supplementary note - media.nature.com · d'hématologie, cnrs 8147, paris, france; 12....

43
Supplementary Note 1. List of members Full list of members of the ICGC MMML-Seq project Coordination (C1): Gesine Richter 1 , Reiner Siebert 1 , Susanne Wagner 1 , Andrea Haake 1 , Julia Richter 1 Data Center (C2): Roland Eils 2,3 , Chris Lawerenz 2 , Sylwester Radomski 2 , Ingrid Scholz 2 Clinical Centers (WP1): Christoph Borst 4 , Birgit Burkhardt 5,6 , Alexander Claviez 7 , Martin Dreyling 8 , Sonja Eberth 9 , Hermann Einsele 10 , Norbert Frickhofen 11 , Siegfried Haas 4 , Martin- Leo Hansmann 12 , Dennis Karsch 13 , Michael Kneba 13 , Jasmin Lisfeld 6 , Luisa Mantovani- Löffler 14 , Marius Rohde 5 , Christina Stadler 9 , Peter Staib 15 , Stephan Stilgenbauer 16 , German Ott 17 , Lorenz Trümper 9 , Thorsen Zenz 35 Normal Cells (WPN): Martin-Leo Hansmann 12 , Dieter Kube 9 , Ralf Küppers 18 , Marc Weniger 18 Pathology and Analyte Preparation (WP2-3): Siegfried Haas 4 , Michael Hummel 19 , Wolfram Klapper 20 , Ulrike Kostezka 21 , Dido Lenze 19 , Peter Möller 22 , Andreas Rosenwald 23 , Monika Szczepanowski 20 Sequencing and genomics (WP4-7): Ole Ammerpohl 1 , Sietse Aukema 1 , Vera Binder 24 , Arndt Borkhardt 24 , Andrea Haake 1 , Kebria Hezaveh 24 , Jessica Hoell 24 ; Ellen Leich 23 , Peter Lichter 2 , Christina Lopez 1 , Inga Nagel 1 , Jordan Pischimariov 23 , Bernhard Radlwimmer 2 , Julia Richter 1 , Philip Rosenstiel 25 , Andreas Rosenwald 23 , Markus Schilhabel 25 , Stefan Schreiber 26 , Inga Vater 1 , Rabea Wagner 1 , Reiner Siebert 1 Bioinformatics (WP8-9): Stephan H. Bernhart 27-29 , Hans Binder 28 , Benedikt Brors 2 , Gero Doose 27-29 , Jürgen Eils 2 , Roland Eils 2,3 , Steve Hoffmann 27-29 , Lydia Hopp 28 , Helene Kretzmer 27-29 , Markus Kreuz 30 , Jan Korbel 31 , David Langenberger 27-29 , Markus Loeffler 30 , Sylwester Radomski 2 , Maciej Rosolowski 30 , Matthias Schlesner 2 , Peter F. Stadler 27-29,32-34, Stefanie Sungalee 31 1 Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/ Christian-Albrechts University Kiel, Kiel, Germany; 2 German Cancer Research Center (DKFZ), Division Theoretical Bioinformatics, Heidelberg, Germany; 3 Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, Heidelberg, Germany; 4 Friedrich-Ebert Hospital Neumünster, Clinics for Hematology, Oncology and Nephrology, Neumünster, Germany; 5 Department of Pediatric Hematology and Oncology, University Hospital Münster, Münster, Germany; 6 Department of Pediatric Hematology and Oncology University Hospital Giessen, Giessen, Germany; 7 Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Germany; 8 Department of Medicine III - Campus Grosshadern, University Hospital Munich, Munich, Germany; 9 Department of Hematology and Oncology, Georg-August-University of Göttingen, Göttingen, Germany; 10 University Hospital Würzburg, Department of Medicine and Poliklinik II, University of Würzburg, Würzburg, Germany; 11 Department of Medicine III, Hematology and Oncology, Dr. Horst-Schmidt-Kliniken of Wiesbaden, Wiesbaden, Germany; 12 Senckenberg Institute of Pathology, University of Frankfurt Medical School, Frankfurt am Main, Germany; 13 Department of Internal Medicine II: Hematology and Oncology, University Medical Centre, Campus Kiel, Kiel, Germany; 14 Hospital of Internal Medicine II, Hematology and Oncology, St-Georg Hospital Leipzig, Leipzig, Germany; 15 Univesity Hospital Aachen, St.-Antonius Hospital, Department of Oncology, Hematology and stem cell transplantation, University of Aachen, Aachen, Germany; 16 Department of Internal Medicine III, University of Ulm, Ulm, Germany; 17 Robert-Bosch Hospital Stuttgart, Department of Pathology, Stuttgart, Germany; 18 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany; 19 Institute of Pathology, Charité University Medicine Berlin, Berlin, Germany; 20 Hematopathology Section, University Hospital Schleswig-Holstein Campus Kiel/ Christian-Albrechts University Kiel, Kiel, Germany; 21 Comprehensive Cancer Center Ulm (CCCU), University Hospital Ulm, Ulm, Germany; 22 Institute of Pathology, Medical Faculty of the Ulm University, Ulm, Germany; 23 Institute of Pathology, University of Würzburg, Würzburg, Germany; 24 Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, Düsseldorf, Germany; 25 Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein Campus Kiel/ Christian-Albrechts University Kiel,, Kiel, Germany; Nature Genetics: doi:10.1038/ng.3413

Upload: vuongdat

Post on 14-Sep-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Note 1. List of members Full list of members of the ICGC MMML-Seq project Coordination (C1): Gesine Richter1, Reiner Siebert1, Susanne Wagner1, Andrea Haake1, Julia Richter1 Data Center (C2): Roland Eils2,3, Chris Lawerenz2, Sylwester Radomski2, Ingrid Scholz2

Clinical Centers (WP1): Christoph Borst4, Birgit Burkhardt5,6, Alexander Claviez7, Martin Dreyling8, Sonja Eberth9, Hermann Einsele10, Norbert Frickhofen11, Siegfried Haas4, Martin-Leo Hansmann12, Dennis Karsch13, Michael Kneba13, Jasmin Lisfeld6

, Luisa Mantovani-Löffler14, Marius Rohde5, Christina Stadler9, Peter Staib15, Stephan Stilgenbauer16, German Ott17, Lorenz Trümper9 , Thorsen Zenz35 Normal Cells (WPN): Martin-Leo Hansmann12, Dieter Kube9, Ralf Küppers18, Marc Weniger18

Pathology and Analyte Preparation (WP2-3): Siegfried Haas4, Michael Hummel19, Wolfram Klapper20, Ulrike Kostezka21, Dido Lenze19, Peter Möller22, Andreas Rosenwald23, Monika Szczepanowski20 Sequencing and genomics (WP4-7): Ole Ammerpohl1, Sietse Aukema1, Vera Binder24, Arndt Borkhardt24, Andrea Haake1, Kebria Hezaveh24, Jessica Hoell24; Ellen Leich23, Peter Lichter2, Christina Lopez1, Inga Nagel1, Jordan Pischimariov23, Bernhard Radlwimmer2, Julia Richter1, Philip Rosenstiel25, Andreas Rosenwald23, Markus Schilhabel25, Stefan Schreiber26, Inga Vater1, Rabea Wagner1, Reiner Siebert1

Bioinformatics (WP8-9): Stephan H. Bernhart27-29, Hans Binder28, Benedikt Brors2, Gero Doose27-29, Jürgen Eils2, Roland Eils2,3, Steve Hoffmann27-29, Lydia Hopp28, Helene Kretzmer27-29, Markus Kreuz30, Jan Korbel31, David Langenberger27-29, Markus Loeffler30, Sylwester Radomski2, Maciej Rosolowski30, Matthias Schlesner2 , Peter F. Stadler27-29,32-34,

Stefanie Sungalee31 1Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/ Christian-Albrechts University

Kiel, Kiel, Germany; 2German Cancer Research Center (DKFZ), Division Theoretical Bioinformatics, Heidelberg, Germany;

3Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology

and Bioquant, University of Heidelberg, Heidelberg, Germany; 4Friedrich-Ebert Hospital Neumünster, Clinics for Hematology, Oncology and Nephrology, Neumünster, Germany;

5Department of Pediatric Hematology and Oncology, University Hospital Münster, Münster, Germany;

6Department of Pediatric Hematology and Oncology University Hospital Giessen, Giessen, Germany;

7Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Germany;

8Department of Medicine III - Campus Grosshadern, University Hospital Munich, Munich, Germany;

9Department of Hematology and Oncology, Georg-August-University of Göttingen, Göttingen, Germany;

10University Hospital Würzburg, Department of Medicine and Poliklinik II, University of Würzburg, Würzburg,

Germany; 11

Department of Medicine III, Hematology and Oncology, Dr. Horst-Schmidt-Kliniken of Wiesbaden, Wiesbaden, Germany; 12

Senckenberg Institute of Pathology, University of Frankfurt Medical School, Frankfurt am Main, Germany; 13

Department of Internal Medicine II: Hematology and Oncology, University Medical Centre, Campus Kiel, Kiel, Germany;

14Hospital of Internal Medicine II, Hematology and Oncology, St-Georg Hospital Leipzig, Leipzig, Germany;

15Univesity Hospital Aachen, St.-Antonius Hospital, Department of Oncology, Hematology and stem cell

transplantation, University of Aachen, Aachen, Germany; 16

Department of Internal Medicine III, University of Ulm, Ulm, Germany; 17

Robert-Bosch Hospital Stuttgart, Department of Pathology, Stuttgart, Germany; 18

Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany; 19

Institute of Pathology, Charité – University Medicine Berlin, Berlin, Germany; 20

Hematopathology Section, University Hospital Schleswig-Holstein Campus Kiel/ Christian-Albrechts University Kiel, Kiel, Germany; 21

Comprehensive Cancer Center Ulm (CCCU), University Hospital Ulm, Ulm, Germany;

22Institute of Pathology, Medical Faculty of the Ulm University, Ulm, Germany;

23Institute of Pathology, University of Würzburg, Würzburg, Germany;

24Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, Düsseldorf,

Germany;

25Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein Campus Kiel/ Christian-Albrechts

University Kiel,, Kiel, Germany;

Nature Genetics: doi:10.1038/ng.3413

Page 2: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

26Department of General Internal Medicine, University Hospital Schleswig-Holstein Campus Kiel/ Christian-

Albrechts University Kiel, Kiel, Germany; 27

Transcriptome Bioinformatics Group, LIFE Research Center for Civilization Diseases, Leipzig, Germany; 28

Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany; 29

Bioinformatics Group, Department of Computer, University of Leipzig, Leipzig, Germany 30

Institute for Medical Informatics Statistics and Epidemiology, Leipzig, Germany;31

EMBL Heidelberg, Genome Biology, Heidelberg, Germany; 32

RNomics Group, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany 33

Santa Fe Institute, Santa Fe, New Mexico, United States of America 34

Max-Planck-Institute for Mathematics in Sciences, Leipzig, Germany 35

Department of Medicine V, University of Heidelberg, Heidelberg, Germany

Nature Genetics doi:10.1038/ng.3413

Page 3: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Full list of members of the MMML project Pathology group and analytes preparation: Thomas F.E. Barth1, Heinz-Wolfram Bernd2, Sergio B. Cogliatti3, Alfred C. Feller2, Martin L. Hansmann4, Michael Hummel5, Wolfram Klapper6, Dido Lenze5, Peter Möller1, Hans-Konrad Müller-Hermelink7, German Ott7, Andreas Rosenwald7, Harald Stein5, Monika Szczepanowski6, Hans-Heinrich Wacker6. Genetics group: Thomas F.E. Barth1, Petra Behrmann8, Peter Daniel10, Judith Dierlammm8, Eugenia Haralambieva7, Lana Harder11, Paul-Martin Holterhus12, Ralf Küppers13, Dieter Kube13, Peter Lichter14, Jose I. Martín-Subero11, Peter Möller1, Eva M. Murga-Peñas9, German Ott7, Christiane Pott16, Armin Pscherer15, Andreas Rosenwald7, Carsten Schwaenen17, Reiner Siebert11, Heiko Trautmann16, Martina Vockerodt18, Swen Wessendorf16. Bioinformatics group: Stefan Bentink19, Hilmar Berger20, Dirk Hasenclever20, Markus Kreuz20, Markus Loeffler20, Maciej Rosolowski20, Rainer Spang19. Project coordination: Benjamin Stürzenhofecker14, Lorenz Trümper14, Maren Wehner14. Steering committee: Markus Loeffler19, Reiner Siebert11, Harald Stein5, Lorenz Trümper14.

