supplementary information single-molecule dna origami ...origami was then purified by using 100 kda...

9
1 Supplementary Information Single-Molecule DNA Origami Aptasensors for Real-time Biomarker Detection Keitel Cervantes-Salguero, a Mark Freeley, a Jorge L. Chávez, b,* and Matteo Palma a,* a. School of Biological and Chemical Sciences and Materials Research Institute, Queen Mary University of London, London, United Kingdom. b. Air Force Research Laboratory, 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio, United States. Materials: All oligonucleotides and modified oligonucleotides were purchased from Integrated DNA Technologies (IDT) with the exception of the ATTO655 modified sequence which was purchased from Eurofins. M13mp18 viral DNA was purchased from Tilibit. Neutravidin and DPBS and TAE buffers were purchased from ThermoFisher. BSA-biotin and cortisol were purchased from Merck. MgCl 2 and NaCl were purchased from Fisher Scientific. Time-dependent fluorescence experiments: Experiments were performed on a Cary Eclipse Fluorescence Spectrophotometer. For the ATTO 488 dye and BHQ-1 black quencher, the excitation and emission were set at 503 nm and at 522 nm, respectively. Slits for excitation and emission were set at 5 nm. Data was obtained every 10.2 sec. For cortisol detection in Figure 1B, 90 nM ATTO 488-labelled aptamer in 300 μl of 1x DPBS was introduced and allowed to equilibrate. Then, the quencher (BHQ- 1) was added at a final concentration of 100 nM (black arrow), mixed and let equilibrate. Finally, 1 μl of 3 mM cortisol in ethanol was added to 300 μl 1x DPBS solution, which was added and mixed by pipetting. For the orange curve: 1 μl ethanol was added and mixed by pipetting. It is important to note that the duplexed aptamer system is very sensitive to mechanical perturbations and solution changes, i.e. that even simple solution mixing with pipette led to duplex dehybridisation as shown by small changes in intensity in Figure 1B at 6 min, 36 min and 63 min, although these would quickly re-equilibrate. Moreover, excessive additions of ethanol in the control experiment led to a significant intensity change similar to cortisol detection; therefore, we limited the amount of ethanol in solution to a maximum of 0.3% v/v in the total buffer solution. Experiments in solution at other ionic concentrations: In order to understand the duplexed aptasensor’s dynamic nature, we performed a series of experiments in solution at different ionic strengths at 25 °C. We evaluated the effect of ionic strength at intermediate concentrations between 1x DPBS and 1x DPBS/1.5 M NaCl and at 1× TAE/MgCl 2 (40 mM Tris, 20 mM acetic acid, 2 mM EDTA, 12.5 mM MgCl 2 ) (see Figure S1). As 1x DPBS buffers contains ~150 mM NaCl, additional NaCl was supplemented to reach final testing concentrations. For all curves: the ATTO 488-labeled aptamer in buffer was introduced and allowed to equilibrate. Then, the quencher was added after 10 min, mixed by pipetting and incubated for more than 1 hour. Finally, cortisol (10 μM) was added (black arrow) and mixed by pipetting, resulting in an aptamer to cortisol ratio of 1:111. Experiments at all tested salt concentrations show formation of the dye/quencher duplex, despite partial duplex dehybridisation before the addition of cortisol, as seen from the slow increase in fluorescence over long periods (see scheme in Figure 1A in main text). At 1× TAE/MgCl 2 , hybridisation is complete within 5 min followed by a dehybridisation faster than in the case of 1x DPBS/1.5 M NaCl. In 1x DPBS, after adding the quencher, hybridisation takes at least 5 min more than the rest of tested cases but dehybridisation has a similar rate. We concluded that even though detection in 1x DBPS is possible, the dehybridisation rate alters the sensing capabilities of the system. DNA origami synthesis: The DNA origami is a triangular-shaped origami previously reported, 1 based off a design by Rothemund. 2 It is a single-layer DNA sheet with 120 nm side length. It is synthesised from more than 200 short single strands (staples) and a 7249-nucleotide circular single-stranded DNA (scaffold). During origami preparation some staples were extended to allow hybridisation of functional components including the aptamer, biotin anchors, and fluorophore labels (see list of sequences at end of SI). The aptamer and biotin anchors were designed to extend from opposite faces of the DNA origami based on the number of turns in the DNA relative to each of their positions. 3 The staples (Integrated DNA Technologies, 100 μM in 1 × TAE buffer) and the 12 modified staples for biotin were mixed with a ratio of 5:1 with the scaffold (M13mp18 viral DNA, Tibilit) at a final concentration of 1 × TAE buffer/12.5 mM Mg 2 + (annealing buffer). The modified A40- staple, surface aptamer strand and ATTO 655-strand, and biotin strand were added in a 10:1, 500:1, 50:1, 500:1 ratio with respect to the scaffold. The mixture was heated to 90 °C for 5 min and annealed from 90 °C to room temperature at the rate of 0.2 °C per min, which was performed in a PCR machine (Hybaid Sprint PCR Thermal Cycler, Thermo Scientific). The DNA origami was then purified by using 100 kDa MWCO spin filters (Amicon® Ultra, Ultracel-100 K, Millipore). The final concentration of origami was 1.2 nM in 100 μl annealing buffer. Surface-based aptasensor preparation for single-molecule experiments: Glass coverslips were cleaned intensively to remove all florescence impurity. Coverslips were placed in a Teflon rack, rinsed with milliQ water (mQ) and sonicated in piranha Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

