u

.)

Wavelength (nm)

(b)

Fig. S16 UV-Vis spectra of adsorption of MG at 5 mg/L (a) and 2 mg/L (b) using ZIS-3

Fig. S17 UV-Vis spectra of adsorption of Cr2O72-

at 5 mg/L (a) 2 mg/L (b) using ZIS-3.

450 500 550 600 650 700 750

0.0

0.5

1.0

1.5

Ab

so

rb

an

ce (

a.u

.)

Wavelength (nm)

MB Blank

02

05

MG Conc. : 5 mg/L

450 500 550 600 650 700 750

0.0

0.1

0.2

0.3

0.4

0.5

Ab

so

rb

an

ce (

a.u

.)

Wavelength (nm)

MB Blank

02

MG Conc. : 2 mg/L

300 350 400 4500.00

0.05

0.10

0.15

Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

Cr2O

7

2- conc.: 5 mg/L Blank

02

05

10

30

60

300 320 340 360 380 400 420 440

0.00

0.02

0.04

0.06

0.08

Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

Blank

02

05

10

20

Cr2O

7

2- Conc.: 2 mg/L

(a) (b)

(a) (b)

Fig. S18 UV-Vis spectra of adsorption of Cr2O72-

at 1 mg/L (a), 2 mg/L (b) and 5 mg/L of

solution concentration using ZIS-1.

300 350 400 450 500-0.01

0.00

0.01

0.02

0.03

Blank

01

Cr2O

7

2- conc.: 1 mg/L

Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

300 350 400 450 500 550

0.00

0.02

0.04

0.06

Blank

01

Cr2O

7

2- Conc.: 2 mg/L

Ab

so

rb

an

ce (

a.u

.)

Wavelength (nm)

300 350 400 450 500

0.00

0.05

0.10

0.15

Cr2O

7

2- conc.: 5 mg/L Blank

02

05

07

Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

(a) (b)

(c)

Fig. S19 UV-Vis spectra of MG (50 mg/L) adsorption at pH 2 (a), pH 5 (b), pH 7 (c), pH 9 (d)

and initial absorbance of MG at pH 12 and pH 4.3 (e) after adsorption at pH 12 (f) using ZIS-3.

200 300 400 500 600 700 800

0.0

0.5

1.0

1.5

2.0

pH=12

pH=4.3

Absorbance = Initial

MG Conc.: 50 mg/L

Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

254 nm

200 300 400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0pH: 2

ZIS-3: 10 mg

MG Conc.: 50 mg/L

MG

02

05

10

20

30

45

60

120

180

A

bso

rb

an

ce (

a.u

.)

Wavelength (nm)

200 300 400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

pH: 5

ZIS-3: 10 mg

MG Conc.: 50 mg/L

MG

02

05

10

20

30

45

60

Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

200 300 400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

pH: 7

ZIS-3: 10 mg

MG Conc.: 50 mg/L

MG

02

05

10

20

30

45

60

Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

254 nm

200 300 400 500 600 700 800

0.0

0.2

0.4

0.6

0.8

1.0MG

02

05

10

15

pH: 9

ZIS-3: 10 mg

MG Conc.: 50 mg/L

Ab

sorb

an

ce (

a.u

.)

Wavelength (nm)

254 nm

(a) (b)

(c) (d)

(e)

200 300 400 500 600 700 800

0.0

0.1

0.2

0.3

0.4

0.5

pH=12

pH=4.3

Absorbance = After 180 min

ZIS-3: 10 mg

MG Conc.: 50 mg/L

Ab

so

rb

an

ce (

a.u

.)

Wavelength (nm)

MG-OH (R%) = 93.44%

qe = 70.08 mg.g

-1

(f)

4.3 12

Fig. S20 Three form malachite green dye at different pH; malachite green ion (MG+), Malachite

green carbinol (MG-OH) and Protonated MG+ (MG

2+).

Fig. S21 FE-SEM micrograph of ZIS-3: (a-b) after MG adsorption, (c-d) after Cr2O72-

adsorption; EDS line mapping of ZIS-3: (e) after MG adsorption, (f) after Cr2O72-

adsorption.

(e) (f)

(a) (b) (c) (d)

Fig. S22 XPS spectra of ZIS-3 after Cr2O72-

adsorption; survey spectra (a), core-level S 2p

spectra (b), core-level In3d spectra (c), core-level O1s spectra (d) and core-level C 1s spectra (e).

1350 1200 1050 900 750 600 450 300 150 0

Zn

3p

3/2

In

4dS2p

3/2

S2s

In

3s

Zn

LM

M

In

MN

N

C1s

In

3d

3/2

In

3d

5/2

O1

s

Cr2p

3/2

In

ten

sit

y (

a.u

.)

Binding energy (eV)

Zn

2p

1/2

Zn

2p

3/2

In

3p

3/2

In

3p

1/2

Survey

465 460 455 450 445 440 435 430

In

ten

sit

y (

a.u

.)