1Institute of Pathology, University Hospital of Ulm, Ulm, Germany;

2Institute of Pathology, University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany;

3Institute of Pathology, Kantonsspital St. Gallen, St.Gallen, Switzerland;

4Institute of Pathology, University Hospital of Frankfurt, Frankfurt, Germany;

5Institute of Pathology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany;

6Institute of Hematopathology, University Hospital Schleswig-Holstein Campus Kiel/ Christian-Albrechts University

Kiel, Kiel, Germany; 7Institute of Pathology, University of Würzburg, Würzburg, Germany;

8Cytogenetic and Molecular Diagnostics, Internal Medicine III, University Hospital of Ulm, Ulm, Germany;

9University Medical Center Hamburg-Eppendorf, Hamburg, Germany;

10Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Berlin,

Germany; 11

Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Kiel, Germany; 12

Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University Hospital Schleswig-Holstein Campus Kiel / Christian-Albrechts University Kiel, Kiel, Germany; 13

Institute for Cell Biology (Tumor Research), University of Duisburg-Essen, Essen, Germany; 14

Department of Hematology and Oncology, Georg-August University of Göttingen, Göttingen, Germany; 15

German Cancer Research Center (DKFZ), Heidelberg, Germany; 16

Second Medical Department, University Hospital Schleswig-Holstein Campus Kiel/ Christian-Albrechts University Kiel, Kiel, Germany; 17

Cytogenetic and Molecular Diagnostics, Internal Medicine III, University Hospital of Ulm, Ulm, Germany; 18

Department of Pediatrics I, Georg-August University of Göttingen, Göttingen, Germany; 19

Institute of Functional Genomics, University of Regensburg, Regensburg, Germany; 20

Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.

Nature Genetics: doi:10.1038/ng.3413

Page 4: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Full list of principal investigators and involved members of the BLUEPRINT project Project coordinator: Hendrik Stunnenberg1 Standardization and Quality control (WP1-2): Xavier Estivill2, Ivo Gut3, Hélène Pendeville4, Joost H.A. Martens1, Hendrik Stunnenberg1 Epigenome of haematopoietic cells (WP3): Frank Grosveld5, Willem Ouwehand6, Joost Martens1, Hendrik Stunnenberg1 Epigenome of normal and neoplastic B- and T-cells (WP4): Elias Campo Guerri7, Jude Fitzgibbon8, Ralf Küppers9, Markus Loeffler10, Elizabeth Macintyre11, Jose Ignacio Martin Subero7, Marta Kulis7, Reiner Siebert12, Salvatore Spicuglia13, Hendrik Stunnenberg1 Epigenome of acute myeloid leukaemia (WP5): Tariq Enver14, Joost Martens1, Hendrik Stunnenberg1, Edo Vellenga15 Data coordination and analysis (WP6-7): Paul Flicek16, Roderic Guigo17, Ivo Gut3, Markus Loeffler10, Joost H.A. Martens1, Martin Seifert18, Amos Tanay19, David Torrents20, Alfonso Valencia21, Martin Vingron22 DNA methylation variation in T1DM (WP8): Stephan Beck23, Bernhard Boehm24, Åke Lernmark25, David Leslie26, Vardham Rakyan26 Biomarker development (WP9): Christoph Bock27, Manel Esteller Badosa28, Thomas Lengauer29, Edo Vellenga15 The effect of common sequence variation on the epigenome landscape (WP10): Stylianos E. Antonarakis30, Manolis Dermitzakis30, Hans Lehrach31, Willem Ouwehand6 Nicole Soranzo32, Hendrik Stunnenberg1 Mouse models to quantify variation in reference epigenomes (WP11): David Adams32, Anne Ferguson-Smith33, Salvatore Spicuglia13 Technology development for genome wide and selected profiling of cytosine (hydroxy)methylation (WP12): Adrian Bird34, Wolf Reik35, Dirk Schübeler36, Michael Stratton32 Technology optimization for microscale application (WP13): Hélène Pendeville4, Hendrik Stunnenberg1, Eileen Furlong37, Christoph Merten37 Identification/ validation of Epi-targets and Compound development and screening (WP14-15): Lucia Altucci38, Gerard Drewes39, Laura Maccari40, Thomas Graf41, Kristian Helin42, Antonello Mai43, Saverio Minucci44, Pier Giuseppe Pelicci45 Training and dissemination (WP16, 17 and 19): Claudia Schacht46, Martin Seifert18, Hendrik Stunnenberg1, Jörn Walter47 ChIP-Seq of cell lines: Anke K. Bergmann12,47, Hindrik. H.D. Kerstens1, Laura Clarke16, David

Richardson16, Enrique Carrillo-de Santa Pau21, Daniel Rico21

1Radboud University, Department of Molecular Biology, Nijmegen, Netherlands;

2Centre for Genomic Regulation, Genes and Diseases Program, Barcelona, Spain;

3Centro Nacional de Analisis Genomico, Barcelona, Spain;

4Diagenode SA, Epigenetic Laboratory, Liege, Belgium;

5Erasmus University Medical Centre Rotterdam, Department of Cell Biology, Rotterdam, Netherlands;

6University of Cambridge, Department of Haematology, Cambridge, United Kingdom;

7Institut D’investigacions Biomediques August Pi I Sunyer, Center for Biomedical Diagnosis, Barcelona, Spain;

8Queen Mary University of London, Institute of Cancer, London, United Kingdom;

9Universitätsklinikum Essen, Institute of Cell Biology (Cancer research), Essen, Germany;

10University of Leipzig, Institute for Medical Informatics, Statistics and Epidemiologie (IMISE), Leipzig, Germany;

11Centre National de la Recherche Scientifique, UMR-814 and Paris Descartes Université, Laboratoire

d'hématologie, CNRS 8147, Paris, France; 12

Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Kiel, Germany; 13

Institut National de la Sante et de la Recherche Medicale, TAGC Laboratory, Inserm U1090, Marseille, France; 14

University College London, Department of Cancer Biology, London, United Kingdom; 15

University Medical Centre Groningen, Department of Hematology, Groningen, Netherlands; 16

European Bioinformatics Institute, Hinxton, United Kingdom; 17

Centre for Genomic Regulation, Bioinformatics and Genomics Program, Barcelona, Spain 18

Genomatix Software GmbH, Munich, Germany; 19

Weizmann Institute of Science, Department of Science and Applied Mathematics, Rehovot, Israel; 20

Barcelona Supercomputing Center, Department of Life Sciences - Computational Genomics, Barcelona, Spain; 21

Structural Biology and Bio Computing Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain; 22

Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, Berlin, Germany;

Nature Genetics: doi:10.1038/ng.3413

Page 5: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

23University College London, Cancer Institute, London, United Kingdom;

24University of Ulm, Department of Internal Medicine, Ulm, Germany;

25Lund University, Department of Clinical Sciences Malmö, Malmö, Sweden;

26Queen Mary University of London, Blizard Institute of Cell and Molecular Sciences, London, United Kingdom;

27CeMM Research Center for Molecular Medicine, Vienna, Austria;

28Institut d’Investigacio Biomedica de Bellvitge, Department of Cancer Epigenetics and Biology, Barcelona, Spain;

29Max Planck Institute for Informatics, Department of Cancer Epigenetics and Biology, Saarbrücken, Germany;

30University of Geneva, Department of Genetic Medicine and Development, Geneva, Switzerland;

31Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics, Berlin, Germany;

32Wellcome Trust Sanger Institute, Hinxton, United Kingdom;

33University of Cambridge, Department of Genetics, Cambridge, United Kingdom;

34University of Edinburgh, Wellcome Trust Centre for Cell Biology, Edinburgh, United Kingdom;

35The Babraham Institute, Cambridge, United Kingdom;

36Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;

37European Molecular Biology Laboratory, Heidelberg, Germany

38Second University of Naples, Department of Pathology, Napoli, Italy;

39Cellzome AG, Heidelberg, Germany;

40Siena Biotech SPA, Siena, Italy;

41Centre for Genomic Regulation, Differentiation and Cancer Program, Barcelona, Spain;

42University of Copenhagen, Biotech Research and Innovation Centre, Copenhagen, Denmark;

43Sapienza University of Rome, Department of Drug Chemistry and Technologies, Rome, Italy;

44European Institute of Oncology, Department of Experimental Oncology, Milan, Italy;

45European Research and Project Office GmbH, Saarbrücken, Germany;

46University of Saarland, Genetics Institute, Saarbrücken, Germany;

47Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany;

Nature Genetics: doi:10.1038/ng.3413

Page 6: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

2. Supplementary Tables

Supplementary Table1:Clinical and molecular characteristics

Nature Genetics: doi:10.1038/ng.3413

Page 7: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Table 2: Statistics of whole-genome bisulfite sequencing.

PID type total read count % mapped % uniquely

mapped R2 array correlation

4118819 GC B 991,190,927 96.48 90.99 na4122131 GC B 1,099,283,967 96.0 89.23 0.887 4160735 GC B 831,812,581 85.09 79.78 0.91 4174884 GC B 806,131,461 83.98 78.41 0.921 4112512 BL 745,957,354 89.41 78.68 0.929 4119027 BL 865,369,134 94.41 87.95 0.939 4125240 BL 728,907,037 90.39 83.13 0.922 4133511 BL 1,092,415,562 94.60 88.55 0.931 4142267 BL 1,027,372,107 96.99 91.09 0.907 4177434 BL 1,051,677,637 89.95 82.92 0.943 4177856 BL 1,088,090,219 95.58 88.88 0.942 4182393 BL 822,877,534 94.01 87.72 0.932 4189998 BL 1,103,050,124 96.04 89.56 0.935 4190495 BL 922,078,617 85.41 77.85 0.915 4193278 BL 910,056,125 95.48 88.75 0.930 4194218 BL 979,263,566 96.25 89.70 0.934 4194891 BL 765,168,759 86.49 78.99 0.935 4105105 FL 1,049,794,226 94.46 86.67 0.932 4121361 FL 975,443,989 96.21 89.79 0.915 4134005 FL 1,064,047,805 93.16 85.43 0.920 4158726 FL 1,050,825,693 95.46 88.97 0.919 4159170 FL 1,140,282,923 96.33 89.56 0.934 4175837 FL 1,004,341,522 96.19 90.56 0.908 4177376 FL 872,114,064 84.59 76.92 0.913 4188900 FL 861,302,178 85.52 77.13 0.910 4189200 FL 1,048,046,414 94.18 88.07 0.931

total read count: number of reads obtained from sequencer; % mapped: percentage of reads which could be mapped to reference genome; % uniquely mapped: percentage of reads which could be mapped uniquely to reference genome; % array correlation: R2 of linear model of whole-genome bisulfite sequencing methylation rates and Illumina HumanMethylation450K BeadChip beta rates.

Nature Genetics: doi:10.1038/ng.3413

Page 8: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Table 3: Statistics of HumanMethylation450k BeadChips.

PID type   Detected  CpG  

(0.01) Detected  CpG  (0.01),  [%]

Detected  CpG  (0.05)

Detected  CpG  (0.05),  [%]

4122131 GC B   485518 99.988 485541 99.993  4160735 GC B   485507 99.986 485536 99.992  4174884 GC B   485525 99.989 485536 99.992  4112512 BL   485235 99.93 485282 99.939  4119027 BL   485541 99.993 485549 99.994  4125240 BL   485516 99.987 485533 99.991  4133511 BL   485472 99.978 485506 99.985  4142267 BL   485504 99.985 485528 99.990  4177434 BL   485067 99.895 485150 99.912  4177856 BL   485490 99.982 485514 99.987  4182393 BL   485544 99.993 485554 99.995  4189998 BL   485500 99.984 485524 99.989  4190495 BL   485504 99.985 485524 99.989  4193278 BL   485519 99.988 485540 99.992  4194218 BL   485477 99.979 485499 99.984  4194891 BL   485478 99.98 485506 99.985  4105105 FL   485164 99.915 485208 99.924  4121361 FL   485467 99.977 485494 99.946  4134005 FL   485493 99.983 485522 99.989  4158726 FL   485550 99.994 485557 99.996  4159170 FL   485539 99.992 485554 99.995  4175837 FL   485214 99.925 485275 99.938  4177376 FL   485202 99.923 485274 99.938  4188900 FL   485500 99.984 485521 99.988  4189200 FL   485187 99.92 485259 99.935  

The number and the percentage (based on a total number of 485577 loci) of detected CpGs with a detection p-value of 0.01 and 0.05 are listed.

Nature Genetics: doi:10.1038/ng.3413

Page 9: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Table 4: Statistics of whole-transcriptome sequencing.