Upload: others

Post on 12-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    SupplementaryInformation

    Single-MoleculeDNAOrigamiAptasensorsforReal-timeBiomarkerDetection

    KeitelCervantes-Salguero,aMarkFreeley,aJorgeL.Chávez,b,*andMatteoPalmaa,*

    a. SchoolofBiologicalandChemicalSciencesandMaterialsResearchInstitute,QueenMaryUniversityofLondon,London,UnitedKingdom.b. AirForceResearchLaboratory,711thHumanPerformanceWing,WrightPattersonAirForceBase,Dayton,Ohio,UnitedStates.Materials:AlloligonucleotidesandmodifiedoligonucleotideswerepurchasedfromIntegratedDNATechnologies(IDT)withtheexceptionoftheATTO655modifiedsequencewhichwaspurchasedfromEurofins.M13mp18viralDNAwaspurchasedfrom Tilibit. Neutravidin and DPBS and TAE buffers were purchased from ThermoFisher. BSA-biotin and cortisol werepurchasedfromMerck.MgCl2andNaClwerepurchasedfromFisherScientific.Time-dependentfluorescenceexperiments:ExperimentswereperformedonaCaryEclipseFluorescenceSpectrophotometer.FortheATTO488dyeandBHQ-1blackquencher,theexcitationandemissionweresetat503nmandat522nm,respectively.Slitsforexcitationandemissionweresetat5nm.Datawasobtainedevery10.2sec.ForcortisoldetectioninFigure1B,90nMATTO488-labelledaptamerin300μlof1xDPBSwasintroducedandallowedtoequilibrate.Then,thequencher(BHQ-1)wasaddedatafinalconcentrationof100nM(blackarrow),mixedandletequilibrate.Finally,1μlof3mMcortisolinethanolwasaddedto300μl1xDPBSsolution,whichwasaddedandmixedbypipetting.Fortheorangecurve:1μlethanolwasaddedandmixedbypipetting.Itisimportanttonotethattheduplexedaptamersystemisverysensitivetomechanicalperturbationsandsolutionchanges,i.e.thatevensimplesolutionmixingwithpipetteledtoduplexdehybridisationasshownbysmallchangesinintensityinFigure1Bat6min,36minand63min,althoughthesewouldquicklyre-equilibrate.Moreover,excessiveadditionsofethanolinthecontrolexperimentledtoasignificantintensitychangesimilartocortisoldetection;therefore,welimitedtheamountofethanolinsolutiontoamaximumof0.3%v/vinthetotalbuffersolution.Experimentsinsolutionatotherionicconcentrations:Inordertounderstandtheduplexedaptasensor’sdynamicnature,weperformedaseriesofexperimentsinsolutionatdifferentionicstrengthsat25°C.Weevaluatedtheeffectofionicstrengthatintermediateconcentrationsbetween1xDPBSand1xDPBS/1.5MNaClandat1×TAE/MgCl2(40mMTris,20mMaceticacid, 2 mM EDTA, 12.5 mMMgCl2) (see Figure S1). As 1x DPBS buffers contains ~150 mM NaCl, additional NaCl wassupplementedtoreachfinaltestingconcentrations.Forallcurves:theATTO488-labeledaptamerinbufferwasintroducedandallowedtoequilibrate.Then,thequencherwasaddedafter10min,mixedbypipettingandincubatedformorethan1hour.Finally,cortisol(10μM)wasadded(blackarrow)andmixedbypipetting,resultinginanaptamertocortisolratioof1:111. Experiments at all tested salt concentrations show formationof thedye/quencherduplex,despitepartial duplexdehybridisationbeforetheadditionofcortisol,asseenfromtheslowincreaseinfluorescenceoverlongperiods(seeschemeinFigure1Ainmaintext).At1×TAE/MgCl2,hybridisationiscompletewithin5minfollowedbyadehybridisationfasterthaninthecaseof1xDPBS/1.5MNaCl.In1xDPBS,afteraddingthequencher,hybridisationtakesatleast5minmorethantherestoftestedcasesbutdehybridisationhasasimilarrate.Weconcludedthateventhoughdetectionin1xDBPSispossible,thedehybridisationratealtersthesensingcapabilitiesofthesystem.DNA origami synthesis: The DNA origami is a triangular-shaped origami previously reported,1 based off a design byRothemund.2Itisasingle-layerDNAsheetwith120 nmsidelength.Itissynthesisedfrommorethan200shortsinglestrands(staples) and a 7249-nucleotide circular single-stranded DNA (scaffold). During origami preparation some staples wereextendedtoallowhybridisationoffunctionalcomponentsincludingtheaptamer,biotinanchors,andfluorophorelabels(seelistofsequencesatendofSI).TheaptamerandbiotinanchorsweredesignedtoextendfromoppositefacesoftheDNAorigami based on the number of turns in the DNA relative to each of their positions.3 The staples (Integrated DNATechnologies,100 μMin1 × TAEbuffer)andthe12modifiedstaplesforbiotinweremixedwitharatioof5:1withthescaffold(M13mp18viralDNA,Tibilit)atafinalconcentrationof1 × TAEbuffer/12.5 mMMg2

