supplementary information for - nature 3(btc) 2@4pico 5.8 298 1 66 cu 3(btc) 2@en 2.6 298 1 66...

62
1 Supplementary information for The chemistry of metal–organic frameworks for CO 2 capture, regeneration and conversion Christopher A. Trickett, 1 Aasif Helal, 2 Bassem A. Al-Maythalony, 3 Zain H. Yamani, 2 Kyle E. Cordova, 1,2 and Omar M. Yaghi 1,2,* 1 Department of Chemistry, University of California–Berkeley; Materials Sciences Division, Lawrence Berkeley National Laboratory; Kavli Energy NanoSciences Institute at Berkeley; and Berkeley Global Science Institute, Berkeley, CA 94720, USA 2 Center for Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia 3 King Abdulaziz City for Science and Technology – Technology Innovation Center on Carbon Capture and Sequestration (KACST–TIC CCS), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia *Corresponding author. E-mail: [email protected] In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45) SUPPLEMENTARY INFORMATION NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Upload: dinhmien

Post on 17-Jun-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

1

Supplementary information for

The chemistry of metal–organic frameworks for CO2 capture, regeneration

and conversion

Christopher A. Trickett,1 Aasif Helal,2 Bassem A. Al-Maythalony,3 Zain H. Yamani,2

Kyle E. Cordova,1,2 and Omar M. Yaghi1,2,*

1Department of Chemistry, University of California–Berkeley; Materials Sciences Division,

Lawrence Berkeley National Laboratory; Kavli Energy NanoSciences Institute at Berkeley; and

Berkeley Global Science Institute, Berkeley, CA 94720, USA 2Center for Research Excellence in Nanotechnology (CENT), King Fahd University of

Petroleum and Minerals, Dhahran, 31261, Saudi Arabia 3King Abdulaziz City for Science and Technology – Technology Innovation Center on Carbon

Capture and Sequestration (KACST–TIC CCS), King Fahd University of Petroleum and

Minerals, Dhahran, 31261, Saudi Arabia

*Corresponding author. E-mail: [email protected]

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 2: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

2

Table of Contents

Section 1 MOFs for Post-Combustion Carbon Capture 3–4

Section 2 Low pressure CO2 uptake versus functionality best performers

5–20

Section 3 MOFs in membrane technology 21–23

Section 4 Catalytic CO2 reduction by MOFs 24–26

Section 5 CO2 conversion into fine chemicals by MOFs 27–34

Section 6 Glossary 35–37

Section 7 References 38–62

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 3: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

3

Section 1: MOFs for Post-Combustion Carbon Capture

The following tables report the CO2 uptake of MOFs reported in 2012 onwards except for Table S1, which reports the benchmark performers throughout the history of MOFs. Only uptake values around room temperature (293-298 K) and atmospheric pressure are recorded, with the tables divided according to functional groups discussed in the main text. The weight % value is calculated as follows:

Wt% = [(adsorbed amount of CO2)/(amount of adsorbent + adsorbed amount of CO2) × 100]

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 4: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

4

Table 1: Benchmark performing MOFs for low pressure CO2 uptake categorized by key contributing structural features.

MOF Primary adsorption site

Capacity (wt%)

Temperature (K)

Pressure (bar) Ref.

Mg-MOF-74 OMSa 27.5 298 1 1

[Zn2(tdc)2(MA)]n Hybrid 27.0 298 1 2

Fe-MOF-74 OMS 23.8 298 1 3

Mg2(DOBPDC) OMS 22.0 298 1 4

SCu OMS 21.7 298 1 5

TEPA-Mg/DOBDC-40 Aliphatic amine 21.1 298 1 6

Cu(Me-4py-trz-ia) Hybrid 21.1 298 1 7

Cu-TDPAT Hybrid 20.6 298 1 8

Ni-MOF-74 OMS 20.5 298 1 9

rht- MOF-9 Heteroaromatic amine

20.2 298 1 10

HKUST-1 OMS 19.8 293 1.1 11

NbO-Pd-1 OMS 19.7 298 1 12

Co-MOF-74 OMS 19.7 298 1 9

[Mg2(dobdc)(N2H4)1.8] Aliphatic amine 19.5 298 1 13

Cu-TPBTM OMS 19.5 298 1 14

nbo-Cu2(DBIP) OMS 19.3 298 0.95 15

CPO-27-Mg-c [Mg2(DHT)(H2O)0.8(en)1.2]·0.2(en)

Aliphatic amine 19.2 298 1 16

SIFSIX-2-Cu-i SBU-based interactions

19.2 298 1.1 17

ZJNU-54 Heteroaromatic amine

19.1 298 1 18

SIFSIX-1-Cu SBU-based interactions 19.1 298 1 19

JLU-Liu21 Hybrid 18.8 298 1 20

ZJNU-44 Heteroaromatic amine

18.6 296 1 21

NJU-Bai21, PCN-124 Hybrid 18.4 298 1 22

Zn(btz) Heteroatom 18.0 298 1 23

PEI-MIL-101 Aliphatic amine 18.0 298 1 24

aOMS = coordinatively unsaturated metal site; S = Al-(TCPP).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 5: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

5

Section 2: Low pressure CO2 uptake versus functionality best performers

Table 2: Low pressure CO2 adsorption capacities for MOFs with coordinatively unsaturated metal sites

MOF Capacity

(wt%) Temperature (K) Pressure

(bar) Ref.