PID type total read count

% mapped

% properly paired

% uniquely mapped

% single-tons

4118819 GC B 152,163,762 95.39 88.72 88.74 1.19 4122131 GC B 143,139,572 94.07 88.60 88.32 1.84 4174884 GC B 143,681,684 95.05 88.49 88.72 1.38 4112512 BL 100,040,596 95.92 91.96 88.75 1.21 4119027 BL 122,070,424 96.30 92.56 89.78 1.10 4125240 BL 118,552,896 92.88 89.35 85.79 2.92 4133511 BL 180,464,110 94.97 90.26 88.96 1.66 4142267 BL 147,502,168 93.93 88.95 84.78 2.10 4177434 BL 130,335,292 95.84 91.55 89.49 1.31 4177856 BL 147,673,376 94.95 90.33 88.18 1.67 4182393 BL 134,646,148 96.62 92.83 90.18 0.99 4189998 BL 168,560,268 94.81 90.26 87.22 1.78 4190495 BL 126,625,502 96.93 92.29 91.17 0.80 4193278 BL 173,013,412 93.42 88.47 85.58 2.38 4194218 BL 148,876,052 93.68 88.93 85.11 2.18 4194891 BL 170,697,768 93.82 88.77 86.79 2.19 4105105 FL 173,994,462 96.56 92.52 90.45 1.04 4121361 FL 140,160,636 96.74 92.68 89.10 0.92 4134005 FL 105,581,544 94.63 90.23 88.84 1.78 4158726 FL 190,901,256 94.14 89.07 88.85 1.96 4159170 FL 149,299,090 94.60 89.63 88.90 1.75 4175837 FL 183,318,574 93.42 87.86 87.49 2.24 4177376 FL 160,775,046 92.45 86.47 85.43 2.66 4188900 FL 168,897,502 93.23 87.70 87.61 2.31 4189200 FL 171,840,556 94.44 89.49 87.38 1.92

total read count: number of reads obtained from sequencer; %mapped: percentage of reads which could be mapped to reference genome; %properly paired: percentage of reads which form a proper pair on reference genome; %uniquely mapped: percentage of reads which could be mapped uniquely to reference genome; %singletons: percentage of reads for which no mate was aligned by the mapper. Supplementary Table 5 (available online):Statistics of whole-genome sequencing (SupplementaryTable5.xlsx)

Nature Genetics: doi:10.1038/ng.3413

Page 10: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Table 6: Mapping of chromatin states

ENCODE Blueprint H3K27me3 H3K36me3 H3K4me1 H3K4me3 H3K27ac

1 Active Promoter Apro + +++ +++

2 Weak Promoter Apro ++ +++ ++

3 Poised Promoter Rpro +++ ++ ++

4 Strong Enhancer Apro + +++ +++ +++

5 Strong Enhancer RegE ~ +++ +++

6 Weak Enhancer RegE ++

7 Weak Enhancer RegE ++

8 Insulator -

9 Txn transition TranR ++ ++

10 Txn elongation TranR ++

11 Weak Txn TranR ~

12 Repressed RHet +

13 Hetero-chromatin RHet

14 Repetitive - + + +

15 Repetitive - +++ +++ +++ +++ +++

Blueprint Assignment

ENCODE H3K27me3 H3K36me3 H3K4me1 H3K4me3 H3K27ac

RHet 13

RHet 12 +

Rpro 3 + + +

Apro 2 + +

Apro 4 +

Apro 1 + +

RegE 5 + +

RegE 6,7 +

TranR 9,10 +

TranR 11 ~ Assignment of chromatin states based on histone modifications (found by CHiP-Seq) in [1] and [2], together with the mapping used in this paper. Shade of blue corresponds to the abundance of the respective modification in the segment. Top, assignment in [1], "~" percentage<=10, "+" percentage <=30; "++" percentage<=60. "+++" percentage >60. Bottom: assignment in [2]. Marks that are mentioned in (12) are assigned a "+". [1] Ernst, Jason, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473(7345): 43-49. (2011) [2] Ernst, J., and Manolis K. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nature biotechnology 28(8):817-825. (2010)

Nature Genetics: doi:10.1038/ng.3413

Page 11: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Table 7 (available online): Annotation DMRs (SupplementaryTable7.xlsx). List of locations of differentially methylated regions (DMRs) with average methylation rates for GC-B, BL and FL with overlapping ENSEMBL gene annotations including the type, accession, name and strand of the annotation. Supplementary Table 8 (available online): Correlating DMRs (SupplementaryTable8.xlsx). List of correlating DMRs (cDMRs) and adjacent genes along with test results for the correlation of expression and methylation (spearman) for the cDMR-gene pairs. Supplementary Table 9: Number of significant enriched pathways by Ingenuity Pathway Analysis. Difference of IPA pathway analyses, that were generated through the use of QIAGEN's Ingenuity Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity). In the analysis based on differential expression we identified 60 activated pathways. Using negative correlating DMRs (cDMRs) 58 of these pathways were recovered. As expected, the analysis based on positively correlated cDMRs only revealed fewer (17) of these pathways.

all diff. expr. neg. cDMR pos. cDMR pathways 60 58 17

-log(p-value) 1.60 3.56 0.60 z-score 2.75 2.07 -

Nature Genetics: doi:10.1038/ng.3413

Page 12: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Table 10: Ingenuity Pathway Analysis scores. Strongly inactivated (z-score<-3) and activated (z-score>2) pathways based on gene expression in Burkitt lymphoma versus follicular lymphoma. Data were analyzed through the use of QIAGEN's Ingenuity®Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity).

Ingenuity Canonical Pathways -log(p-value) z-score Inactivated in BL vs. FL

NF-κB Signaling 2.93 -4.84 iCOS-iCOSL Signaling in T Helper Cells 6.14 -4.49 Tec Kinase Signaling 2.91 -4.27 HMGB1 Signaling 1.22 -3.80 Phospholipase C Signaling 2.16 -3.78 PKCθ Signaling in T Lymphocytes 4.70 -3.67 cAMP-mediated signaling 0.91 -3.57 CD28 Signaling in T Helper Cells 4.30 -3.55 TREM1 Signaling 2.86 -3.41 IL-9 Signaling 3.04 -3.32 Production of Nitric Oxide and Reactive Oxygen Species in Macrophages 0.84 -3.31 Role of NFAT in Regulation of the Immune Response 3.93 -3.29 PI3K Signaling in B Lymphocytes 0.52 -3.27 Activation of IRF by Cytosolic Pattern Recognition Receptors 0.42 -3.16 Gαi Signaling 1.91 -3.13 Eicosanoid Signaling 3.57 -3.00 NF-κB Activation by Viruses 1.35 -3.00 p38 MAPK Signaling 0.62 -2.98 Colorectal Cancer Metastasis Signaling 1.20 -2.97

Activated in BL vs. FL Role of BRCA1 in DNA Damage Response 4.43 2.00 Cyclins and Cell Cycle Regulation 3.40 2.24 Estrogen-mediated S-phase Entry 4.17 2.53 Antioxidant Action of Vitamin C 0.84 2.98

Nature Genetics: doi:10.1038/ng.3413

Page 13: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Table 11: Ranking of transcription factors. Correlation of transcription factor (TF) expression with the expression of cDMR – genes in the corresponding quadrant with a transcription factor binding site in the cDMR. Analysis was done for all enriched TFs and their potentially regulated genes. The list is sorted by correlation coefficient (rho). TF   rho   pval  STAT5A   0.876923077   2.24E-­‐06  TCF3   0.818461538   2.30E-­‐06  MEF2   0.796153846   4.03E-­‐06  BCL3   0.793846154   4.38E-­‐06  PML   0.783076923   6.69E-­‐06  BATF   0.776923077   8.64E-­‐06  FOXM1   -­‐0.766153846   1.35E-­‐05  RXRA   0.700769231   1.44E-­‐04  SMARCA4   -­‐0.688461538   2.08E-­‐04  YY1   -­‐0.683076923   2.43E-­‐04  RAD21   -­‐0.646153846   6.48E-­‐04  ZEB1   -­‐0.610769231   1.48E-­‐03  ETS1   0.553076923   4.74E-­‐03  NFIC   0.543076923   5.69E-­‐03  EBF1   0.52   8.51E-­‐03  RUNX3   0.519230769   8.62E-­‐03  PAX5   -­‐0.48   1.62E-­‐02  ZBTB33   0.464615385   2.03E-­‐02  TAF1   0.457692308   2.25E-­‐02  POLE4   -­‐0.449230769   2.54E-­‐02  SIX5   0.425384615   3.51E-­‐02  NFATC1   -­‐0.390769231   5.44E-­‐02  ATF2   0.388461538   5.59E-­‐02  MTA3   -­‐0.385384615   5.80E-­‐02  PU1   -­‐0.303846154   1.40E-­‐01  SRF   0.290769231   1.58E-­‐01  ELF1   -­‐0.276923077   1.80E-­‐01  BCLAF1   -­‐0.231538462   2.64E-­‐01  CREB1   0.223076923   2.82E-­‐01  IRF4   0.221538462   2.86E-­‐01  PBX3   0.203076923   3.29E-­‐01  CEBPB   0.201538462   3.32E-­‐01  POU2   -­‐0.183846154   3.77E-­‐01  POL2   0.106923077   6.10E-­‐01  SP1   0.099230769   6.36E-­‐01  GABPA   -­‐0.097692308   6.41E-­‐01  EGR1   0.073076923   7.28E-­‐01  TCF12   0.04   8.50E-­‐01  ATF3   0.031538462   8.82E-­‐01  BCL11   -­‐0.007692308   9.72E-­‐01  

Nature Genetics: doi:10.1038/ng.3413

Page 14: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Table 12 (available online): Statistics of transcriptome arrays (SupplementaryTable12.xlsx). Overview of extended cohort used for array-based expression analysis with pathological and molecular diagnosis. Supplementary Table 13: SMARCA4 immunohistochemistry in TMAs

    Molecular  diagnosis*    

    mBL  (%)   intermediate  (%)   non  mBL  (%)   p-­‐value  

Age  <  60   30/33  (91)   5/22  (23)   27/70  (39)  

p<0.001  ≥  60   3/33  (9)   17/22  (77)   43/70  (61)  

Gender  male   26/33  (79)   11/22  (50)   36/71  (51)  

p=0.018  female   7/33  (21)   11/22  (50)   35/71  (49)  

Molecular  subtypes**  

GCB   30/33  (91)   15/22  (68)   30/72  (42)  p<0.001  ABC   0/33  (0)   3/22  (14)   25/72  (35)  

unclassifed   3/33  (9)   4/22  (18)   17/72  (24)  

PAP  groups***  

PAP-­‐1   0/33  (0)   3/22  (14)   30/72  (42)  

p<0.001  

PAP-­‐2   0/33  (0)   3/22  (14)   9/72  (12)  PAP-­‐3   0/33  (0)   0/22  (0)   9/72  (12)  PAP-­‐4   0/33  (0)   3/22  (14)   9/72  (12)  BL-­‐PAP   31/33  (94)   2/22  (9)   0/72  (0)  mind-­‐L   2/33  (6)   11/22  (50)   15/72  (21)  

SMARCA4  immunohistochemistry  score#  

 

0  (0%)   1/28    (4)   2/20    (10)   2/54  (4)  

p=0.1919  1  (1-­‐25%)   2/28  (7)   3/20    (15)   2/54  (4)  2  (26-­‐50%)   1/28  (4)   1/20  (5)   4/54  (7)  3  (51-­‐75%)   1/28  (4)   1/20  (5)   11/54  (20)  4  (76-­‐100%)   23/28  (82)   13/20  (65)   35/54  (65)  

MYC  status    

IG-­‐MYC   30/31  (97)   9/21  (43)   3/67  (4,5)  p<0.001  neg   1/31  (3)   9/21  (43)   63/67  (94)  

non-­‐IG-­‐MYC   0/31  (0)   3/21  (14)   1/67  (1,5)  The  staining  criteria  for  SMARCA4  were  as  follows:  0=no  staining,  1=1–25%,  2=26–50%,  3=51–75%,  4=  >75%.  For  the  score  “no  staining”  an  internal  staining  control  must  be  present.    *  according  to  Hummel  M.  et  al.  A  biologic  definition  of  Burkitt's  lymphoma  from  transcriptional  and  genomic  profiling.N  Engl  J  Med  354,  2419-­‐2430  (2006);  **according  to  Wright  G.  et  al.,  A  gene  expression-­‐based  method  to  diagnose  clinically  distinct  subgroups  of  diffuse  large  B  cell  lymphoma.  Proc  Natl  Acad  Sci  USA.  100(17):9991–6.  (2003);  ***according  to  Bentink  S.  et  al.,  Pathway  activation  patterns  in  diffuse  large  B-­‐cell  lymphomas.  Leukemia.  22(9):1746–54  (2008);  #  SMARCA4  immunohistochemistry  failed  to  be  scored  in  25  cases  due  to:  no  internal  control,  too  much  background,  other  artefacts,  non  representative  staining,  non  representative  core  or  missing  core.  