    +(annealingbuffer).ThemodifiedA40-staple,surfaceaptamerstrandandATTO655-strand,andbiotinstrandwereaddedina10:1,500:1,50:1,500:1ratiowithrespecttothescaffold.Themixturewasheatedto90 °Cfor5 minandannealedfrom90 °Ctoroomtemperatureattherateof0.2 °Cpermin,whichwasperformedinaPCRmachine(HybaidSprintPCRThermalCycler,ThermoScientific).TheDNAorigami was then purified by using 100 kDa MWCO spin filters (Amicon® Ultra, Ultracel-100 K, Millipore). The finalconcentrationoforigamiwas1.2nMin100μlannealingbuffer.Surface-basedaptasensorpreparationforsingle-moleculeexperiments:Glasscoverslipswerecleanedintensivelytoremoveall florescence impurity.Coverslipswereplaced inaTeflonrack,rinsedwithmilliQwater (mQ)andsonicated inpiranha

    Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B.This journal is © The Royal Society of Chemistry 2020

  • 2

    solution(3:1,sulfuricacidandhydrogenperoxide)for2hours.Afterthis,coverslipswererinsedwithmQandsonicatedinmQfor10min.Then,coverslipsweresonicatedinacetonefor10min,rinsedwithmQ,sonicatedinethanolfor10min,andfinallycoverslipswereblowndrywithArgon.Cloningcylindersweregluedtothecleanedmicroscopecoverslips,whereeachcloningcylindercouldbeusedasareactionchamberorwell.Coverslipswerestoredat-20°CinaFalcontubefilledwithArgon.Beforeusing,coverslipswereequilibratedatroomtemperature.Then,plasmacleanedfor30min.Coverslipswereallowedtocooltoroomtemperatureastheywereusuallyhot.Then,wellswerepassivatedwith1mg/mlBSA-biotinviaphysisorptionfor10min,rinsedwith1xDPBS,conjugatedwith1mg/mlneutravidinfor10min,rinsedwith1xDPBSandexchangedto1× TAEbuffer/12.5 mMMg2

    +.Finally,theneutravidin-coatedsurfacewassparselyconjugatedwith240pMbiotinylatedDNAorigamiin1× TAEbuffer/12.5 mMMg2

    +for2minandrinsedwith1× TAEbuffer/12.5 mMMg2+.Beforethe

    TIRFMexperiments,thebufferinthewellswasexchangedto1xDPBS.TotalInternalReflectionFluorescence(TIRF)Microscopy:Imagingforthesingle-moleculedetectiononasurface(Figure3B)wasperformedusinganLSM710ELYRAPS.1inTIRFmodewith642nmlaserexcitationat30%power,LP655filterand100mscameraacquisitiontime.TIRFtimeseriesofthesameareawereperformedatthefollowingthreestates(SeeFigureS3forsnapshotsoftheacquiredtimeseriesandFigureS4forrepresentativesingle-moleculetraces):(1)recognitionofDNAorigamisviathesingle-moleculefluorescenceofATTO655whereweconfirmedsingle-moleculesbyphotobleachingevents(see representativeevent in FigureS4C); (2) additionofquencher (200nM final concentration) in1xDPBSwith10minincubationwherelossoffluorescenceindicateddye/quencherduplexformation–afterthe10minutesthisstatewasimagedforapproximately30secondstoconfirmthatthequencherhadbound;(3)additionofcortisolbiomarker(1μl;500μM-10μMfinalconcentration)in1xDPBStothechamberwithoutmixing-singlestepdetectionwasobserved14secaftercortisoladdition.Only2individualaptasensorsshowednodetectionafter1min47secofcortisoladdition.Analysis of TIRFMicroscopy:Using ImageJ,we analysed a TIRFmicroscopy time lapse (see Figure S3 for representativesnapshots).Initially,atimelapsewasloadedintoImageJasaStack.Then,brightspotswerevisuallyidentified.A2x2pixelsregionwasselectedonthebrightspotandshiftedaroundthespotinsuchawaythatthemaximumintensitywasobtainedusingtheImageJ’sPlotZ-axisProfiletool.Foreachbrightspotwealsoobtainedanearbybackgroundsignal.Inordertodetermineifafluorescentspotcamefromanindividualaptasensor,welookedatphotobleachingandblinkingofthedye,whereasingle-stepdecreaseinintensityequivalenttothemeasuredbackgroundwouldindicateasingle-moleculeaptasensor(exampleseeninfigureS4D).Thisbehaviourwasdistinctfromsinglemoleculebindingevents,wherethelossofintensitywouldnotdecreasetothebackgroundintensityandwasinsteaddimmed.Forsingle-moleculebindingeventstheobservedintensityfirstdecreasedinasinglestepafterthequencherwasaddedandhybridised.Ingeneral,allthebrightspotsinthetimelapsesdecreasetheirintensityafteraddingthequencherandwaitingthe10minutesincubation.Amongthosequenchedsingle-molecules,wechosethosewithsignaltonoiseratioofatleast1.44 (calculatedas signal2/noise2).Whencortisolwasdetected thesignal recovered,again ina single step, to the initialintensityrecordedpriortoaddingthequencher.Foradetectioncut-offafteraddingcortisol,weconsideredabindingeventtooccurwhenthe intensityrecoveredtothe initial intensityrecordedbeforethequencherwasadded.Weconfirmed1single-moleculebrightspotper36.4μm2afterevaluating68brightspotsinanareaof1310.5μm2.AtomicForceMicroscopy(AFM):AFMcharacterisationinliquidwascarriedoutonaBrukerDimensionFastScaninPeakForceTappingmodewithFastScanDtipsfromBrukerandwasperformedonafreshlycleavedmicasubstrate.Scanningbufferwastheorigamiannealingbuffer(1× TAEbuffer/12.5 mMMg2