Fe-MOF-74 23.8 298 1 3

Mg(DOBPDC)2 22.0 298 1 4

SCu 21.7 298 1 5

NbO-Pd-1 19.7 298 1 12

nbo-Cu2(DBIP) 19.3 298 0.95 15

Cu6(DDCBA)3 (ZJU-72) 17.0 298 1 25

MMPF-2 16.6 298 1 26

JLU-Liu22 15.7 298 1 27

[(CH3)2(NH2][Y6(µ3-OH)8(FTZB)6] 15.3 298 1 28

ZJNU-80 14.5 298 1 29

(Cu2I2)[Cu2PDC2-

(H2O)2]2·[Cu(MeCN)4]I 14.2 298 1

30

[(CH3)2(NH2][Tb6(µ3-OH)8(FTZB)6] 13.3 298 1 28

agw-Cu3(CPEIP)2(H2O)3 13.3 298 0.95 15

PCN-80 12.0 296 1 31

[Cu6(L)3]a 11.8 295 1 32

NJFU-2a 11.7 298 1 33

rht-MOF-pyr 11.5 298 1 34

[Ni2(µ2-OH)(bpdc)(tpt)2][NO3] 11.3 295 1 35

(Cu4I4)[Cu2-

PDC2(H2O)2]2 10.9 298 1

30

Co_Pyrene_1 (C56.15H18Co4N2.65O24.68) 10.8 298 1 36

[H2N(Me)2]2[Zn4(L)2(H2O)1.5]b 10.5 298 1 37

(Cu2I2)[Cu3PDC3-

(H2O)2] 10.4 298 1

30

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 6: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

6

MOF Capacity

(wt%) Temperature

(K) Pressure

(bar) Ref.

MOF-890 10.2 298 1 38

MOF-891 10.2 298 1 38

NU-111 9.9 298 1 39

MOF-889 9.8 298 1 38

[Ni3(µ3-OH)2(TBAPy)(H2O)4] 8.9 298 1 40

[In3O(EBDC)1.5- H2O)3][NO3] 8.5 298 1 41

[(CH3)2NH2][In3O- (EBDC)1.5(H2O)3]2[In(EBDC)]3

8.5 298 1 41

ZIF-204 8.3 298 1 42

DUT-49 8.3 298 1 43

Cu2(dhtp) 8.2 298 1 44

(Ni2(H2O)2)1.5(Ni3OH)2(BDC)6(NA)6 8.0 298 1 45

JLU-Liu2 7.6 298 1 46

ZnMOF-PDC 7.1 297 1 47

ZJU-26 6.9 298 1 48

JLU-Liu1 6.4 298 1 49

Cu(FMA)(4,4'-Bpe)0.5 6.3 296 1 50

[Co6(µ3-OH)4(Ina)8](H2O)10(DMA)2] 6.3 298 1 51

Cu3(L)2(DABCO)(H2O)c 5.9 298 1 52

[In3O(bpdc)3(HCOO)] 5.2 298 1 53

MOF-888 4.5 298 1 38

Yb(L)(H2O)(NMP)d 3 295 1 54

[Cu2(HL)(H2O)2]e 2.3 298 1 55

M'MOF-20a 1.9 295 1 56

[La(BTB)(H2O)] 1.3 298 1 57

S = Al-(TCPP); aL=1-bis-[3,5-bis(carboxy)phenoxy]methane; bL5- = 2,4-di(3’,5’-dicarboxylphenyl)benzoate; cL3- = 1,1':3',1"-terphenyl]-4,4",5'-tricarboxylate dL3- = 1,3,5-tris(4-carboxyphenyl-1-ylmethyl)-2,4,6-trimethylbenzene);

eL5- = 2,4-di(3′,5′-dicarboxylphenyl)benzoate.

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 7: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

7

Table 3: Low pressure CO2 adsorption capacities for MOFs with incorporated aliphatic amines

MOF Capacity

(wt%) Temperature (K) Pressure (bar) Ref.

TEPA-Mg/DOBDC-40 21.1 298 1 6

[Mg2(dobdc)(N2H4)1.8] 19.5 298 1 13

CPO-27-Mg-c [Mg2(DHT)(H2O)0.8(en)1.2]·0.2(en) 19.2 298 1 16

CPO-27-Mg-a [Mg2(DHT)(H2O)1.7(en)0.3]

18.6 298 1 16

CPO-27-Mg-b [Mg2(DHT)(H2O)(en)]·0.2(en) 18.0 298 1 16

PEI-MIL-101 18.0 298 1 24

(dmen)-Mg2(dobpdc) 17.4 298 1 58

en-Mg2(dobpdc) 16.7 298 1 59

Cu2(mand)2(hmt) 15.1 298 1 60

mmen-Mg2(DOBPDC) 14.5 298 1 4

TEPA-MIL-101 13.8 298 1 61

PEI-incorporated amine-MIL-101(Cr) 13.7 298 1 62

MIL-101-DETA 13.3 296 1 63

IRMOF-74-III-CH2NH2 12.7 298 1 64

pip-CPO-27-Ni 12.3 298 1 65

IRMOF-74-III-CH2NHMe 11.4 298 1 64

MIL-101-DADPA 10.4 296 1 63

MIL-101-ED 10.3 296 1 63

MIL-101-AEP 9.9 296 1 63

IRMOF-74-III-CH2NHBoc 8.6 298 1 64

Cu3(BTC)2@3pico 8.5 298 1 66

IRMOF-74-III-CH2NMeBoc 8.3 298 1 64

UiO-66-EA 6.3 298 1 67

Cu3(BTC)2@4pico 5.8 298 1 66

Cu3(BTC)2@en 2.6 298 1 66

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 8: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

8

Table 4: Low pressure CO2 adsorption capacities for MOFs with incorporated aromatic amines

MOF Capacity

(wt%) Temperature (K) Pressure (bar) Ref.