Nature Genetics: doi:10.1038/ng.3413

Page 15: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Table 14:Detection and verification of mutations in SMARCA4 gene

Love C. et al., The genetic landscape of mutations in Burkitt Lymphoma. Nat Gent. 44 (2012);Schmitz et al., Burkitt Lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 490 (2012)Morin et al., Frequent mutation of histone-modifying gene in non-Hodgkin lymphoma. Nature. 476 (2011)Forbes et al., COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. (2014)

Nature Genetics: doi:10.1038/ng.3413

Page 16: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Table 15 (available online): SWI/SNF SNVs (SupplementaryTable15.xlsx). Summary of 19 somatic SNVs identified by genome and exome sequencing in SWI/SNF associated proteins in the investigated BL cases. The table gives information on the location and type of the mutations. Supplementary Table 16: Run identifiers of cell line ChIP-seq data (European Nucleotide Archive;ERP002586). Cell line Input H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me3 H3K9me3 BL-2 ERR324294 ERR324306 ERR324300 ERR324287 ERR324266 ERR324263 ERR324280 DG-75 ERR324296 ERR324307 ERR324302 ERR324289 ERR324304 ERR324262 ERR324282 KARPAS-422 ERR324297 ERR324271 ERR324276 ERR324290 ERR324268 ERR324270 ERR324283

Nature Genetics: doi:10.1038/ng.3413

Page 17: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Table 17: Primer sequences used for SMARC4 mutation analysis

primer name forward primer (5´- 3´sequence) reverse primer (5´- 3´sequence) PCR product lenght (bp)

SMARCA4_Ex9 gccttgcggggagatgtgtccaccatgctg ggggagtgacccctggagcccgcagtacc 315 SMARCA4_Ex15 gtcaggagccagcacattgtcacagatag cgcaccacctgggaacacctgcaccgagg 287 SMARCA4_Ex16 aggaccctctggtgtccgacccggccttc ttgtggtattctactgcggcaaacttagg 311 SMARCA4_Ex17 ttgcacagtgagccattgatgagagaccg tcactgtccagaggtatgtgtggacgtc 215 SMARCA4_Ex18 gtgcctgtgcccctcttgccacctggcc aacttgtaggggctttggaggagacgggc 273 SMARCA4_Ex19 ctccccatgtgccgggccacctgctgccc ccagctgtagctggtgctcaacacgttcc 392 SMARCA4_Ex20 ccttctagtgagacctctgtcgccctcc tggggagaggccctgagcacgcccagccc 271 SMARCA4_Ex21 gggttcggatggggggagtcaggcctcaag ctgcctgccacgctgccggccttggacac 243 SMARCA4_Ex22 agcccaccccaccccaggagggcaagacc gagctgtcgaggagaagccagctctgcc 227 SMARCA4_Ex23 ggaccgcagcggggcccggtggcctgctc gcaataaagccaacaaaacgacagaaaac 189 SMARCA4_Ex24 cctgccttacctgcctgcagggttccagg gtgaggagcttctgtggcagccacaacaac 307 SMARCA4_Ex25 tccttggtgtccccactctacccctgagg ggccgtctcctcgaggttttgcaggcacc 299 SMARCA4_Ex26 cagaggccaccttcccttttatgacctcc gaaagccgctcacgcgtccaccattcacgc 357 SMARCA4_Ex27 aactgctggtgaaagacgccggattgacag ggcccttgctggccgtctcagccgagaag 233 SMARCA4_Ex28 gctcggccgccgcccaccccggcccctcc ctagggataccaccatgggcactaggacg 234 SMARCA4_Ex30 cggcctctgcttgtcgacctgggtgctgg gagtgcagatgccaggcctgctcccacgg 383 SMARCA4_Ex33 ggccgggcaggcagccctccagtcgggcc aaagctggggccttgggggctctcgggcc 262

Supplementary Table 18: Biotypes of GENCODE V14 genes associated with BL:FL DMRs and cDMRs.

DMR BL hypo

DMR BL hyper

cDMRs Q1

cDMRs Q2

cDMRs Q3

cDMRs Q4

3prime over- lapping ncrna

2 5

antisense 345 474 26 110 51 66 lincRNA 372 540 27 116 49 66 miRNA 60 48 misc RNA 33 18 non coding 2 1 polymorphic pseudogene

3 3

processed transcript

137 188 11 35 25 25

protein coding 3864 4729 438 1380 837 889 pseudogene 223 269 27 48 25 57 rRNA 4 4 sense intronic 32 22 2 2 5 sense overlapping 10 7 1 4 1 snoRNA 13 16 snRNA 18 10 IG/TR (pseudo) gene

25 25 19 2 3

 

Nature Genetics: doi:10.1038/ng.3413

Page 18: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

methylation rate

beta

val

ue

Supplementary Figure 1: Correlation of WGBS methylation rates with Illumina HumanMethylation450K BeadChip beta rates. Calculated for n=26 sample pairs. Linear model resulted in mean adjusted R2 of 0.921.

3. Supplementary Figures

Nature Genetics: doi:10.1038/ng.3413

Page 19: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 2: Examples of gene expression (rpm, reads per million) and methylation (rate) at genes with poised promoter chromatin segments. In contrast to the GC-B cells increased methylation is observed in the BL and FL at poised promoters. In addition, the expression of associated genes is activated in the lymphomas.

86,046,500 86,047,500 86,048,500 86,049,500Poised PromoterRepressed

chr1

Gm12878

1

0BL rate

1

0FL rate

1

0GC B rate

CYR61GENCODE

4.8

0GC B rpm

4.8

0FL rpm

BL rpm4.8

0

A

chr2

Gm12878

GENCODE IGFBP5

FL rate1

0

GC B rate0

1

BL rate0

1

BL rpm0

4

FL rpm0

4

GC B rpm0

4

217,545,000 217,555,000B Poised PromoterRepressedInsulatorHeterochromatin

C chr20

Gm12878

GENCODE MMP9

BL rate0

1

FL rate0

1

GC B rate0

1

BL rpm0

22

FL rpm0

22

GC B rpm0

22

44,639,000 44,643,000 Poised PromoterRepressedWeak EnhancerHeterochromatinStrong Enhancer

Nature Genetics: doi:10.1038/ng.3413

Page 20: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 3: DNA methylation in gene regions varies dependent on gene expression levels. Highlyexpressed genes show the strongest loss of methylation at the TSS as compared to genes expressed at lowerlevels in all entities. Strong hypermethylation is seen in the gene bodies of highly expressed genes.

A

0.00

0.25

0.50

0.75

1.00

−15 0 10 20 30 40 50 60 70 80 90 100 115percent

met

hyla

tion

BLB

C D

0.00

0.25

0.50

0.75

1.00

−15 0 10 20 30 40 50 60 70 80 90 100 115percent

met

hyla

tion

FL

0.00

0.25

0.50

0.75

1.00

−15 0 10 20 30 40 50 60 70 80 90 100 115percent

met

hyla

tion

GCB

expr

low

medium

high

not

met

hyla

tion

0.00

0.25

0.50

0.75

1.00

−15 0 10 20 30 40 50 60 70 80 90 100 115percent

low

medium

high

not

BLFLGCB

Nature Genetics: doi:10.1038/ng.3413

Page 21: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 4: Length and position distribution of DMRs/cDMRS. A) Density distribution of cDMRs in gene regions. Positively correlated DMRs (blue) have a peak density upstream of a TSS, while negatively correlating DMRs (red) are most frequently found just downstream of the TSS within the gene body. B) The length distribution of DMRs (blue line) and cDMRs (red line) are virtually identical. C) The length distribution of DMRs in the vicinity or inside genes (red) shows no apparent differences to inter-genic DMRs.

B

length [nt]

cDMRDMR

0 2500 5000 7500 10000

0.0000

0.0005

0.0010

0.0015

densi

ty

C

0.0000

0.0005

0.0010

0.0015

densi

ty

0 2500 5000 7500 10000length of DMR [nt]

gene associatedintergenic

A

neg. cor. cDMRpos. cor. cDMR

-5000 0 5000 10000 15000 20000distance to TSS [nt]

densi

ty

0

3*10-5

6*10-5

9*10-5

Nature Genetics: doi:10.1038/ng.3413

Page 22: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 5: Examples of cDMRs downstream of the TSS. 85% of cDMRs are located downstream of the TSS. cDMRs downstream the TSS are for example located in the following genes: INSR (A), LEF1 (B), SMARCA4 (C) and TERT (D). Methylation heatmap on the left site (blue - low methylation, red - high methylation) and correlation plot for the cDMR on the right, showing methylation of the cDMR and expression of the associated gene.

105kb

chr19 7.140 7.180 7.220 7.260 [kb]

GC-B

BL

FL

A

cDMR

expression

methylation

INSR

0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

0.3

0.4

125kb

chr4 108.980 109.000 190.020 190.040 [kb]

GC-B

BL

FL

190.060 190.080

B

cDMR

methylation0.00 0.25 0.50 0.75 1.00

expression

0.0

0.5

1.0

1.5

LEF1

105kb

chr19 11.080 11.100 11.120 11.140 [kb]

GC-B

BL

FL

11.160

C

cDMR

methylation0.00 0.25 0.50 0.75 1.00

expression

2

4

6

SMARCA4

45kb

chr5 1.260 1.270 1.280 1.290 [kb]

GC-B

BL

FL

cDMR

D

methylation0.00 0.25 0.50 0.75 1.00

expression

2

4

0

TERT

Nature Genetics: doi:10.1038/ng.3413

Page 23: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 6: Examples of cDMR correlation at dark zone (A) and light zone (B) genes. Expression of dark zone genes is facilitated by cDMR hypomethylation in BL and suppressed by cDMR hypermethylation in FL, while the pattern is reversed for light zone specific genes.