    +).Theoreticalmeltingtemperaturecalculations:ThemeltingtemperatureswerecalculatedusingOligoAnalyzersoftwarefromIDTwheretheDNAwassetat1μMwithvariedconcentrationsofNaClandMgCl2.Calculatedmeltingtemperatureforthetrigger(highlightedingreeninthesectionsrelatedtoDNAsequencesforthein-solutionaptasensorandsingle-moleculesurface-basedaptasensor:1μM150mM(1xDPBS)35.7°C,1μM300mMNaCl38.2°C.Calculatedmeltingtemperatureforthequencherduplex(highlightedinlightblueintheDNAsequencessection):1μM150mMNaCl(1xDPBS)56.7°C,1μM300mM NaCl 59.6°C. Other DNA segments such as the “ATTO 655-strand” and the surface aptamer capturing strand(highlighted in purple in the DNA sequences section) were designed using simulation packages such as NUPACK andOligoAnalyzerfromIDTforthetested150mMNaClinsuchawaythat100%hybridisationratewaspredictedat25°C.DNAsequencesforthein-solutionaptasensor:in-solutionaptamer:/5ATTO488N/ctctcgggacgacGCCCGCATGTTCCATGGATAGTCTTGACTAgtcgtcccquencher-BHQ1:gtcgtcccgagag/3BHQ_1/blocker:gggacgacTAGTCAAGACTATCCATGGAACATGCGGGDNAsequencesforthesingle-moleculesurface-basedaptasensor:Surfaceaptamer:CACGCTGTTGAATGTCTGACctctcgggacgacGCCCGCATGTTCCATGGATAGTCTTGACTAgtcgtcccmodifiedA40-staple:CGTGATTAGGTAAGGCCTTAGTCAGACATTCAACAGCGTGTTTTTTTAGTATCGCCAACGCTCAACAGTCGGCTGTCATTO655-strand:/ATTO655/TAAGGCCTTACCTAATCACGquencher-iowa:gtcgtcccgagag/3IAbRQSp/