MAF-66 16.3 298 1 68

LCua

16.2 298 1 69

UiO-66-NH2 13.4 293 1 70

Ni-(Hbzza)2 13.3 295 1 71

DMOF-1-NH2 13.3 298 1 72

LT-UiO-66-NH2 12.7 298 1 73

DMOF-1-NHMe 12.3 298 1 72

IRMOF-74-III-NH2 12.2 298 1 64

HT-UiO-66-NH2 12.0 298 1 73

UiO-66−NH2 11.7 298 1 74

UiO-66-NO2-NH2 11.3 296 1 75

Amino-Zr-MOF nanoparticle 11.2 296 1 76

MAC-4-C 10.8 298 1 77

Zn(BDC-NH2)(TED)0.5 9.5 298 1 78

Zn(ad)(ain)(DMF) 9.2 298 1 79

DMOF-1-NMe2 9.2 298 1 72

[Cd(NH2-bdc)(phen)] 9.1 298 1 80

FJU-40-NH2 8.3 296 1 81

amino-MIL-53 7.6 296 1 82

Sc2(BDC-NH2)3 7.0 293 1 83

{[Cd(2-NH2bdc)(4-bpmh)]}n 7.0 298 1 84

MIL-68(In)-NH2 6.6 298 1 85

Bio-MOF-14 5.7 298 1 86

[Zn(2-NH2BDC)(4-bpmh)] 4.9 298 1 87

UMCM-1-NH2 4.8 298 1 88

[Zn(hfipbba)(4-bpdb)0.5] 4.1 298 1 89

DUT-25 3.8 298 1 90

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 9: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

9

MOF Capacity

(wt%) Temperature (K) Pressure (bar) Ref.

MOF-205-NH2 3.4 298 1 91

Co2(NH2-BDC)1.5(L)(HCO2)b 3.0 293 1 92

Mg-ABDC [Mg3(ABDC)3(DMF)4] 1.9 298 1 93

Co-ABDC [Co3(ABDC)3(DMF)4] 1.9 298 1 93

Sr-ABDC [Sr(ABDC)(DMF)] 0.4 298 1 93 aL = 2’-amino-1,1’:4’,1’’-terphenyl-3,3’’,5,5’’-tetracarboxylic acid; bL = 1,3,5-N,N,N-tri(3-pyridyl)benzamide.

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 10: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

10

Table 5: Low pressure CO2 adsorption capacities for MOFs with heteroaromatic amines

MOF Capacity

(wt%) Temperature (K) Pressure (bar) Ref.

rht-MOF-9 20.2 298 1 10

ZJNU-54 19.1 298 1 18

ZJNU-44 18.6 296 1 21

[Zn(btz)] 18.0 298 1 23

FJU-22 a 17.9 296 1 94

ZJNU-45 17.4 296 1 21

[Zn2(btec)(btzmb)]n 16.1 298 1 95

[[Zn2(C2O4)(C2N4H3)2] ZnAtzOx 14.3 293 1 96

ZJNU-43 16.8 296 1 21

ZJNU-41 16.1 298 1 97

ZJU-40 14.6 298 1 98

Cd-L MOFa 13.4 298 1 99

[Zn2(bdc)2(bpNDI)]n 12.7 298 1 100

pyridine-Ni–DOBDC 12.3 298 1 101

[Zn2(tcpt)OH] 12.3 298 1 102

Co(Imda)(4,4′-bpy) 11.9 298 1 103

MFU-4 11.7 298 1 104

[Ni3(µ2-H2O)2(bdc)3(pyrazine)2] 11.6 298 1 105

BIF-24 11.5 298 1 106

Co-MOF1-tpt 11.1 298 1 107

IFMC-1 10.6 298 1 108

NJFU-2a 10.6 298 1 33

NENU-520a 10.5 298 1 109

Co9-INA 10.2 298 1 110

[Pb2(L)]·2DMF·2H2Ob 10.1 298 1 111

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 11: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

11

MOF Capacity (wt%) Temperature (K) Pressure (bar) Ref.

MAF-23 9.9 298 1 112

[Zn2(TRZ)2(ATPA)] 9.6 298 1 113

Zn(L)c 9.4 298 1 114

[[Zn2(atz)2(bpydb)]-(DMA)8]n 9.3 298 1 115

[(Me2NH2)[Zn2(bpydb)2(ATZ)](DMA)(NMF)2]n

8.9 298 1 116

[Zn3(btca)2(OH)2] 8.4 298 1 117

CFA-7 7.3 293 1 118

[Zn(atz)(bdc)0.5] 7.2 298 1 119

[Zn2(cca)2(4-bpdb)]n (UTSA-85) 7.1 296 1 120

[Co(atz)(bdc)0.5] 7.0 298 1 119

Eu(PDC)1.5(DMF) (UTSA-5) 7.0 296 1 121

[Er(DMTDC)1.5(H2O)]n 6.8 298 1 122

NH2-PMOF-55 6.6 298 1 123

PMOF-55 6.4 298 1 123

[Co3(OH)2(btca)2] 6.4 298 1.1 124

[Cu(azbpy)(2-ntp)] 6.3 298 1 125

MMPF-18 6.2 298 1 126

[Er4(DMTDC)6(DMF)2]n 6.2 298 1 122

[Zn4(µ4-O){(Metrz-pba)2mPh}3] 5.4 298 1 127

[H2N(CH3)2]·[Zn4(abtc)2(ad)H2O)]

5.1 298 1 128

CPM-35-Co 4.3 295 1 129

Zn3(HL)2(fma)2d 4.1 298 1 130

[Ni(L)2]ne 3.3 298 1 131

[Co(L)2]ne 3.2 298 1 131

[Zn(tdc)(4-bpmh)]n 2.3 298 1 87

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 12: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

12

MOF Capacity (wt%) Temperature (K) Pressure (bar) Ref.