Binding energy (eV)

Raw

Fitted

3d5/2

3d3/2

= 7.37 eV

In 3d

538 536 534 532 530 528 526 524 522 520

In

ten

sit

y (

a.u

.)

Binding energy (eV)

Raw

Fitted

Olatt

Oads

H2O

O 1s

172 170 168 166 164 162 160 158

In

ten

sit

y (

a.u

.)

Binding energy (eV)

Raw

Fitted

2p3/2

2p1/2

= 1.11 eV

S 2p

(e)

(d) (c)

(b) (a)

290 288 286 284 282 280 278 276 274 272 270

C1s

In

ten

sit

y (

a.u

.)

Binding energy (eV)

Raw

Fitted

C-C

C-O

References

1. M. Yu, Y. Han, J. Li, L. Wang, Chem. Eng. J., 2017, 317, 493−502.

2. K. Gupta and O. P. Khatri, Journal of Colloid and Interface Science, 2017, 501, 11–21.

3. D. Das and A. Pal, Chemical Engineering Journal, 2016, 290, 371–380.

4. G. Xiong, B.B. Wang, L.X. You, B.Y. Ren, Y.K. He, F. Ding, L. Dragutan, V. Dragutan

and Y.G. Sun. J. Mater. Chem. A, 2019, 7, 393-404.

5. P.Zhang, D.Hou, D.O’Connor,X. Li, S. Pehkonen, R.S. Varma, X. Wang, ACS

Sustainable Chem. Eng., 2018, 6, 9229−9236.

6. Liu, H.; Mo, Z.; Li, L.; Chen, F.; Wu, Q.; Qi, L. J. Chem. Eng. Data, 2017, 62,

3036−3042.

7. S. H. Mousavi, F. Shokoofehpoor, A. Mohammadi, J. Chem. Eng. Data, 2019, 64, 135-

149.

8. S. Das, S. K. Dash and K. M. Parida, ASC Omega, 2018, 3, 2532-2545.

9. F. Zhang, X. Tang, Y. Huang, A. A. Keller and J. Lan, Water research, 2019, 150, 442-

451.

10. E. Solaymani, M. Ghaedi, H. Karimi, M. H. A. Azqhandi and A. Asfaram, Appl

Organometal Chem. 2017, e3857.

11. F. Guo, X. Jiang, X. Li, X. Jia, S. Liang and L. Qian, Materials Chemistry and Physics,

2020, 240, 122240.

12. E. Mkrtchyan, A. Burakov and I. Burakova, Materials Today: Proceedings, 2019, 11,

404-409.

13. Y. Yu, Y. Li, Y. Wang and B. Zou, Langmuir, 2018, 34, 9359-9365.

14. J. Zhu, H. Gu, J. Guo, M. Chen, H. Wei, Z. Luo, H. A. Colorado, N. Yerra, D. Ding, T.

C. Ho, N. Haldolaarachchige, J. Hopper, D. P. Young, Z. Guo and S. Wei, J. Mater.

Chem. A, 2014, 2, 2256-2265.

15. Z. Yu, X. Gao, Y. Yao, X. Zhang, G.-Q. Bian, W. D. Wu, X. D. Chen, W. Li, C.

Selomulya, Z. Wu and D. Zhao, Journal of Materials Chemistry A, 2018, 6, 3954-3966.

16. Z.-H. Ruan, J.-H. Wu, J.-F. Huang, Z.-T. Lin, Y.-F. Li, Y.-L. Liu, P.-Y. Cao, Y.-P. Fang,

J. Xie and G.-B. Jiang, J. Mater. Chem. A, 2015, 3, 4595-4603.

17. S. K. Sahoo and G. Hota, ACS Applied Nano Materials, 2019, 2, 983-996.

18. Y. Cui, J. D. Atkinson, Chemosphere, 2019, 228, 694-701.

19. W. Shen, Y. Mu, T. Xiao and Z. Ai, Chemical Engineering Journal, 2016, 285, 57-68.

20. M. Gheju, I. Balcu and G. Mosoarca, J Hazard Mater, 2016, 310, 270-277.

21. M. A. Behnajady and S. Bimeghdar, Chemical Engineering Journal, 2014, 239, 105-113.

22. T. He, Y. Z. Zhang, X. J. Kong, J. Yu, X. L. Lv, Y. Wu, Z. J. Guo and J. R. Li, ACS Appl

Mater Interfaces, 2018, 10, 16650-16659.

23. Z. J. Li, H. D. Xue, Y. X. Ma, Q. Zhang, Y. C. Li, M. Xie, H. L. Qi and X. D. Zheng,

ACS Appl Mater Interfaces, 2019, DOI: 10.1021/acsami.9b17074.

24. Y. Wei, W. Huang, Y. Zhou, S. Zhang, D. Hua and X. Zhu, Int J Biol Macromol, 2013,

62, 365-369.