  • 3

    Modifiedstaplesforthebiotinanchorandbiotinstrand:A52-staple:CCCATCCTCGCCAACATGTAATTTAATAAGGCCTGATGATTGATACCG A44-staple:TCAATAATAGGGCTTAATTGAGAATCATAATTCTGATGATTGATACCG A07-staple:AAAGACAACATTTTCGGTCATAGCCAAAATCACTGATGATTGATACCG A15-staple:GGAGGGAATTTAGCGTCAGACTGTCCGCCTCCCTGATGATTGATACCG B52-staple:GTACAACGAGCAACGGCTACAGAGGATACCGACTGATGATTGATACCG B44-staple:ATTGTGTCTCAGCAGCGAAAGACACCATCGCCCTGATGATTGATACCG B07-staple:AACCAGACGTTTAGCTATATTTTCTTCTACTACTGATGATTGATACCG B15-staple:GATTAGAGATTAGATACATTTCGCAAATCATACTGATGATTGATACCG C52-staple:CGCGCGGGCCTGTGTGAAATTGTTGGCGATTACTGATGATTGATACCG C44-staple:CCAGGGTGGCTCGAATTCGTAATCCAGTCACGCTGATGATTGATACCG C07-staple:GGACATTCACCTCAAATATCAAACACAGTTGACTGATGATTGATACCG C15-staple:TGACCTGACAAATGAAAAATCTAAAATATCTTCTGATGATTGATACCG Biotinstrand:/5Biosg/CGGTATCAATCATCAGStaplestrandsforthetriangularDNAorigami:A01:CGGGGTTTCCTCAAGAGAAGGATTTTGAATTAA02:AGCGTCATGTCTCTGAATTTACCGACTACCTTA03:TTCATAATCCCCTTATTAGCGTTTTTCTTACCA04:ATGGTTTATGTCACAATCAATAGATATTAAACA05:TTTGATGATTAAGAGGCTGAGACTTGCTCAGTACCAGGCGA06:CCGGAACCCAGAATGGAAAGCGCAACATGGCTA07:AAAGACAACATTTTCGGTCATAGCCAAAATCAA08:GACGGGAGAATTAACTCGGAATAAGTTTATTTCCAGCGCCA09:GATAAGTGCCGTCGAGCTGAAACATGAAAGTATACAGGAGA10:TGTACTGGAAATCCTCATTAAAGCAGAGCCACA11:CACCGGAAAGCGCGTTTTCATCGGAAGGGCGAA12:CATTCAACAAACGCAAAGACACCAGAACACCCTGAACAAAA13:TTTAACGGTTCGGAACCTATTATTAGGGTTGATATAAGTAA14:CTCAGAGCATATTCACAAACAAATTAATAAGTA15:GGAGGGAATTTAGCGTCAGACTGTCCGCCTCCA16:GTCAGAGGGTAATTGATGGCAACATATAAAAGCGATTGAGA17:TAGCCCGGAATAGGTGAATGCCCCCTGCCTATGGTCAGTGA18:CCTTGAGTCAGACGATTGGCCTTGCGCCACCCA19:TCAGAACCCAGAATCAAGTTTGCCGGTAAATAA20:TTGACGGAAATACATACATAAAGGGCGCTAATATCAGAGAA21:CAGAGCCAGGAGGTTGAGGCAGGTAACAGTGCCCGA22:ATTAAAGGCCGTAATCAGTAGCGAGCCACCCTA23:GATAACCCACAAGAATGTTAGCAAACGTAGAAAATTATTCA24:GCCGCCAGCATTGACACCACCCTCA25:AGAGCCGCACCATCGATAGCAGCATGAATTATA26:CACCGTCACCTTATTACGCAGTATTGAGTTAAGCCCAATAA27:AGCCATTTAAACGTCACCAATGAACACCAGAACCAA28:ATAAGAGCAAGAAACATGGCATGATTAAGACTCCGACTTGA29:CCATTAGCAAGGCCGGGGGAATTAA30:GAGCCAGCGAATACCCAAAAGAACATGAAATAGCAATAGCA31:TATCTTACCGAAGCCCAAACGCAATAATAACGAAAATCACCAGA32:CAGAAGGAAACCGAGGTTTTTAAGAAAAGTAAGCAGATAGCCGA33:CCTTTTTTCATTTAACAATTTCATAGGATTAGA34:TTTAACCTATCATAGGTCTGAGAGTTCCAGTAA35:AGTATAAAATATGCGTTATACAAAGCCATCTTA36:CAAGTACCTCATTCCAAGAACGGGAAATTCATA37:AGAGAATAACATAAAAACAGGGAAGCGCATTAA38:AAAACAAAATTAATTAAATGGAAACAGTACATTAGTGAATA39:TTATCAAACCGGCTTAGGTTGGGTAAGCCTGTA40:TTAGTATCGCCAACGCTCAACAGTCGGCTGTCA41:TTTCCTTAGCACTCATCGAGAACAATAGCAGCCTTTACAGA42:AGAGTCAAAAATCAATATATGTGATGAAACAAACATCAAGA43:ACTAGAAATATATAACTATATGTACGCTGAGAA44:TCAATAATAGGGCTTAATTGAGAATCATAATTA45:AACGTCAAAAATGAAAAGCAAGCCGTTTTTATGAAACCAAA46:GAGCAAAAGAAGATGAGTGAATAACCTTGCTTATAGCTTAA47:GATTAAGAAATGCTGATGCAAATCAGAATAAA