[Cu(4-bpdb)(2-ntp)] 1.9 298 1 125

aL= 2,2′,2″,2‴- (4,4′,4″,4‴-(2,2′,6,6′-tetramethylbiphenyl-3,3′,5,5′-tetrayl)- tetrakis(1H-1,2,3-triazole-4,1-diyl))tetraacetate. bL= 4,4′-(pyridine-3,5-diyl)diisophthalate. cL = 4′-(3,5-di(4-carbonylphenyl)phenyl)-2,4′:6′,4″-terpyridine. dL = 1-(5-tetrazolyl)-4-(1-imidazolyl)benzene). eL = 3,5-di(pyridine-4-yl)benzoate.

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 13: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

13

Table 6: Low pressure CO2 adsorption capacities for MOFs with hydroxyl functional groups

MOF Capacity

(wt%) Temperature (K) Pressure (bar) Ref.

MFM-400 17.7 293 1 132

QI-Cu 16.7 293 1 133

UiO-66(Hf)-(OH)2 15.2 298 1 134

Zn(BDC-OH)(TED)0.5 13.0 298 1 78

UiO-66-NO2‑(OH)2 12.8 296 1 75

MAC-4-B 12.0 298 1 77

[Zn(BDC-OH)-(TED)0.5] 12.1 298 1 135

MFM-401 11.3 293 1 132

C36H18O19Zn4 5.4 298 1 136

C48H26O15Zn4 5.2 298 1 136

C42H24O15Zn4 4.2 298 1 136

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 14: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

14

Table 7: Low pressure CO2 adsorption capacities for SBU-interaction-based MOFs

MOF Capacity

(wt%) Temperature (K) Pressure (bar) Ref.

SIFSIX-2-Cu-i 19.2 298 1 17

SIFSIX-1-Cu 19.1 298 1 19

[Mn2(Hcbptz)2(Cl)(H2O)]Cl 12.1 298 1 137

Zn(NDC)(DPMBI) 10.8 298 1 138

SIFSIX-3-Zn 10.1 298 1 17

SIFSIX-2-Cu 7.5 298 1 17

SIFSIX-3-Ni 9.9 298 1 139

SIFSIX-3-Cu 9.9 298 1 140

(In2L)-(Me2NH2)2(DMF)9(H2O)5a 9.9 298 1 141

MOOFOUR-1-Ni 9.8 298 1 142

[H2N(CH3)2]2[Zn7.5Cu1.5(µ3-OH)2(BTC)6(DMPU)3]

9.8 298 1 143

UiO-66-NO2-(COOH)2 9.8 296 1 75

UiO-66-(COOLi)4-EX 9.4 298 1 144

[NC2H8]4Cu5(BTT)3 9.4 298 1 145

NbOFFIVE-1-Ni 8.8 298 1 146

[Zn(SiF6)(pyz)2]n 8.6 298 1 147

UiO-66-(COONa)2-EX 8.1 298 1 144

CROFOUR-1-Ni 7.8 298 1 142

[Y2(TPO)2(HCOO)]Me2NH2 7.8 298 1 148

(Et2NH2)[In(2,6-NDC)2] 7.3 298 1 149

TbLb 7.2 293 1 150

UiO-66-(COOLi)2-EX 6.8 298 1 144

UiO-66-NO2-(COOH)2 6.8 296 1 75

UiO-66-(COOH)4-EX 6.2 298 1 144

NOTT-202a 5.8 293 1 151

UiO-66-(COOK)2-EX 5.4 298 1 144

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 15: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

15

MOF Capacity

(wt%) Temperature (K) Pressure (bar) Ref.

UPC-16 5.4 295 1 152

[Eu2(TPO)2(HCOO)]Me2NH2 5.2 298 1 148

UiO-66-(COONa)4-EX 5.0 298 1 144

(Me2NH2)(Hdmf)[Co3Cl4(ppt)2] 4.9 298 1 153

H1/3[Co13/2(BTB)4(OH)4/3(DMA)3] 4.7 292 1 154

[Na(H2O)3.25]4{Mn4[Cu2(Me3mpba)2

(H2O)3.33]3 4.6 298 1 155

UPC-15 4.3 295 1 152

UiO-66-SO3Li 3.8 298 1 156

UiO-66-SO3K 3.8 298 1 156

[H2N(CH3)2][In(4,4'-BPDC)2] 3.3 298 1 157

UiO-66-SO3Na 3.2 298 1 156

UiO-66-(COOK)4-EX 2.7 298 1 144

UPR-2 1.3 298 1 158

UPR-1 0.9 298 1 158 aL= tetrakis[(3,5-dicarboxyphenyl)oxamethyl]methane, bL=3-(3,5-dicarboxylphenyl)-5-(4-carboxylphenyl)-1-H-1,2,4- triazole

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 16: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

16

Table 8: Low pressure CO2 adsorption capacities for hydrophobic MOFs.

MOF Capacity

(wt%) Temperature (K) Pressure (bar) Ref.