A

Bexpression

methylation0.00 0.25 0.50 0.75 1.00

BLFLGC-B

5

10

15

20

NFKB2

expression

methylation0.00 0.25 0.50 0.75 1.00

BLFLGC-B

0

4

8

12

16

TNFAIP3

expression

methylation0.00 0.25 0.50 0.75 1.00

BLFLGC-B

2

4

6

SMARCA4

expression

methylation0.00 0.25 0.50 0.75 1.00

BLFLGC-B

10

20

TCF3

Nature Genetics: doi:10.1038/ng.3413

Page 24: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

DDX58

ZBP1

TANK

IFIH1

IL10

TNF

LTA

CD40

IRF7

NFKB2

IRF9

Activation of IRF by Cytosolic

Pattern Recognition Receptors

PLCB1

PLCB4

PLA2G4A

PLA2R1

PLD1

PLA2G16

PLA2G4C

NFKB2

PLD6

GPLD1

PLCD1

RARRES3

STAT5B

PLA2G4B

PLD2

TNF

CSF2RB

PLCB2

STAT5A

Antioxidant Action

of Vitamin C

GRM2

VIPR1

TULP2

PDE9A

GRM3

ENPP6

CHRM3

RAPGEF4

OPRM1

NPY1R

PDE2A

PTH1R

LPAR1

P2RY14

PTGDR

PDE3A

PDE4A

GPER1

SSTR3

P2RY12

CNGB3

PTGER2

XCR1

ADRA2C

ADCY6

PTGIR

ADCY4

AKAP5

PTGER4

ADRA2A

CCR4

PRKAR2B

AKAP1

CNR1

STAT3

GABBR1

P2RY13

S1PR1

DUSP6

APEX1

cAMP mediated signaling

IL2

AKT3

PRKCQ

TRGV9

GRAP2

CD28

ITK

CD247

ITPR1

CD80

FYN

CD86

MALT1

NFATC4

PIK3CG

ATM

PIK3CD

LCP2

ZAP70

CD3G

CTLA4

CD4

CD3E

CD3D

LAT

PTPN6

PTPRC

NFKB2

CD28 Signaling in T Helper Cells

WNT16

NOS2

GNG4

CDH1

WNT1

WNT10B

FZD10

VEGFC

RND3

AKT3

MMP17

WNT3

SMO

GNG7

GNG13

PTGER2

ADCY6

IFNG

FZD8

GNG2

TLR6

ADCY4

CCND1

TGFBR2

PTGER4

FNBP1

TLR1

PIK3CG

LEF1

PRKAR2B

MSH6

GNB3

IFNGR1

TNF

JAK3

RHOF

JAK1

STAT3

ATM

PIK3CD

HRAS

BIRC5

NFKB2

TCF3

MYC

Colorectal Cancer Metastasis Signaling

MYT1

HDAC11

CDK6

CCND2

CCND1

PPP2R5B

ATM

CDKN2A

CCNE1

CDC25A

SKP2

SUV39H1

E2F1

CCNB2

E2F2

TFDP1

CDKN2C

CDK4

PA2G4

CDK1

CDK2

CCNA2

CCNB1

Cyclins and Cell Cycle Regulation

−2 0 2

Row Z−Score

−2 0 2

Row Z−Score

−4 −2 0 2 4

Row Z−Score

−4 −2 0 2 4

Row Z−Score

−2 0 2

Row Z−Score

−3 −1 1 3

Row Z−Score

Nature Genetics: doi:10.1038/ng.3413

Page 25: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

PTGFR

DPEP1

PLA2G4A

PLA2R1

DPEP3

CYSLTR1

PTGDR

PTGES

GGT1

PTGER2

PLA2G16

PLA2G4C

RARRES3

CYSLTR2

LTC4S

ALOX12

PTGIR

DPEP2

PLA2G4B

PTGER4

PTGDS

−2 0 2

Row Z−Score

CCND1

E2F2

CCNE1

TFDP1

SKP2

CDC25A

E2F1

CDK1

CDK2

CCNA2

CDK4

MYC

−2 0 1 2

Row Z−Score

Eicosanoid Signaling Estrogen mediated S phase Entry

PPP2R2B

GRM3

GRM2

OPRM1

GNG4

LPAR1

P2RY14

NPY1R

SSTR3

P2RY12

GNG7

GNG13

PRKAR2B

OPN1SW

ADCY6

GNG2

RALB

ADCY4

ADRA2C

XCR1

ADRA2A

CCR4

GNB3

HRAS

S1PR1

CNR1

STAT3

GABBR1

P2RY13

−4 −2 0 2 4

Row Z−Score

IL25

IL12B

IL4

IL2

TNFRSF11B

SELE

IL12A

AKT3

RND3

HMGB1

HRAS

NFKB2

IFNG

CNTF

KAT2B

TNFRSF1B

FNBP1

PIK3CG

ATM

PIK3CD

TNF

LTA

VCAM1

RHOF

IFNGR1

−4 −2 0 2 4

Row Z−Score

Gai Signaling HMGB1 Signaling

IL2

AKT3

PRKCQ

TRGV9

GRAP2

CD40LG

TRAT1

ITK

IL2RA

ITPR1

CD80

ICOS

CD28

CD247

IL2RB

PIK3CG

ATM

PIK3CD

CD3G

LCP2

ZAP70

CD4

CD3E

CD3D

IL2RG

NFATC4

LAT

NFKB2

PTPRC

CD40

−4 −2 0 2 4

Row Z−Score

SOCS2

CISH

TNF

STAT5A

JAK3

PIK3CG

JAK1

STAT5B

STAT3

ATM

PIK3CD

NFKB2

IL2RG

−3 −1 1 2 3

Row Z−Score

iCOS iCOSL Signaling in T Helper Cells IL9 Signaling

Nature Genetics: doi:10.1038/ng.3413

Page 26: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

AKT3

PRKCQ

PRKCA

PRKCH

ITGA6

CR2

CCR5

MAP3K14

PIK3CG

ATM

PIK3CD

CD4

ITGAL

ITGB2

HRAS

TNFRSF14

NFKB2

−2 0 1 2

Row Z−Score

NTRK2

TNFRSF11A

FGFR2

BMP2

TNFRSF11B

TRGV9

BMP4

FLT4

TNFSF11

IL1R2

TGFA

FGFR3

AKT3

PRKCQ

CD40LG

INSR

FGFR4

TNFSF13B

KDR

IL33

TNFRSF1B

ZAP70

TNF

LTA

MAP3K8

PIK3CG

ATM

PIK3CD

TLR6

CASP8

TGFBR2

TLR1

TANK

MAP3K14

MALT1

SIGIRR

TRADD

TNFAIP3

CD40

NFKB2

HRAS

TNFRSF17

−4 −2 0 2 4

Row Z−Score

PLA2G4A

IL1R2

IRAK2

HIST2H3C

HSPB2

MAP3K5

PLA2G4C

HIST1H3C

FASLG

IL33

TRADD

TNF

MEF2C

TNFRSF1B

FAS

PLA2G4B

MKNK1

TGFBR2

CDC25B

MYC

−2 0 2

Row Z−Score

PLCB1

MYL3

PLCB4

PLA2G4A

GNG4

PRKCA

PRKCQ

ARHGEF10

PLD1

RND3

TRGV9

HDAC11

PLA2G4C

ARHGEF3

GRAP2

PRKCH

LCP2

CD3G

ZAP70

PLCB2

RHOF

ITK

CD247

ADCY6

ITPR1

GNG2

GPLD1

GNG7

GNG13

PLD6

FCGR2A

ADCY4

FYN

RALB

PLA2G4B

PLD2

MEF2C

FNBP1

CD3E

CD3D

LAT

NFKB2

IGHG4

HRAS

GNB3

NFATC4

IGHG3

IGHG1

IGHG2

−4 −2 0 2 4

Row Z−Score

PLCB1

PLCB4

IL4

AKT3

VAV3

VAV2

ITPR1

PLCD1

FYN

CR2

SH2B2

MALT1

PIK3CG

PIK3CD

PLCB2

NFATC4

HRAS

IL4R

NFKB2

CD180

PTPRC

CD40

−4 −2 0 2 4

Row Z−Score

IL2

PRKCQ

TRGV9

VAV3

MAP3K5

GRAP2

VAV2

CD80

CD247

CD28

FYN

CD86

MAP3K14

MALT1

CD3G

LCP2

ZAP70

MAP3K8

PIK3CG

ATM

PIK3CD

RAC3

NFATC4

HRAS

CD4

CD3E

CD3D

LAT

NFKB2

−4 −2 0 2 4

Row Z−Score

NFKB Activation by Viruses NFKB Signaling

p38 MAPK Signaling Phospholipase C Signaling

PI3K Signaling in B Lymphocytes PKC Signaling in T Lymphocytes

Nature Genetics: doi:10.1038/ng.3413

Page 27: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 7: Gene exrpession heatmaps

of genes enriched in IPA pathways (Supplementary

Table 10).

ALB

PPP2R2B

NOS2

IL4

PRKCA

IFNG

RND3

AKT3

PRKCQ

HOXA10

TNFRSF11B

PRKCH

MAP3K5

PPARA

CLU

TNFRSF1B

MAP3K14

PPP2R5B

PIK3CG

FNBP1

MAP3K8

TNF

JAK3

RHOF

JAK1

PPP1R3D

ATM

PIK3CD

IFNGR1

CYBB

PPP1R14B

NFKB2

PTPN6

−4 −2 0 2 4

Row Z−Score

−2 0 1 2

Row Z−Score

PLCB1

PLCB4

RCAN2

GNG4

AKT3

PRKCQ

TRGV9

CSNK1G1

GNG7

GNG13

ITK

CD247

GNA12

FYN

CD80

ITPR1

GNG2

CD28

CD3G

FCGR2A

MEF2C

PIK3CG

AKAP5

CD86

ORAI1

LCP2

ZAP70

PLCB2

ATM

PIK3CD

CD4

CD3E

CD3D

HRAS

GNB3

NFATC4

LAT

NFKB2

−2 0 2

Row Z−Score

PAK3

GNG4

TRGV9

RND3

PRKCQ

STAT4

PRKCA

VAV3

TXK

VAV2

PRKCH

ITK

IGHE

FGR

GNB3

NFKB2

PAK6

GNG7

GNG13

FASLG

HCK

GNG2

GNA12

FYN

FNBP1

PIK3CG

TNFRSF25

TNF

STAT5A

JAK3

TNFSF10

FAS

TNFSF12

RHOF

JAK1

STAT5B

STAT3

ATM

PIK3CD

−2 0 2

Row Z−Score

CCL7

NLRP14

NLRP6

AKT3

NOD2

CASP1

IL10

TLR6

CD86

TLR1

SIGIRR

NLRC5

ITGAX

STAT5A

STAT5B

STAT3

TNF

CIITA

LAT2

NFKB2

CD83

CD40

−4 −2 0 2 4

Row Z−Score

Role of NFAT in Regulation

of the Immune Response

Role of BRCA1 in

DNA Damage Response

Production of Nitric Oxide and Reactive

Oxygen Species in Macrophages

TREM1 Signaling

BRIP1

RBBP8

FANCB

BRCA2

RFC3

BLM

CHEK2

SMARCA2

ATM

E2F2

RAD51

CHEK1

MSH6

RFC5

RFC2

FANCA

RFC4

FANCG

E2F1

SMARCA4

PLK1

Tec Kinase Signaling

IFNG

Nature Genetics: doi:10.1038/ng.3413

Page 28: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 8: Gene expression heatmap of a subset genes enriched in IPA pathways (Supplementary Table 10). A) Genes specifically downregulated in FL are enriched in GO Terms related to cell cycle and DNA repair. Most frequent genes in GO Terms are dislayed. B) Genes specifically downregulated in BL are enriched in GO Terms related to the immune system and inflammatory and wounding response. Most frequent genes in GO Terms are dislayed.

A B

STAT5ASTAT5BPTPRCCD80CD86CD83TNFTLR6TLR3ITGALCYBBCR2CIITACD180

Suppressed in BL and DZ

−2 0 2Raw Z −Score

CDK2CDC25ABIRC5CCNB1CDK1CCNA2CHEK1BRIP1BLMMSH6BRCA2

Suppressed in FL and LZInflam

mati

on

Imm

un

ity

Cell

cycl

eD

NA

repair

BL FL GC-B

Nature Genetics: doi:10.1038/ng.3413

Page 29: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 9: Integrative genome browser view of the IGF2BP1 locus. Top: chromatin segmentations

of GM12878, BL2, DG-75 and KARPAS-422 cell lines; middle: Average CpG methylation of BL, FL and GC-B

samples; bottom: Average RNA expression of BL, FL and GC-B samples.

chr17

GM12878BL2

DG-75KARPAS-422

1

0pBL rate

1

0pFL rate

1

0GC-B rate

pBL rpm

pFL rpm

GC-B rpm

GENCODE

AproRegE

TranRRHet

RepressedPoised Promoter

Heterochromatin

Insulator

47,085,000 47,100,000 47,115,000 47,130,000

IGF2BP1

0

0

0

3.7

3.7

3.7

Nature Genetics: doi:10.1038/ng.3413

Page 30: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 10: NF-kappa-B (NFKB) signaling pathway (Ingenuity Pathway Analysis Canonical

Pathway). Shadings signify significantly different RNA expression in pBL vs. pFL (red: pBL>pFL; green:

pBL<pFL). Blue edges mark cDMR-associated genes pairs that show significantly negative correlation.

Nature Genetics: doi:10.1038/ng.3413

Page 31: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 11: Cyclins and Cell Cycle Regulation (Ingenuity Pathway Analysis Canonical Pathway).

Shadings signify significantly different RNA expression in pBL vs. pFL (red: pBL>pFL; green: pBL<pFL). Blue edges

mark cDMR-associated genes pairs that show significantly negative correlation.

Nature Genetics: doi:10.1038/ng.3413

Page 32: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 12: TCF3 binding site in TCF3 intron. TCF3 ChIP-Seq experiments [1] for the BL cell lines BL-41 (A) and NAMALWA (B). As compared to three control conditions (anti-Flag, anti-TCF3 and Biotag Control) coverage profiles peak inside cDMR (white background) for wild type TCF3 as well as TCF3 mutants (D561E, N551K, V557E) in BL-41 (A). In NAMALWA, only a weak TCF3 signal can be observed. C) TCF3/E2A binding motif annotated by Motifmap (motifmap.ics.uci.edu) using a 46way-Multiz alignment. (D) TCF3 TFBS motif overlaps with ChIP-Seq peak in BL-41. The region is annotated as active promoter in BL (DG-75, BL2), DLBCL (KARPAS-422) and lymphoblastoid (GM12878) cell lines. (E) Array experiments confirm a higher expression of TCF3 in BL cell lines (BL-41, DG-75, NAMALWA) as compared to non-BL cell lines KARPAS-422 and KARPAS-106 (MMML cohort). (F) The scatterplot confirms the negative relation between the expression of TCF3 (measured with RNASeq in RPM) and the cDMR methylation (measured with HumanMethylation450 BeadChip) from samples of the ICGC-MMML-Seq cohort. Note that the 450k array covers the cDMR with 2 CpG (chr19:1648682,chr19:1649123). [1] Schmitz et al., Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 490 (2012)

A

CACCTGCC100 bases

TCF3 binding site motifs

TCF3 peaks in BL41 and Namalwa

UCSC Genes (RefSeq, GenBank, CCDS, Rfam, tRNAs & Comparative Genomics)

BL2 chromatin states

DG-75 chromatin states

KARPAS-422 chromatin states

AProAProAProTSS

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

1644000 1646000 1648000 1650000 1652000genomic position on chromosome 19

cove

rage

BL41a b

c

d

e

f

●●

● ●

●●

●●

●●

●●

●●

●●

●●

0.1 0.2 0.3 0.4 0.5 0.6

1020

3040

methylation array

Exp

ress

ion

RN

Ase

q

B

C

D

E

F

Nature Genetics: doi:10.1038/ng.3413

Page 33: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 13: Suppression of inhibitory G-protein-alpha-i signaling and activation of protein kinase A (PKA) signaling in BL. (A) Correlation of methylation and expression for PRKAR2B. (B) RNA expression of PRKAR2B in BL, FL and GC-B determined by microarray analysis in an extended lymphoma cohort. (C) Treatment of the Burkitt lymphoma cell line Ca46 with the protein kinase A inhibitor PKI-6-22 (IC50=2nM) [1] did not affect cell viability. Burkitt lymphoma cell lines BL-2 and BL-41 were not affected, either (data not shown).[1] Glass, D.B., Lundquist, L.J., Katz, B.M. & Walsh, D.A. Protein kinase inhibitor-(6-22)-amide peptide analogs with standard and nonstandard amino acid substitutions for phenylalanine 10. Inhibition of cAMP-dependent protein kinase. JBiol Chem. 264(1989)

methylation

expr

essi

on

PRKAR2B

0.00 0.25 0.50 0.75 1.00

0

1

2

3 BLFLGC-B

7

8

9

10

11

12

BL FL GCB(n=58) (n=75) (n=10)

0

20

40

60

80

100

120

140

160

Ce

ll vi

abili

ty in

%

concentration PKI-6-22

series 1

series 2

A B

C

RN

A e

xp

ress

ion [

vsn

sca

le]

Nature Genetics: doi:10.1038/ng.3413

Page 34: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 14: Examples of methylation profiles at enriched TFBS in cDMRs. The regions 5k up-

and downstream of the annotated TFBS were used to analyze the methylation profile. We found the lowest

methylation rates located precisely in the middle of the TFBS. Up- and downstream of the TFBS the methylation

rates increase steeply and return to background levels.