  • 4

    A48:CACCGGAATCGCCATATTTAACAAAATTTACGA49:AGCATGTATTTCATCGTAGGAATCAAACGATTTTTTGTTTA50:ACATAGCGCTGTAAATCGTCGCTATTCATTTCAATTACCTA51:GTTAAATACAATCGCAAGACAAAGCCTTGAAAA52:CCCATCCTCGCCAACATGTAATTTAATAAGGCA53:TCCCAATCCAAATAAGATTACCGCGCCCAATAAATAATATA54:TCCCTTAGAATAACGCGAGAAAACTTTTACCGACCA55:GTGTGATAAGGCAGAGGCATTTTCAGTCCTGAA56:ACAAGAAAGCAAGCAAATCAGATAACAGCCATATTATTTAA57:GTTTGAAATTCAAATATATTTTAGA58:AATAGATAGAGCCAGTAATAAGAGATTTAATGA59:GCCAGTTACAAAATAATAGAAGGCTTATCCGGTTATCAACA60:TTCTGACCTAAAATATAAAGTACCGACTGCAGAACA61:GCGCCTGTTATTCTAAGAACGCGATTCCAGAGCCTAATTTA62:TCAGCTAAAAAAGGTAAAGTAATTA63:ACGCTAACGAGCGTCTGGCGTTTTAGCGAACCCAACATGTA64:ACGACAATAAATCCCGACTTGCGGGAGATCCTGAATCTTACCAA65:TGCTATTTTGCACCCAGCTACAATTTTGTTTTGAAGCCTTAAAB01:TCATATGTGTAATCGTAAAACTAGTCATTTTCB02:GTGAGAAAATGTGTAGGTAAAGATACAACTTTB03:GGCATCAAATTTGGGGCGCGAGCTAGTTAAAGB04:TTCGAGCTAAGACTTCAAATATCGGGAACGAGB05:ACAGTCAAAGAGAATCGATGAACGACCCCGGTTGATAATCB06:ATAGTAGTATGCAATGCCTGAGTAGGCCGGAGB07:AACCAGACGTTTAGCTATATTTTCTTCTACTAB08:GAATACCACATTCAACTTAAGAGGAAGCCCGATCAAAGCGB09:AGAAAAGCCCCAAAAAGAGTCTGGAGCAAACAATCACCATB10:CAATATGACCCTCATATATTTTAAAGCATTAAB11:CATCCAATAAATGGTCAATAACCTCGGAAGCAB12:AACTCCAAGATTGCATCAAAAAGATAATGCAGATACATAAB13:CGTTCTAGTCAGGTCATTGCCTGACAGGAAGATTGTATAAB14:CAGGCAAGATAAAAATTTTTAGAATATTCAACB15:GATTAGAGATTAGATACATTTCGCAAATCATAB16:CGCCAAAAGGAATTACAGTCAGAAGCAAAGCGCAGGTCAGB17:GCAAATATTTAAATTGAGATCTACAAAGGCTACTGATAAAB18:TTAATGCCTTATTTCAACGCAAGGGCAAAGAAB19:TTAGCAAATAGATTTAGTTTGACCAGTACCTTB20:TAATTGCTTTACCCTGACTATTATGAGGCATAGTAAGAGCB21:ATAAAGCCTTTGCGGGAGAAGCCTGGAGAGGGTAGB22:TAAGAGGTCAATTCTGCGAACGAGATTAAGCAB23:AACACTATCATAACCCATCAAAAATCAGGTCTCCTTTTGAB24:ATGACCCTGTAATACTTCAGAGCAB25:TAAAGCTATATAACAGTTGATTCCCATTTTTGB26:CGGATGGCACGAGAATGACCATAATCGTTTACCAGACGACB27:TAATTGCTTGGAAGTTTCATTCCAAATCGGTTGTAB28:GATAAAAACCAAAATATTAAACAGTTCAGAAATTAGAGCTB29:ACTAAAGTACGGTGTCGAATATAAB30:TGCTGTAGATCCCCCTCAAATGCTGCGAGAGGCTTTTGCAB31:AAAGAAGTTTTGCCAGCATAAATATTCATTGACTCAACATGTTB32:AATACTGCGGAATCGTAGGGGGTAATAGTAAAATGTTTAGACTB33:AGGGATAGCTCAGAGCCACCACCCCATGTCAAB34:CAACAGTTTATGGGATTTTGCTAATCAAAAGGB35:GCCGCTTTGCTGAGGCTTGCAGGGGAAAAGGTB36:GCGCAGACTCCATGTTACTTAGCCCGTTTTAAB37:ACAGGTAGAAAGATTCATCAGTTGAGATTTAGB38:CCTCAGAACCGCCACCCAAGCCCAATAGGAACGTAAATGAB39:ATTTTCTGTCAGCGGAGTGAGAATACCGATATB40:ATTCGGTCTGCGGGATCGTCACCCGAAATCCGB41:CGACCTGCGGTCAATCATAAGGGAACGGAACAACATTATTB42:AGACGTTACCATGTACCGTAACACCCCTCAGAACCGCCACB43:CACGCATAAGAAAGGAACAACTAAGTCTTTCCB44:ATTGTGTCTCAGCAGCGAAAGACACCATCGCCB45:TTAATAAAACGAACTAACCGAACTGACCAACTCCTGATAA