NOTT-101 14.7 298 1 133

UiO-66-2,5-(OMe)2 10.6 298 1 74

m-TiBDC 10.3 298 1 159

ZIF-300 5.7 298 1 160

ZIF-301 5.9 298 1 160

ZIF-302 5.8 298 1 160

[ZrO(bdc-(CH3)2)]66-

(CH3)2/UiO66DM 6.6 298 1 161

PCN-123 4.9 298 1 162

Cu2(phen)2 (V4O8)(PO4)4[Cu2V4O16-2D]

4.3 298 1 163

Cu(II)(diphenylphosphonate)(1,2-bis(pyridyl)ethane)

4.1 298 1 164

MOF-205-OBn 4.0 298 1 165

Cu2(BME-bdc)2(dabco) 2.8 298 1 166

SNU-110 2.5 298 1 167

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 17: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

17

Table 9: Low pressure CO2 adsorption capacities for MOFs with hybrid functional groups

MOF Capacity

(wt%) Temperature

(K) Pressure

(bar) Ref.

[Zn2(tdc)2(MA)]n 27.0 298 1 2

Cu(Me-4py-trz-ia) 21.1 298 1 7

Cu-TDPAT 20.6 298 1 8

JLU-Liu21 18.8 298 1 20

NJU-Bai21, PCN-124 18.4 298 1 22

NJFU-1 17.3 298 1 168

[Cu2(L)(H2O)2]na 17.2 298 1 169

NOTT-122 16.9 298 1 170

HNUST-3 16.6 298 1 171

[Zn2(TRZ)2(fumarate)] 13.5 298 1 172

NJU-Bai7 12.9 298 1 173

NbO-MOF 12.9 296 1 174

[Cu4(L)]nb 12.5 298 1 175

[Cu2(L)(H2O)2]c 12.4 298 1 176

NJU-Bai20 11.8 298 1 22

NJU-Bai22 11.6 298 1 22

NJU-Bai8 11.3 298 1 173

NJU-Bai3 10.5 298 1 177

NJU-Bai32 9.9 298 1 178

[Zn2(TRZ)2(benzenedicarboxylate)] 9.8 298 1 172

rht-MOF-1 9.7 298 1 34

Cu3(ATTCA)2(H2O)3 8.9 298 1 179

NJU-Bai23 8.8 298 1 22

[Zn2(TRZ)2(aminobenzenedicarboxylate)] 8.2 298 1 172

[H2N(CH)]2[Cu(L)]d 7.9 298 1 180

MMCF-1 7.7 298 1 181

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 18: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

18

MOF Capacity (wt%)

Temperature (K)

Pressure (bar) Ref.

IFP-7 7.3 298 1 182

[Cu(L)DMF]e 6.6 298 1 183

[Zn2(TRZ)2(napththalenedicarboxylate)] 6.2 298 1 172

[Cu3(ATTCA)2(pyz)(H2O)] 5.7 298 1 179

[{Cu2(Glu)2(µ-bpp)}·(C3H6O)]n 5.4 298 1 184

[Zn2(TRZ)2(2-bromobenzenedicarboxylate)]

5.3 298 1 172

Ca-5TIA-MOF 4.7 298 1 185

[Zn2(TRZ)2(nitrobenzenedicarboxylate)] 4.0 298 1 172

[CuI2(py-pzpypz)2(µ-CN)2]n 3.5 293 1 186

[Zn2(TRZ)2(4,4'-biphenylicarboxylate)] 3.2 298 1 172

[Cu2(Glu)2(µ-bpa)]n 2.4 298 1 184 aL= tetracarboxylate-based linker having amine and fluorine moieties as functional organic sites; bL = 5,5′,5″,5‴-((methanetetrayltetrakis-(benzene-4,1-diyl))tetrakis(1H-1,2,3-triazole-4,1-diyl)) tetraisophthalic acid; cL = 5,5′-(pyridine-2,5-diyl)-diisophthalic acid; dL = 2,6-di(3’,5’-dicarboxylphenyl)pyridine; eL = 3,3′-(ethyne-1,2-diyl)dibenzoic acid.

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 19: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

19

Table 10: Low pressure CO2 adsorption capacities for MOFs with miscellaneous functional groups

Reported MOF name Primary adsorption site

Capacity (wt%)

Temperature (K)

Pressure (bar) Ref.

UTSA-16 Non-specific 15.9 296 1 187 [Ni(Hptz)2]n Polar channels 13.6 298 1 188 LIFM-11 Amide 13.3 298 1 189 Zn(AzDC)(4,4’-BPE)0.5 (PCN250) Aza dye 12.9 298 1 190 tp-PMBB-1-asc-1 Non-specific 12.1 298 1 191 LIFM-10 Amide 11.5 298 1 189 ZnAcBPDC Amide 11.4 293 1 192 HNUST-4 Acylamide 10.9 298 1 159 [(Me2NH2)[ZnLi(PTCA)]]n Non-specific 10.7 298 1 193 (Na,Cd)-MOF [Cd3Na6(BTC)4(H2O)12]·H2O

Sodium, cadmium framework

10.6 298 1 194

UiO-66-AD6 Aliphatic carboxylate 10.4 298 1 195 [Cu3(TATB)]n Amide 9.9 298 1 196 [Cd2(µ4-pmdc)2(H2O)2 Non-specific 9.9 298 1 197 MAC-4-D Aromatic-ethoxy 9.7 298 1 77 [Cu3(BTB)]n Amide 9.5 298 1 196 BUT11 Sulfone 9.5 298 1 198 MIL-68(In) Non-specific 9.4 298 1 85 BUT10 Fluorenone 9.0 298 1 198 ZnCaBTB Mixed metal 8.9 298 1 199 [CdMn(µ4-pmdc)2(H2O)2]n Metal 8.9 298 1 197 [(CH3CH2 )2NH2 ] [Zn12(SO3)2(BTB)6(HCO2)3]