A

-5000 -2500 TFBS 2500 5000

distance to TFBS [nt]

meth

yla

tion r

ate

1.00

0.75

0.50

0.25

0.00

MEF2m

eth

yla

tion r

ate

1.00

0.75

0.50

0.25

0.00-5000-2500 TFBS 2500 5000

distance to TFBS [nt]

YY1B

meth

yla

tion r

ate

1.00

0.75

0.50

0.25

0.00

-5000 -2500 TFBS 2500 5000

distance to TFBS [nt]

TCF3C

Nature Genetics: doi:10.1038/ng.3413

Page 35: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

A B

C D

E F

Supplementary Figure 15: Analysis of KI-67 as a confounding factor. A) Correlation of the TF expression of TCF3, YY1, FOXM1, ZEB1, SMARCA4, STAT5A, PML, BATF and BCL3 with the proliferation status measured by Ki-67 staining. All available probesets for the TF genes were pooled and correlated with the proliferation marker (grey line). Apparently, no relevant correlation between TF expression and proliferation was observed (Spearman cor=0.02). Ki67 values were jittered to avoid overlaps as KI67 was measured in 5% steps. B) Correlation of target gene expression for the targets of TCF3, YY1, FOXM1, ZEB2, SMARCA4, STAT5A, PML, BATF and BCL3 with proliferation status measured by Ki-67 staining. All available probesets for these target genes were pooled and correlated with the proliferation marker (grey line). No apparent correlation was detected (Spearman cor=-0.043). KI67 values were jittered to avoid overlaps as KI67 was measured in 5% steps. C) Unsupervised clustering of TF expression with proliferation marker. Samples with a Ki-67 level of >= 80% are labeled with red blocks. No clusters of such proliferated samples are apparent when clustering for TF gene expression. D) Proliferation sorted heatmap of TF gene expression data. No apparent clusters that link proliferation and TF expression can be observed. E) Unsupervised clustering of TF target gene expression with proliferation marker. Samples with a Ki-67 level of >= 80% are labeled with red blocks. No clusters of such proliferated samples are apparent when clustering for TF target gene expression. F) Proliferation sorted heatmap of TF target gene expression data. No apparent clusters that link proliferation and TF expression can be observed.

Nature Genetics: doi:10.1038/ng.3413

Page 36: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 16: SMARCA4 expression of an extended lymphoma cohort (Affymetrix hgu133a). mBL show a clear upregulation of SMARCA4 in comparison to DLBCL (ABC, GCB, unclassified), FL and healthy cells (tonsil, naive, GC, post GC).

12

11

10

9

8

7

mBL(n=84)

ABC(n=106)

uncl(n=80)

GCB(n=176)

FL(n=144)

tonsil(n=10)

naive(n=8)

GC(n=10)

post GC(n=9)

gene

exp

ress

ion

[vsn

sca

le]

Nature Genetics: doi:10.1038/ng.3413

Page 37: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 17: SMARCA4 and SMARCB1 immunohistochemistry.Left:1st upper panel: General view on two reactive follicles stained for SMARCA4 (= BRG1) (A) and at higher magnification on the germinal center and mantle zone (B); the conventional immunohistochemistry shows a strong nuclear staining in germinal center B-cells, whereas SMARCA4 expression is much less pronounced in the mantle zone and in the interfollicular space (reactive tonsil, original magnification 100x and 400x, respectively).2nd and 3rd panel: double immunofluorescence staining for SMARCA4 (AlexaFluor 555, red) (C), DNA (DAPI, blue) (D), and c-MYC (Alexa Fluor 488, green) (E); the merged picture (F) shows SMARCA4 and c-MYC double positive cells (yellow/orange) (reactive tonsil, original magnification 1000x).4th panel: General view on two reactive follicles stained for SMARCB1 (=INI1, BD clone 25/BAF47 Cat. No. #612111); the conventional immunohistochemistry shows nuclear staining with an ubiquitous distribution pattern throughout the reactive tissue (reactive tonsil, original magnification 100x (G) and 400x (H), respectively).Right:1st upper panel: Immunofluorescence staining of Burkitt lymphoma. Strong nuclear SMARCA4 staining of a BL case with SMARCA4 R973W; Infiltrated lymph node, original magnification (I) 100x and (J) 400x.2nd and 3rd panel: Immunohistochemistry stainings of (K) SMARCA4 (Alexa Fluor 555, red), (L) MYC (Alexa Fluor 488, green), (M) SMARCA4/MYC double staining showing double positive lymphoma cells and (N) DNA (DAPI, blue); abdominal tumor, original magnification 1000x.

A

C

D

G

B

E

F

H

I

K

M

J

L

N

Nature Genetics: doi:10.1038/ng.3413

Page 38: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 18: DNA methylation patterns of lymphomas and in normal B-cell differentiation.A) Correlation of DNA methylation levels in GC-B-cells from Kulis et al. 2015 [1] and the current study at CpG resolution (blue=low density, orange=high density). B) Unsupervised principle component analysis (PCA) of microarray methylation data for all lymphoma and GC-B samples used in the current study and all normal B-cell samples of Kulis et al. 2015. PCA was performed as described in [1]. SHPCs, hematopoietic progenitor cells; preB1Cs, pre-BI cells; preB2Cs, pre-BII cells; iBCs, immature B cells; naiBCs, naive B cells from peripheral blood; t-naiBCs, naive B cells from tonsil; gcBCs, germinal center B cells; t-PCs, plasma cells from tonsil; memBCs, memory B cells from peripheral blood; bm-PCs, plasma cells from bone marrow. C) WGBS methylation differences of all CpGs of the modules defined by Kulis et al. 2015. Top: BL against GCB, center: BL against FL, bottom: FL against GCB. D) 450k methylation differences of all CpGs of the modules defined by Kulis et al. 2015. Top: BL against GCB, center: BL against FL, bottom: FL against GCB. E) Enrichment or depletion of cDMRs in the modules defined in Kulis et al. 2015 for the four quadrants defined in the cDMR analysis. All DMRs were used as background. [1] Kulis, M. et al. Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat Genet 47, 746-56 (2015).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

GCB

GC

B K

ulis

et a

l.