  • 5

    B46:AGGTTTAGTACCGCCATGAGTTTCGTCACCAGGATCTAAAB47:GTTTTGTCAGGAATTGCGAATAATCCGACAATB48:GACAACAAGCATCGGAACGAGGGTGAGATTTGB49:TATCATCGTTGAAAGAGGACAGATGGAAGAAAAATCTACGB50:AGCGTAACTACAAACTACAACGCCTATCACCGTACTCAGGB51:TAGTTGCGAATTTTTTCACGTTGATCATAGTTB52:GTACAACGAGCAACGGCTACAGAGGATACCGAB53:ACCAGTCAGGACGTTGGAACGGTGTACAGACCGAAACAAAB54:ACAGACAGCCCAAATCTCCAAAAAAAAATTTCTTAB55:AACAGCTTGCTTTGAGGACTAAAGCGATTATAB56:CCAAGCGCAGGCGCATAGGCTGGCAGAACTGGCTCATTATB57:CGAGGTGAGGCTCCAAAAGGAGCCB58:ACCCCCAGACTTTTTCATGAGGAACTTGCTTTB59:ACCTTATGCGATTTTATGACCTTCATCAAGAGCATCTTTGB60:CGGTTTATCAGGTTTCCATTAAACGGGAATACACTB61:AAAACACTTAATCTTGACAAGAACTTAATCATTGTGAATTB62:GGCAAAAGTAAAATACGTAATGCCB63:TGGTTTAATTTCAACTCGGATATTCATTACCCACGAAAGAB64:ACCAACCTAAAAAATCAACGTAACAAATAAATTGGGCTTGAGAB65:CCTGACGAGAAACACCAGAACGAGTAGGCTGCTCATTCAGTGAC01:TCGGGAGATATACAGTAACAGTACAAATAATTC02:CCTGATTAAAGGAGCGGAATTATCTCGGCCTCC03:GCAAATCACCTCAATCAATATCTGCAGGTCGAC04:CGACCAGTACATTGGCAGATTCACCTGATTGCC05:TGGCAATTTTTAACGTCAGATGAAAACAATAACGGATTCGC06:AAGGAATTACAAAGAAACCACCAGTCAGATGAC07:GGACATTCACCTCAAATATCAAACACAGTTGAC08:TTGACGAGCACGTATACTGAAATGGATTATTTAATAAAAGC09:CCTGATTGCTTTGAATTGCGTAGATTTTCAGGCATCAATAC10:TAATCCTGATTATCATTTTGCGGAGAGGAAGGC11:TTATCTAAAGCATCACCTTGCTGATGGCCAACC12:AGAGATAGTTTGACGCTCAATCGTACGTGCTTTCCTCGTTC13:GATTATACACAGAAATAAAGAAATACCAAGTTACAAAATCC14:TAGGAGCATAAAAGTTTGAGTAACATTGTTTGC15:TGACCTGACAAATGAAAAATCTAAAATATCTTC16:AGAATCAGAGCGGGAGATGGAAATACCTACATAACCCTTCC17:GCGCAGAGGCGAATTAATTATTTGCACGTAAATTCTGAATC18:AATGGAAGCGAACGTTATTAATTTCTAACAACC19:TAATAGATCGCTGAGAGCCAGCAGAAGCGTAAC20:GAATACGTAACAGGAAAAACGCTCCTAAACAGGAGGCCGAC21:TCAATAGATATTAAATCCTTTGCCGGTTAGAACCTC22:CAATATTTGCCTGCAACAGTGCCATAGAGCCGC23:TTAAAGGGATTTTAGATACCGCCAGCCATTGCGGCACAGAC24:ACAATTCGACAACTCGTAATACATC25:TTGAGGATGGTCAGTATTAACACCTTGAATGGC26:CTATTAGTATATCCAGAACAATATCAGGAACGGTACGCCAC27:CGCGAACTAAAACAGAGGTGAGGCTTAGAAGTATTC28:GAATCCTGAGAAGTGTATCGGCCTTGCTGGTACTTTAATGC29:ACCACCAGCAGAAGATGATAGCCCC30:TAAAACATTAGAAGAACTCAAACTTTTTATAATCAGTGAGC31:GCCACCGAGTAAAAGAACATCACTTGCCTGAGCGCCATTAAAAC32:TCTTTGATTAGTAATAGTCTGTCCATCACGCAAATTAACCGTTC33:CGCGTCTGATAGGAACGCCATCAACTTTTACAC34:AGGAAGATGGGGACGACGACAGTAATCATATTC35:CTCTAGAGCAAGCTTGCATGCCTGGTCAGTTGC36:CCTTCACCGTGAGACGGGCAACAGCAGTCACAC37:CGAGAAAGGAAGGGAAGCGTACTATGGTTGCTC38:GCTCATTTTTTAACCAGCCTTCCTGTAGCCAGGCATCTGCC39:CAGTTTGACGCACTCCAGCCAGCTAAACGACGC40:GCCAGTGCGATCCCCGGGTACCGAGTTTTTCTC41:TTTCACCAGCCTGGCCCTGAGAGAAAGCCGGCGAACGTGGC42:GTAACCGTCTTTCATCAACATTAAAATTTTTGTTAAATCAC43:ACGTTGTATTCCGGCACCGCTTCTGGCGCATC