Non-specific 8.9 298 1 200

[Co8.5(µ4-O)(bpdc)3(bpz)3(Hbpz)3] Polar pore surface and

confined cages 8.8 298 1 201

CPM-20 Non-specific 8.6 298 1 202 UiO-66-AD4 Aliphatic carboxylate 7.8 298 1 195 [CdZn(µ4-pmdc)2(H2O)2]n Metal 7.6 298 1 197 [Zn4(bpta)2(4-pna)2(H2O)2]n Non-specific 7.6 298 1.2 203 UiO-66-AD8 Aliphatic carboxylate 7.5 298 1 195 Tb-La Non-specific 7.5 298 1 204 NUS-5 Non-specific 7.4 298 1 205 Zn(BDC)(TED)0.5 Non-specific 7.4 298 1 78 TMU-4 Azine 7.3 298 1 206 TMU-5 Azine 7.3 298 1 206 [Zn2(bcta)(dipy)(µ2-OH)] Amide 7.1 295 1 207 JUC-132 Non-specific 7.0 298 1 208 Sm-La Non-specific 6.7 298 1 204 PMOF-55 Non-specific 6.6 298 1 123 Eu-La Non-specific 6.3 298 1 204

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 20: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

20

Reported MOF name Primary adsorption site

Capacity (wt%)

Temperature (K)

Pressure (bar) Ref.

MAC-4-A Non specific 6.3 298 1 77 MAC-4 Non-specific 6.2 298 1 209 [Ni5(Btz)6(Ina)3(H2O)2(CH3COO)] Non-specific 6.0 298 1 210 MsMOP–Ni C-C triple bond 5.9 298 1 211 PCN-72 Non-specific 5.9 295 1 212 [Zn9(L)2(btz)12]∞ b Amide 5.7 298 1 213 [EuL(H2O)2]c

Non-specific 5.6 298 1 214 CYCU-6 Non-specific 5.5 298 1 215 [Zn5(L)(btz)6(H2O)(NO3)]∞d Amide 5.1 298 1 213 MsMOP–Pt C-C triple bond 5.0 298 1 211 UMCM-1 Non-specific 4.8 298 1 88 [Cu2(µ-adenine)2(Cl)2]Cl2 Non-specific 4.5 298 1 216 SNU-71 Non-specific 4.4 298 1 217 [Zn4(DMF)(ur)2(ndc)4] Urotropine basic sites 4.3 298 1 218 Zr6O4(OH)4(HSO3BDC)1.08(BDC)4.92 Sulfonate 4.3 288 1 219 [Zn4(DMF)(ur)2(ndc)4] Urotropine basic sites 4.3 298 1 218 MOF-76-Ce-ds Non-specific 4.0 298 1 220 MsMOP–Zn C-C triple bond 3.9 298 1 211 CdSDB Misc 3.5 298 1 221 SNU-70 Non-specific 3.4 298 1 217 MOF-205-NO2 NO2 3.4 298 1 91 Zn(NDC)(BPY)0.5 Non-specific 3.2 298 1 78 UBMOF-31 Non-specific 2.9 293 1 222 [Zn2(bpta)(bpy-ea)(H2O)]n Non-specific 2.8 298 1.2 203 Co2L2(AzoD)2

e Non-specific 2.7 298 1 223 UiO-66-AD10 Aliphatic carboxylate 2.4 298 1 195 UBMOF-9 Non-specific 2.1 298 1 222 [Zn2(hfipbb)2(ted)] Non-specific 2.1 298 1 224 Zn(BDC)(BPY)0.5 Non-specific 2 298 1 78 Zn(BDC)(DMBPY)0.5 Non-specific 1.9 298 1 78 [Zn11(H2O)2(ur)4(bpdc)11] Urotropine basic sites 1.4 298 1 218 Zn(NDC)(DMBPY)0.5 Non-specific 1.3 298 1 78 MOF-76-Ce-hs Non-specific 1.1 298 1 220

aL= 10,10′-bis(4-carboxyphenyl)-9,9′-bianthryl; bL= 3,3′,3″-[1,3,5-benzenetriyltris (carbonylimino)]tris(benzoate); cL= 5-(6-carboxynaphthalen-2-yl)isophthalate; dL = 4,4′,4″-[1,3,5-benzenetriyl tris (carbonylimino)]tris(benzoate); eL = N1,N4-di(pyridin-4-yl)terephthalamide.

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 21: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

21

Section 3: MOFs in membrane technology

Table 11: Pure MOF membranes and their relevant properties.

MOF Support Temp.

(K)

α CO2/N2 α CO2/CH4

CO2 Permeance

(10-7 mol m-2 s-1

Pa-1)

α H2/CO2

H2 Permeance

(10-7 mol m-2 s-1

Pa-1)

Ref.