01234

01234

01234

01234

Q4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Module

Q1

Q2

Q3

Q4

0.75

0.50

0.25

0.00

-0.25

-0.500.75

0.50

0.25

0.00

-0.25

-0.500.75

0.50

0.25

0.00

-0.25

-0.50

Module

Met

hyla

tion

diffe

renc

e

BL-G

CB

BL-FL

FL-GC

B

●●●

●●●●

●●

●●●●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●●●●

●●

●●●●●●●

●●

●●

●●

●●●●

●●●●●●

●●●

●●●●

●●●

●●●

●●●

●●●●●

●●

●●●

●●●●●

●●

●●●

●●●

●●●

●●●●●

●●●●

●●●●●●●

●●

●●

●●

●●●●●●●

●●●●

●●

●●

●●●

●●

●●

●●

●●●●●●

●●●

●●●

●●●●●

●●●

●●

●●●●●●●

●●

●●●

●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●●●

●●

●●●

●●●

●●

●●●●●●

●●●●●

●●●●●●●

●●●●●

●●●●●●

●●●●●

●●

●●

●●●

●●●●

●●

●●

●●●

●●●●

●●●

●●

●●●●

●●

●●

●●●

●●●●●●●

●●●●●

●●●●●

●●●

●●●

●●●●●

●●

●●

●●

●●

●●

●●

●●●

●●●●

●●●

●●●

●●●

●●

●●●●●●●

●●●

●●

●●●●●

●●

●●●

●●●

●●

●●●

●●

●●

●●●●●●

●●●●●

●●●

●●●●●●

●●

●●●●●●●●

●●

●●

●●

●●

●●●●●●●●●

●●●

●●●●●

●●

●●●

●●●

●●●

●●●

●●

●●

●●●

●●●●

●●●●●●●

●●

●●●

●●

●●●●

●●

●●

●●●

●●

●●

●●●●

●●●

●●●●●

●●

●●●●

●●

●●●●●

●●●

●●

●●●●●●●

●●

●●●●

●●

●●

●●

●●

●●●●●

●●

●●

●●●●

●●●

●●●●●●●

●●●●●

●●●●●

●●●●●●●●●

●●

●●

●●

●●

●●●●●

●●

●●

●●●●●●

●●

●●●

●●

●●

●●●●●●

●●●

●●●

●●●

●●

●●●●●●●●

●●●●●

●●●●

●●

●●●

●●●●

●●

●●

●●

●●

●●●

●●

●●

●●●●●●

●●

●●●

●●

●●●●●●●●

●●●●●●

●●●●●●●●●●

●●●●●

●●

●●

●●●

●●●

●●●●●●●

●●●●●

●●●

●●

●●●

●●

●●●●

●●●●

●●

●●●●

●●

●●●●●

●●●

●●●●●●

●●●●

●●

●●●

●●

●●

●●

●●●

●●●

●●

●●

●●●●

●●●

●●

●●●●●●●●●

●●●●

●●

●●●

●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●

●●

●●

●●

●●●●

●●

●●●●

●●●●●

●●

●●●●

●●●●

●●●

●●●

●●

●●●●●

●●●

●●●●●●

●●●●●●●

●●●●●●

●●

●●●

●●

●●●●

●●●

●●●

●●●

●●

●●●

●●

●●

●●●

●●●●●●●●

●●

●●

●●

●●●

●●

●●●

●●●●

●●

●●●

●●

●●●●●●●●●

●●

●●

●●●●●●

●●

●●

●●●●

●●●●●●●

●●

●●

●●●●

●●

●●●●●●●●●●

●●

●●●

●●●

●●●

●●

●●●

●●

●●●●●

●●●●●

●●●

●●●

●●

●●●●

●●●●●●

●●●

●●●

●●

●●

●●

●●●●●●●●

●●

●●

●●●

●●

●●

●●

●●

●●●●●

●●●●●

●●

●●●

●●●●●●

●●●●●

●●●

●●

●●

●●●●●●●●●●●●

●●●●●●

●●

●●●●

●●●●

●●●●●●●●●●

●●●

●●

●●

●●

●●

●●●

●●●

●●●●●●

●●●

●●

●●●

●●

●●

●●●

●●

●●●●●●●

●●●●●●

●●●

●●

●●●●●

●●●●

●●

●●●

●●●●

●●●●

●●●●●

●●●●

●●

●●●

●●

●●●●●●●●●

●●

●●●●●●●●●●●●●

●●●●●●

●●

●●

●●

●●●●

●●●●●

●●●

●●●●●

●●●●

●●●●●●●●

●●●●●●●

●●●

●●

●●●●

●●●●●

●●

●●

●●●●●

●●●●

●●●●●

●●

●●●

●●●●

●●

●●●●●

●●

●●●

●●

●●

●●●

●●●

●●

●●●●

●●●

●●

●●

●●●●●●●●

●●●●●●

●●●●●●●●●

●●●●●●●●●●●●

●●

●●●●●

●●

●●●●●

●●●●●

●●

●●●

●●●

●●

●●●●●●●●●●●

●●

●●●●●●●●

●●●

●●●●●

●●●●●●●

●●

●●

●●

●●●●●●●

●●

●●●●●●

●●

●●●●

●●●●●●●

●●

●●

●●●

●●●

●●●●

●●●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●●●

●●●

●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●

●●●●●

●●

●●●●●●●●●●

●●●●

●●

●●●●●

●●●●●●●●●●

●●●

●●●

●●●●●

●●●●●

●●●

●●●

●●●●●●●●●●●●●

●●●●

●●●●●●

●●●

●●●●

●●

●●

●●●●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●●●●

●●●●●●

●●

●●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●

●●

●●

●●

●●●●●

●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●●●

●●

●●

●●

●●

●●●●

●●●

●●

●●●

●●●●

●●●

●●

●●●●●●●

●●●

●●

●●

●●

●●●●

●●

●●●

●●●●

●●●●

●●●

●●

●●

●●●●●●

●●

●●●

●●

●●

●●

●●

● ●●

●●

●●●

●●

●●

●●●●●●

●●

●●●●

●●

●●

●●

●●

●●

●●●●●●

●●●

●●

●●●●

●●●

●●●

●●●●●

●●●

●●

●●

●●●●●●●●●●●

●●

●●●●●●

●●

●●●

●●●

●●

●●●

●●

●●

●●●

●●●●●●

●●●●

●●

●●●●●

●●

●●

●●

●●●

●●

●●●●●

●●●●●●●●●●

●●

●●

●●●

●●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●●

●●●

●●●●●●●●●●●●●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●●●●●●

●●●●

●●

●●

●●

●●●●●●●●

●●●

●●●●●●

●●●●●●●●●●●●●

●●

●●●●●●●●

●●

●●●

●●

●●●

●●

●●●●●●

●●

●●●●

●●

●●

●●

●●●●●

●●●●●

●●●●

●●

●●

●●●●

●●

●●●

●●

●●

●●●●

●●●●

●●●●●

●●●●●●●

●●

●●●

●●●●

●●

●●●●●●●

●●●●●●●

●●

●●●●●

●●●

●●

●●●

●●●

●●●●

●●

●●●●●

●●●●●●

●●

●●

●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●

●●●

●●●●●●●●●●

●●●●●●

●●

●●●

●●●●●●

●●●●

●●

●●

●●●●●●●

●●●

●●●

●●●

●●

●●●

●●●●●

●●●

●●

●●●●●●●●

●●●●●●●●

●●●●

●●●●●

●●

●●●

●●

●●●●●

●●●

●●

●●●

●●●●●●●●

●●●

●●●●●

●●●

●●●●

●●●●●

●●

●●●●

●●

●●●●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●

●●

●●●●

●●●●

●●●

●●

●●●●

●●●

●●●

●●●●●●

●●

●●

●●

●●

●●

●●●●

●●●

●●

●●●●●

●●●●

●●●●●●

●●●

●●

●●

●●

●●

●●●

●●●

●●●

●●●●

●●

●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●●●

●●

●●

●●●●

●●

●●

●●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●●

●●

●●●

●●●

●●●

●●

●●

●●●●●

●●

●●●

●●

●●●

●●●●●●

●●●●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●●

●●●●

●●●●●

●●● ●

●●●

●●●

●●

●●●

●●●

●●●

●●

●●●

●●●●●●

●●

●●●●●

●●

●●●

●●

●●

●●●●●●

●●●

●●

●●

●●●

●●●●●●●

●●

●●●●

●●

●●●●

●●●

●●

●●

●●

●●●●

●●●

●●

●●●

●●●●●●

●●●

●●●●●●

●●

●●●

●●

●●

●●

●●

●●●●●●●

●●

●●●

●●

●●

●●●●

●●●

●●

●●●

●●●

●●●●●●

●●●●

●●●

●●●●

●●●●

●●

●●

●●●

●●

●●

●●

●●●●●

●●

●●●●

●●

●●

●●●●●●●●

●●●●

●●

●●●●●

●●

●●●●

●●

●●

●●

●●●●●●●

●●

●●●●●

●●

●●●●

●●

●●●●

●●●●●●●●●●

●●

●●●●●●●●●

●●●

●●

●●●

●●●●●●

●●

●●●●●●

●●●●●

●●

●●

●●●●

●●●●●●●

●●●●

●●

●●●

●●●●●

●●●●

●●●●●●●●

●●●●●●

●●●

●●

●●

●●

●●●●●●●●

●●●●●

●●●●

●●

●●●●●

●●●

●●●●●●●●●●●●●

●●

●●●

●●●●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●

●●

●●●●

●●●

●●

●●

●●

●●●

●●

●●●●●

●●

●●●●

●●●●

●●●●

●●●●●●

●●●●●

●●

●●●

●●

●●●●

●●

●●●●●

●●●

●●●●

●●●

●●●●●●

●●●●●●

●●●

●●●●●●●●●●●●●●●

●●

●●●●

●●

●●●●●

●●●●

●●●●

●●●●●

●●●

●●

●●●●●●

●●●●●●

●●●●

●●

●●●

●●●

●●

●●●●●●

●●

●●●

●●

●●

●●●

●●

●●●●●

●●●●

●●

●●●●●

●●

●●●

●●

●●●

●●

●●

●●●●

●●●●●●●

●●

●●●●●●●

●●

●●●

●●●●

●●●

●●●

●●

●●●

●●

●●●

●●●

●●

●●●●●●●●

●●●●

●●●

●●●●●●

●●

●●

●●

●●

●●

●●

●●●●

●●●●●●

●●●

●●●●●

●●

●●

●●●●●

●●●

●●●●

●●

●●●

●●

●●

●●

●●●●●

●●●●●●●●

●●●

●●●●●●

●●

●●●

●●●●

●●●●

●●

●●●

●●●●

●●●

●●

●●●●

●●●●●

●●●

●●

●●

●●●

●●

●●

●●●

●●●

●●

●●●●●

●●●●

●●●●●●

●●●

●●●

●●

●●

●●

●●●●●●

●●●

●●●●●●●●●

●●●

●●●●●●●

●●●

●●

●●●

●●●

●●●

●●●●

●●●●

●●

●●●●●

●●●

●●●●●●●●

●●

●●

●●●●

●●●

●●●

●●●●●●

●●

●●●●●●

●●●●

●●●

●●

●●●●

●●

●●●

●●●●●●●

●●●

●●●

●●

●●●●●●●●●●

●●●

●●

●●

●●

●●

●●●●●

●●

●●

●●●●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●●●

●●

●●

●●●

●●

●●●●

●●

●●●●

●●●

●●●●

●●

●●●●●●●

●●

●●

●●

●●●●●●●

●●●●●●

●●●●●

●●●●●

●●

●●●

●●●

●●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●●●

●●

●●

●●

●●●●●

●●●●●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●●

●●

●●●●

●●

●●

●●●

●●●●●

●●

●●

●●●

●●

●●●

●●

●●●●●

●●

●●●●●●●

●●●●●●●●●●●

●●●●

●●

●●●●

●●

●●●

●●

●●●●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●

●●

●●●

●●

●●●●

●●

●●●

●●

●●●●

●●

●●●●

●●●

●●●

●●

●●

●●●●●●●● ●

●●

●●●●

●●●

●●

●●

●●

●●●●●●

●●●

●●

●●●●

●●●●●●●●●●

●●●●●●●●●

●●●

●●●●●●

●●

●●●

●●●

●●●●●●

●●●●

●●

●●●●

●●●●

●●●●●

●●

●●●

●●●●●●

●●

●●●●●●

●●

●●

●●

●●●●●●

●●●

●●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●●●

●●●●●●●●

●●

●●●●

●●●

●●●

●●●●●

●●

●●

●●●●●●●●●●

●●

●●●●

●●●

●●●

●●

●●

●●●

●●●●●●●●●

●●

●●●●●●

●●●●●●

●●

●●●●●●

●●●●●

●●●●●●●

●●

●●

●●

●●

●●

●●●●●●● ●●

●●●

●●●●●●●●

●●

●●●●●●●●●

●●●

●●

●●●

●●●

●●●●●●

●●●●

●●●

●●●

●●

●●

●●

●●●

●●●●

●●

●●

●●●●

●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●

●●●●

●●

●●●

●●

●●●●

●●

●●

●●

●●

●●

●●●●●●

●●●●

●●●●●

●●●●

●●●●

●●

●●●●●●●●●●●

●●

●●●●

●●

●●

●●

●●

●●●

●●●

●●

●●●●

●●●●●

●●

●●

●●●●●

●●

●●

●●●●●●

●●

●●●●

●●

●●

●●●

●●●●●●

●●

●●

●●

●●●

●●●

●●

●●●

●●●

●●

●●●●

●●

●●●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●●●

●●

●●●

●●●

●●●

●●

●●

●●

●●

●●●●●●●

●●●

●●

●●

●●

●●●

●●●

●●

●●●●●●

●●●

●●●

●●

●●●

●●●●●

●●

●●

●●●

●●

●●

●●●●

●●●●●

●●

●●

●●●●

●●

●●●

●●●

●●

●●

●●

●●

●●●●●

●●

●●●●

●●

●●●●●●

●●●●●●●

●●

●●●●●●

●●●●●

●●●●●●●●●●●●

●●●●

●●

●●

●●●●●●●●●

●●

●●●

●●●●

●●●

●●●●●●●●●●

●●●

●●●●●

●●●

●●

●●●

● ●●

●●

●●●●

●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●

●●

●●●●

●●

●●

●●●

●●●●

●●

●●●●

●●

●●●●●●●●●

●●●●●

●●●●

●●

●●●●

●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●

●●

●●●

●●●

●●

●●●

●●

●●●●●●

●●

●●●●

●●

●●

●●●●

●●

●●

●●●●●●●

●●●

●●●●

●●

●●●●●●●●●

●●

●●●●●●●●●

●●

●●●●●●●

●●●●●●

●●●●

●●●●

●●●●●●

●●●●●●●

●●

●●●●●●●●●●●●

●●●●●

●●●●●●●

●●●

●●

●●

●●●●

●●●●●●●

●●●●●●●●●

●●

●●●●

●●

●●●

●●●

●●

●●●●

●●●●●

●●

●●

●●

●●●●●

●●●●●

●●●

●●●●●●●●

●●●●

●●

●●●●

●●●

●●

●●●●●●●●●

●●

●●

●●

●●●●●●●●●

●●

●●

●●●●

●●●●●●●●

●●●●●

●●●

●●

●●●

●●●●●

●●●●●●●●

●●

●●●●●●

●●●●●●●●●●●●

●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●

●●●●●●●

●●●●●●●●●●●

●●

●●●●●

●●●●●

●●●●●●●●●

●●

●●●●●●

●●

●●

●●●

●●●●●

●●●●●●●●●

●●●●●●●●●

●●

●●●

●●

●●●●

●●

●●●●●

●●●

●●●●

●●●

●●

●●●

●●●●

●●

●●

●●●●●

●●

●●●●●

●●●●

●●●

●●●

●●

●●

●●●

●●●●●●

●●●●●●●●●●●●

●●●●

●●

●●

●●●

●●●●

●●●

●●●●●●●●●●●●

●●●

●●●●●●●●●●

●●

●●●●

●●●

●●

●●●●

●●●●●●●●●

●●●

●●●●●●●●●

●●

●●●

●●●

●●●●

●●●●●●●

●●●●

●●

●●●●●●●●●●●

●●●●●●

●●●

●●●

●●

●●●●●●

●●●

●●●●●

●●●

●●●●●

●●

●●

●●

●●●●

●●●

●●●●●●●●

●●●●●●●

●●

●●

●●●

●●

●●

●●●

●●●●●

●●

●●

●●●

●●●●●

●●●●

●●●

●●

●●●

●●●●●●●●●

●●●●●●●

●●

●●

●●●●●

●●●●

●●

●●

●●●●●●●●●

●●

●●●

●●●

●●●●

●●●●●●

●●

●●

●●●

●●

●●●

●●●●●●●

●●

●●●

●●

●●

●●●

●●●

●●

●●

●●

●●●●

●●●●●

●●

●●

●●●●●●●●●●

●●●

●●●

●●

●●●

●●●●●●●●●●●●●●●●

●●●

●●●

●●●●

●●●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●●●

●●

●●●

●●

●●

●●●●

●●●●●

●●●

●●●●●●●●

●●●

●●●

●●●

●●

●●●●●●●●●●●●●

●●●● ●●

●●

●●●●●

●●

●●●●

●●●●

●●●●

●●

●●●

●●

●●●

●●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●●●●●● ●

●●●

●●

●●

●●

●●

●●●

●● ●●●

●●

●●●

●●●●

●●●●●

●●●●●

●●●●●●

●●●

●●

●●

●●●

●●●

●●●●●●

●●●●●●●●●●●●●

●●

●●●●●●

●●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●

●●

●●●●

●●●●

●●

●●●●●

●●

●●●●

●●

●●●

●●●●●●

●●

●●●●

●●●●

●●●●●●●●●●●●●●

●●

●●●●●●●●

●●●●●●

●●●●●●●●●

●●●●●

●●●●●●●

●●●●●

●●

●●●●

●●●

●●●●●

●●●●

●●●●

●●●●●

●●

●●●●

●●

●●

●●●

●●●

●●

●●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●●●●●●

●●●

●●

●●●●

●●

●●●●●●●●

●●●●●●

●●●●●

●●●●

●●●●

●●●●●●●●●●

●●●

●●●

●●●

●●●●●●●●●●●

●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●●●●●●●●●●

●●●●●●●●●

●●●

●●●●●●●

●●●●●●

●●

●●

●●●●●●●●●●

●●

●●

●●

●●

●●●●●●

●●●●●●

●●●

●●●

●●●●●●●●

●●●

●●

●●●

●●●●●

●●●

●●●

●●●

●●

●●●●●●●

●●●●●●●●●●●●

●●●●●

●●●

●●●●●

●●

●●●●

●●●

●●●●●●●

●●●●●●●●

●●

●●

●●●

●●●●

●●

●●●●●●

●●

●●

●●

●●●

●●●●●

●●

●●

●●

●●●

●●●●●●●●

1 2 3 4 5 6 7 8 9 1011121314151617181920

●●

●●●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●●

●●●●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●●●●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●●