  • 6

    C44:CCAGGGTGGCTCGAATTCGTAATCCAGTCACGC45:TAGAGCTTGACGGGGAGTTGCAGCAAGCGGTCATTGGGCGC46:GTTAAAATTCGCATTAATGTGAGCGAGTAACACACGTTGGC47:TGTAGATGGGTGCCGGAAACCAGGAACGCCAGC48:GGTTTTCCATGGTCATAGCTGTTTGAGAGGCGC49:GTTTGCGTCACGCTGGTTTGCCCCAAGGGAGCCCCCGATTC50:GGATAGGTACCCGTCGGATTCTCCTAAACGTTAATATTTTC51:AGTTGGGTCAAAGCGCCATTCGCCCCGTAATGC52:CGCGCGGGCCTGTGTGAAATTGTTGGCGATTAC53:CTAAATCGGAACCCTAAGCAGGCGAAAATCCTTCGGCCAAC54:CGGCGGATTGAATTCAGGCTGCGCAACGGGGGATGC55:TGCTGCAAATCCGCTCACAATTCCCAGCTGCAC56:TTAATGAAGTTTGATGGTGGTTCCGAGGTGCCGTAAAGCAC57:TGGCGAAATGTTGGGAAGGGCGATC58:TGTCGTGCACACAACATACGAGCCACGCCAGCC59:CAAGTTTTTTGGGGTCGAAATCGGCAAAATCCGGGAAACCC60:TCTTCGCTATTGGAAGCATAAAGTGTATGCCCGCTC61:TTCCAGTCCTTATAAATCAAAAGAGAACCATCACCCAAATC62:GCGCTCACAAGCCTGGGGTGCCTAC63:CGATGGCCCACTACGTATAGCCCGAGATAGGGATTGCGTTC64:AACTCACATTATTGAGTGTTGTTCCAGAAACCGTCTATCAGGGC65:ACGTGGACTCCAACGTCAAAGGGCGAATTTGGAACAAGAGTCCLink-A1C:TTAATTAATTTTTTACCATATCAAALink-A2C:TTAATTTCATCTTAGACTTTACAALink-A3C:CTGTCCAGACGTATACCGAACGALink-A4C:TCAAGATTAGTGTAGCAATACTLink-B1A:TGTAGCATTCCTTTTATAAACAGTTLink-B2A:TTTAATTGTATTTCCACCAGAGCCLink-B3A:ACTACGAAGGCTTAGCACCATTALink-B4A:ATAAGGCTTGCAACAAAGTTACLink-C1B:GTGGGAACAAATTTCTATTTTTGAGLink-C2B:CGGTGCGGGCCTTCCAAAAACATTLink-C3B:ATGAGTGAGCTTTTAAATATGCALink-C4B:ACTATTAAAGAGGATAGCGTCCLoop:GCGCTTAATGCGCCGCTACAGGGC

    FigureS1.Experimentsinsolutionatdifferentionicconcentrationconditions

  • 7

    FigureS2.RepresentativeAFMimagesinliquidofthetriangularDNAorigami

    FigureS3.TIRFsnapshotsofthesamearea,wherethebrightspotsindicatethepresenceofDNAorigamiwithaptasensor.Theseareimagedinthreedifferentstages:A.“beforedetection”,whereTIRFisusedtolocatetheDNAorigamiwiththeaptasensor;B.“quencher”,wheretheorigamiisimaged10minutesafteradding200nMquencher;andC.“aftercortisol”,where10μMcortisolisaddedandtheDNAorigamiisimagedapproximately14secondslater.

  • 8

    FigureS4.Representativesingle-moleculetraces.A)Representativesingle-moleculedetectioneventfor10μMcortisolbyTIRFMatthreedifferentstates:(1)beforeaddingthequencher,(2)afteraddingexcessamountofquencherinsolution,and(3)afteradditionof10μMcortisol.Thestates1,2and3correspondtothestatesintheschemeinFigure3Cinthemaintext.Detectionwasachieved26.5secaftercortisoladdition.B)Detectionofcortisolafter37.9secaftercortisoladdition.C)Detectionofcortisolafter81.8secaftercortisoladdition;italsoshowsasinglestepphotobleachingeventafter94.4sec.D)Detectionofcortisolwithin14secaftercortisoladdition;italsoshowsasinglestepphotobleachingeventafter35sec.Redtraces indicatethesingle-moleculeaptasensor,whileblacktraces indicatethereferencebackground.Cameraacquisitiontimewassetat100ms.

  • 9

    References1 D.Huang,K.Patel,S.Perez-Garrido,J.F.MarshallandM.Palma,ACSNano,2019,13,728–736.2 P.W.K.Rothemund,Nature,2006,440,297–302.3 R.Wang,C.NuckollsandS.J.Wind,Angew.Chem.Int.Ed.Engl.,2012,51,11325–11327.