Co3(HCOO)6 SiO2 273-333 - 10-15 20 - - 225

Cu2(bza)4(pyz) Al2O3 298 - 19 938 0.76 - 226

NH2-MIL-53(Al)

SiO2 288-361 - - - 30.9 20 227

SIM-1 Alumina 303 1.1 - 0.35 2.3 0.82 228

Sod-ZMOF Alumina 308 8.7 3.6 0.00487 0.38 0.0024 229

ZIF-7 Alumina 493 1.6 1.1 0.035 13.6 0.455 230

ZIF-8 Pebax - 15.8 17.3 1.9 - 2.5 231

ZIF-8 APTES-alumina

298 - - - 17.0 573 232

ZIF-8 Alumina 298 0.08 0.08 0.2 32.2 6.0 233

ZIF-8 (2 layered)

Alumina 295 - 5.1 243 - - 234

ZIF-8 (8 layered)

Alumina 298 - 7 169 - - 234

ZIF-8 COF-300 RT - - - 13.5 107161 barrer 235

ZIF-69 Alumina 298 6.3 4.6 1.0 - - 236

ZIF-78 ZnO 298 0.5 0.66 0.093 11.0 1.02 237

ZIF-90 Alumina 473 - - - 15.3 2.2 238

ZIF-95 APTES-alumina

298 - - - 25.7 19.6 239

ZIF-90 APTES-alumina

498 - 4.7 0.126 - - 240

Zn2(bdc)2(dabco) COF-300 RT - - - 12.6 132815 barrer 235

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 22: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

22

Table 12: Mixed matrix membranes containing MOFs and their relevant properties.

MOF Polymer MOF (wt%)

Temp. (K)

Pressure (atm)

α CO2/N2

α CO2/CH4

CO2 Permeability

(barrer)

α H2/CO2

H2 Permeability

(barrer) Ref.

HKUST-1

PI 3-6 298 10 5.5-4 7-6 64.9-37.2 GPU

18-27.8 934-1270 GPU

241

HKUST-1

IL–CS 5 323 2 - 19.3 4754 - - 242

Mg-MOF-74

PDMS 20 298 2 12 - 2100 - - 243

Mg-MOF-74

XLPEO 10 298 2 25 - 250 - - 243

Mg-MOF-74

PI 10 298 2 23 - 850 - - 243

MIL-68(Al)

Matrimid 10 373 1 - 79.0 284.3 - - 244

MOF-5 Matrimid 30 308 2 39.6-38.8

51.0-44.7 11.1-20.2 2.69-2.66

29.9-53.8 245

NH2-MIL-53(Al)

6FDA-DAM

8 298 3 - 28 660 - - 246

PSM-ZIF-7

PEI 5 308 2 1.3 2.3 245.9 8.2 2020.9 247

ZIF-7 PEI 5 308 2 16.8 13.1 64.7 3.2 207 247 ZIF-7 Pebax 8 298 3.75 68 23 145 - - 248

ZIF-8 IL–CS 10 323 2 - 11.5 5413 - - 242

ZIF-8 PIM-1 11-43 vol%

293-295 1 19.26-

18.0 15.0-14.7 4815-6300 0.53-1.06 2560-6680 249

ZIF-8 6FDA-durene 33.3 308 3.5 11.3 11.0 1552.9 1.4 2136.6 250

ZIF-8 Pebax 5-35 RT 2,6 29.6-32.3 8.1-9.0 351-1287 - - 251

ZIF-8 6FDA-durene 3-30 RT 2,6

25.7-17.0 21.9-17.1

1593.4-2185.5 - - 252

ZIF-8@GO

Pebax 6 298 1 47.6 - 249 - - 253

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 23: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

23

MOF Polymer MOF (wt%)

Temp. (K)

Pressure (atm)

α CO2/N2

α CO2/CH4

CO2 Permeability

(barrer)

α H2/CO2

H2 Permeability

(barrer) Ref.

ZIF-71 6FDA-durene 10-30 308 3.5 14.9-

11.5 16.1-9.53 1805-7750 0.87-0.58 1563-4533 254

ZIF-90 6FDA-DAM 15 298 2 22 37 720 - - 255

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 24: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

24

Section 4: Catalytic CO2 reduction by MOFs

Table 13: List of MOFs used for photocatalytic CO2 conversion.

MOF Active site(s) Product(s) Time / h Total TON TOF / h-1 Selectivity

over H2 Wavelength /

nm Conditions Ref.

UiO-67 Re(CO)3Cl(bpy) CO 6 5 0.8 10 300+ MeCN, TEA 256

MIL-125 Ti-oxo, NH2BDC HCOO- 10

8.14 µmol (0.03 TON)

1 420-800 MeCN, TEOA 257

Co-ZIF-9 [Ru(bpy)3]Cl2 in solution CO 0.5 4.2 8.4 1.4 420 TEOA 258

MIL-101, 88, 53 Fe (-101 best)

Fe-oxo HCOO- 24 1.2 (native) 0.05 - 420-800 MeCN,

TEOA 259

8 1.5 0.19 - 420-800 MeCN, TEOA 259

UiO-67 Rh(Cp*)(bpydc)Cl2

HCOO- 10 47 4.7 1.3 415 MeCN, TEOA 260

UiO-66 PSE with Ti

Ti SBU in UiO-66 6 6.3 1.05 - 420-800 MeCN,

TEOA 261

NH2 and (NH2)2 -

UiO-67-Mn(bpydc) (CO)3Br

Ru(bpydc)3 photosensitizer

with Mn(bpydc(CO)3

Br on linker

HCOO- 18 110 6.1 110 470 DMF,

TEOA, BNAH

262

4 50 12.5 125 470 DMF,

TEOA, BNAH

262

Al porphyrin with Cu in porphyrin

Cu porphyrin MeOH

(predominant)

?