●●

●●

●●●

●●●●

●●

●●●

●●

●●●

●●●●

●●

●●●●●

●●

●●

●●●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●●●

●●

●●●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●

●●

●●●

●●●

●●●●

●●

●●

●●

●●

●●

●●●●

●●

●●●●●●

●●

●●●●

●●●●●

●●

●●

●●

●●

●●●●

●●

●●●●

●●

●●●●

●●●●●●

●●

●●●●●

●●●●

●●●●●

●●●

●●

●●●●●●●

●●

●●●

●●

●●

●●

●●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●

●●

●●

●●●●

●●

●●●

●●

●●

●●

●●●

●●●

●●

●●●●●

●●

●●●

●●

●●●●

●●

●●●●

●●

●●●

●●●●●

●●●

●●●●●●●●●

●●●●●●

●●

●●●●●

●●

●●

●●●●

●●●

●●

●●●

●●

●●

●●

●●●

●●

●●●●●●

●●●

●●●

●●

●●

●●●

●●

●●●●

●●

●●●

●●●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●●

●●●

●●

●●

●●

●●●

●●●

●●

●●●●

●●

●●●●●●●●●

●●●●

●●

●●●

●●●

●●●●●●

●●

●●

●●●

●●

●●●

●●

●●●●

●●

●●●

●●●

●●

●●

●●●

●●●

●●●●

●●●●●

●●●

●●

●●

●●●●●●

●●

●●●●●

●●●●●

●●

●●●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●●●●●●●

●●●

●●●●

●●

●●

●●●

●●

●●

●●●●●●●

●●

●●

●●●

●●

●●●●●●

●●●●●

●●

●●

●●●

●●●●●●●

●●●●

●●●●●

●●●●●●●●●●●

● ●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●●●●●●

●●●

●●

●●

●●

●●

●●

●●●●●●

●●●

●●

●●

●●

●●●●●

●●

●●●●●

●●●

●●

●●●

●●●

●●

●●

●●●●

●●

●●●

●●●●●●●

●●

●●

●●●●

●●

●●●

●●

●●●

●●

●●

●●●

●●●●

●●

●●●●

●●●

●●

●●

●●●

●●

●●●●●●

●●●●●

●●

●●● ●●●●

●●

●●●●●●

●●●●●●●

●●

●●●

●●●●

●●

●●

●●

●●●

●●●●●

●●

●●●●●●●●●●●●●●●

●●

●●●●●●●

●●●

●●●

●●●●●●●

●●

●●

●●●

●●●

●●

●●●

●●●

●●●

●●

●●●●

●●●

●●●●●

0.50

0.00

-0.50

BL-G

CB

●●●●

●●●

●●●

●●●

●●

●●

●●●

●●●●

●●●

●●

●●●

●●●

●●

●●

●●

●●

●●●

●●●●

●●

●●●●

●●

●●

●●●●

●●

●●●

●●●●

●●

●●

●●●

●●

●●●

●●●

●●●

●●●

●●●

●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●●

●●●●

●●

●●●●●●

●●

●●●

●●

●●●

●●

●●●●

●●

●●●●

●●●●

●●

●●●●●

●●●●●●●●

●●●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●● ●

●●

●●

●●●

●●●●●

●●

●●●●●●●●●●●●

●●

●●●

●●●●●●

●●●

●●

●●

●●●

●●

●●

●●●●

●●●●●●

●●

●●

●●●

●●●●●

●●●●●●

●●

●●

●●●●

●●

●●●

●●●●●●

●●

●●●

●●●

●●●●

●●●

●●

●●●●●●●●

●●

●●●●●

●●

●●

●●●

●●

●●

●●●●

●●●

●●

●●

●●●

●●

●●●

●●●●●●●●●●●●●●

●●●●

●●●

●●

●●●

●●●●

●●

●●●●●

●●●●●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●●●

●●●

●●

●●●●

●●

●●●

●●●●

●●

●●●

●●●

●●

●●

●●

●●●●

●●

●●

●●●

●●●

●●

●●●

●●

●●●

●●●●●●●●

●●●●●●●●

●●

●●●

●●●

●●●●●●●●

●●

●●●●●●●

●●●

●●●●

●●●

●●

●●●●●

●●

●●●

●●●●●

●●●

●●

●●●●

●●

●●●

●●●

●●●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●●●●

●●●

●●

●●●

●●

●●●

●●●

●●

●●●●

●●●

●●

●●

●●

●●

●●

●●●●

●●

●●●

●●

●●

● ●●●

●●●●●●

●●

●●●

●●●

●●

●●●●●

●●●

●●●

●●

●●

●●●●●

●●

●●

●●●●

●●●

●●

●●●●

●●

●●●●●●

●●

●●

●●

●●●●●●●

●●●●●

●●●●●●●●

●●●●●

●●●●●●

●●●●●●●●

●●●●

●●●●●●●

●●●●●●●●●●●●

●●●●

●●●●●●●

●●●●●

●●

●●

●●●●

●●●

●●●●

●●

●●

●●●

●●●

●●●●

●●●●●

●●●

●●

●●●●

0.50

0.00

-0.50

●●●●●●●

●●

●●●●●●●

●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●●●

●●●

●●

●●●

●●

●●

● ●●

●●

●●

●●

●●●

●●●

●●●

●●●

●●●●

●●●

●●

●●●

●●●●

●●

●●●

●●

●●●●

●●●

●●

●●

●●●●●●

●●

●●

●●

●●●●

●●

●●

●●●●

●●

●●●

●●●●

●●●●

●●

●●●

●●●●●●

●●

●●

●●

●●

●●

●●●

●●●●●

●●●●●●●●●●●

●●●

●●●

●●●

●●●

●●●●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●●●●

●●●●●●●●●

●●

●●●●●●●

●●

●●●●●●●●

●●●●●●●●●●

●●●

●●●●●

●●●

●●

●●●

●●

●●●●●●●

●●

●●

●●●●●

●●

●●●●●●●●●●●

●●●

●●●

●●●●

●●

●●●

●●

●●

●●●●●

●●●

●●

●●●●●

●●

●●●

●●●●

●●●●

●●●●●

●●

●●●

●●●

●●●

●●

●●●

●●●

●●●●●●

●●●●●

●●●

●●

●●

●●●●●●●

●●●

●●●●●●●

●●●●

●●●●

●●

●●

●●

●●●●

●●

●●

●●●●●●●●●

●●●●

●●●●●●

●●●●●

●●

●●

●●

●●

●●

●●

●●

●●●●●

●●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●●●

●●

●●

●●

●●●

●●

●●●●

●●

●●●●●●●●●●●●●

●●●●●

●●●●

●●●●●

●●●

●●

●●

●●●●●●●

●●

●●

●●●●●●●●

●●●●●●●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●●●

●●●

●●●●

●●●

●●

●●

●●●

●●

●●●

●●●●

●●

●●

●●●●

●●●

●●●●●

●●

●●●

●●

●●● ●●

●●

●●

●●

●●

●● ●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●●●

●●

●●●●●

●●●●●●●

●●●●

●●●●

●●●●●●

●●●●●●●●

●●●●

●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●

●●●●●

●●●●●

●●●

●●●●●●

●●●

●●●●●●●●●●

●●●●●●

●●●●

●●●●●●

●●●●●●●●●●

●●

●●●●●●●●●●●

●●

●●●●

●●

●●

●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●

0.50

0.00

-0.50

1 2 3 4 5 6 7 8 9 1011121314151617181920

Met

hyla

tion

diffe

renc

e

BL-FL

FL-GC

B

Module

fold

enr

ichm

ent

A B

C D

E

HPCs

preB1Cs

-50 500 100

20

0

-20

-40

Principal component 1 (54.38%)

Prin

cipa

l com

pone

nt 2

(6.9

1%)

memBCs

bm-PCs

FLBL

HPCs

preB1Cs

preB2Cs

iBCs

naiBCs

t-naiBCs

t-PCs

gcBCs

Nature Genetics: doi:10.1038/ng.3413

Page 39: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 19: Model of SMARCA4, TCF3 and ID3 interaction. A) In normal GC-B-cells TCF3 induces its own inhibitor ID3, creating an autoregulatory loop that results in modulate expression of target genes, e.g. SMARCA4. SMARCA4 is a component of the SWI/SNF complex, regulating the expression of target genes by its helicase function. B) In Burkitt lymphoma mutations (red bolt) affecting ID3, negative regulator of TCF3, foster TCF3 dependent gene expression. The same effect might also be caused by mutations of TCF3 (not recurrently mutated in this data set, grey bolt). Furthermore, the TCF3 gene harbours a hypomethylated cDMR for amplifying TCF3 transcription. High TCF3 expression results in higher expression of target genes. High SMARC4 expression and mutations in SMARCA4 ablate helicase function directly, through interference with ATP-binding or indirectly by obstructing the interaction of the helicase domains resulting in low expression of target genes.red and black arrows in different size indicating the protein level of expression, white lollipops in headlong direction indicating an unmethylated status.

TCF3

TCF3 ID3

ID3

target genes

target genes

TCF3cDMR 1

SWI/SNF

SMARCA4 ATP

SMARCA4

target genes

SMARCA4

SMARCA4

SWI/SNF

ATP

target genes

TCF3

A

B

cDMR 113/13 BL hypo-

methylated

13/13 BL hypo-methylated

1/13 BL 5/13 BL

6/13 BL

Nature Genetics: doi:10.1038/ng.3413

Page 40: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 20: Landscape of the genes mutated in at least four of the lymphomas included in combined WGBS, WGS and transcriptome analyses. Upper heatmap shows the cytogenetic status of the samples. The barplot indicates the number of SNVs and indels per sample. The complete set of raw data are available from EGA and the complete mutational calls from the ICGC data portal (www.icgc.org).

BCL2 break

BCL6 break

0255075

100

DDX3X

RHOA

ID3

BCL2

SMARCA4

FBXO11

CREBBP

CCND3

TP53

MLL2

MYC

4142

267

4194

218

4177

856

4194

891

4189

998

4133

511

4177

434

4182

393

4190

495

4112

512

4119

027

4125

240

4193

278

4189

200

4159

170

4134

005

4188

900

4175

837

4105

105

4158

726

4121

361

4177

376

positive negative

BL_leukemia BL FL FL/DLBCL

IG-MYC translocation

#S

NV

s, IN

DELs

Nature Genetics: doi:10.1038/ng.3413

Page 41: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

A

Supplementary Figure 21: DNA methylation of 37 BL as determined by HumanMethylation450 BeadChip analysis. Only loci located in (A) DMR or (B) cDMR are included. Green boxes on top of the heatmap: juvenile donors (<18 years), black boxes on top of the heatmap: adult donors (>17 years), heatmap: blue: low methylation; yellow: high DNA methylation.

B

Nature Genetics: doi:10.1038/ng.3413

Page 42: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 22: Analysis of tumor content and KI-67 as a confounding factor. A) Analysis of tumor content and its effects on average per-sample methylation and transcription. No apparent relationship between the average genome wide methylation rate and tumor content (left) nor the differential expression between tumor and healthy control (right) is observed. B) Analysis of the correlation of proliferation rate (as measured by Ki67 expression) and average methylation rate. No significant p-values were observed using spearman correlation (BL p-val = 0.33, FL p-val = 0.77, both p-val = 0.11).

● ●

● ●●

● ●

●●

0.58 0.60 0.62 0.64 0.66 0.68 0.70

6065

7075

8085

9095

average methylation

tum

or c

onte

nt (k

ryo)

● ●

●●

● ●

● ●●

0.75 0.80 0.85

● BL ● FLPearson's correlation coefficient

tumor expression ~ GC-B expression

A

B

0.60

0.65

0.70

0 25 50 75 100

● BL● FL

proliferation rate

genom

e w

ide m

eth

yla

tion

Nature Genetics: doi:10.1038/ng.3413

Page 43: Supplementary Note - media.nature.com · d'hématologie, CNRS 8147, Paris, France; 12. Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts

Supplementary Figure 23: Analysis of DMR and cDMR homogeneity. Unsupervised hierarchical cluster analysis of HumanMethylation450 BeadChip data obtained from 37 BL and 52 FL samples of CpG loci located in (left) DMRs and (right) cDMR. Blue boxes on top of the heatmap indicate BL samples, grey boxes FL; blue: low, yellow: high DNA methylation.

Nature Genetics: doi:10.1038/ng.3413