262.6 ppm g-1 h-

1 - 420+ H2O, TEA 5

NH2-UiO-67 (-NH2BDC), Zr SBU HCOO- 10

13.2 µmol, 50

mg catalyst)

- 420-800 MeCN, TEOA 263

MOF-253 Ru(CO)2Cl2 HCOO-,

CO 8 7.3 CO,

35.8 HCOO-

0.9 CO, 3.5 for HCOO-

4 420-800 MeCN, TEOA 264

Cd MOF with Ru(dcbpy) ligand

Ru(dcbpy)3 HCOO- 8 25 µmol,

40 mg catalyst

77.2 µmol g-1 h-1, 40

mg catalyst

- 420-800 MeCN, TEOA 265

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 25: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

25

MOF Active site(s) Product(s) Time / h Total TON TOF / h-1 Selectivity

over H2 Wavelength /

nm Conditions Ref.

Ir-CP (Y(Irbpydc))

Ir(bpy3) with one with carboxylate

linker HCOO- 6

38 µmol, 40 mg

catalyst

118.8 µmol g-1

h-1 - 420-800 MeCN,

TEOA 266

Cd-Ru(dcbpy)2

Ru(dcbpy)2 HCOO- 6 16 µmol,

40 mg catalyst

71.7 µmol g-1 h-1 420-800 MeCN,

TEOA 267

UiO-66 dihydroxy ortho

Ga, Cr catecholate HCOO- 6 11 (Cr),

Ga (6) ‘Highly’ 420-800 MeCN, TEOA, BNAH

268

NH2-MIL-125 pyrolysed with Au NPs

Au NP/TiO2 CH4 6 62 ppm, 50 mg

catalyst 250-800

MOF used as a precursor, pyrolyzed into TiO2

Gas phase,

CO2, moisture

269

NNU-28 Zr oxide cluster and anthracene

ligand HCOO- 10 18 1.8 - 420-800 MeCN,

TEOA 270

PCN-222 Porphyrin, Zr(oxo) HCOO- 10

30 µmol, 50 mg

catalyst 100% 420-800 MeCN,

TEOA 271

NH2-UiO-66 PSM with Ti(IV) as mediator

Ti-oxo NH2BDC HCOO- 10 5.8

mmol mol-1

0.58 mmol

mol-1 h-1

No H2 detected 420-800 MeCN,

TEOA 272

UiO-67 BPDC with Ru(II)

Ru(bpydc) HCOO-, CO 6

30.4 HCOO-, 10.9 CO

4 385-740 MeCN, TEOA 273

Gd-TCA Gd(triphenylamine) HCOO- 12

22.7 µM HCOO-, 50 µM catalyst

0.45 - 365+ MeCN, H2O 274

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 26: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

26

Table 14: List of MOFs used for electrocatalytic CO2 conversion MOF Product(s) TON

TOF / h-1

Medium and Cathode Material

Current Density / mA cm-2)

Faradaic Efficiency /

%

Ref.

Al2(OH)2TCPP-H2 with

metallated porphyrins (Zn,

Cu, and Co)

CO + H2 1400 200 Aq. KHCO3 (0.5 M, pH 7.3);

carbon fabric

5.9 76 275

HKUST-1 Oxalic acid

- - 5 ml (carbon dioxide saturated

in 0.01 M TBATFB/DMF);

glassy carbon electrode

19.22 51 276

Fe-MOF-525 CO + H2 1520 468 0.5 M K2CO3 (1 M TFE); FTO

5.9 ~100 277

CR-MOF (Copper

Rubeanate MOF)

Formic acid

- - 0.5 M KHCO3; conductive

carbon paper

- The selectivity of

HCOOH among the

CO2 reduction

products was more than

98%

278

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 27: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

27

Section 5: CO2 conversion into fine chemicals by MOFs

Table 15: CO2 conversion into fine chemicals by MOFs.

Common Name

Active site Substrate

Co-cataly

st

Temp. (˚C)

P CO2 (bar)

Time (h)

Conversion / Yield (%) Ref.

MOF-5 Defect Propylene oxide TBAB 50 60 4 90 279

MOF-5 Defect Phenyl glycidyl

ether TBAB 50 1 3 56 279

MOF-5 Defect Epichlorohydrin TBAB 50 1 12 93 279

MOF-5 Defect Styrene oxide TBAB 50 1 15 92 279

ZIF-8 Defect Epichlorohydrin - 70-100 7 4 44 280

en-functionalized ZIF-8

Defect Epichlorohydrin - 70-100 7 4 73 280

ZIF-68 Defect Styrene oxide - 120 10 12 93 281

ZIF-67 Defect Allyl glycidyl

ether - 120 10 6 94 282

ZIF-67 Defect Epichlorohydrin - 120 10 6 97 282

ZIF-67 Defect Propylene oxide - 120 10 6 98 282

ZIF-67 Defect Styrene oxide - 120 10 6 73 282

ZIF-67 Defect Cyclohexene oxide - 120 10 6 73 282

ZIF-90 Defect Allyl glycidyl

ether - 120 11.7 6 43 283

USTC-253-TFA Defect Epichlorohydrin TBAB 25 1 72 38 284

USTC-253-TFA Defect 1,2-epoxybutane TBAB 25 1 72 43 284

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 28: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

28

Common Name

Active site Substrate

Co-cataly

st

Temp. (˚C)

P CO2 (bar)

Time (h)

Conversion / Yield (%) Ref.

USTC-253-TFA Defect Propylene oxide TBAB 25 1 72 81 284

Functionalized ZIF-95 Defect Propylene oxide TBAB 80 12 2 83 285

Functionalized ZIF-95 Defect Styrene oxide TBAB 80 12 2 57 285

Functionalized ZIF-95 Defect

Allyl glycidyl ether TBAB 80 12 2 75 285

Functionalized ZIF-95 Defect Epichlorohydrin TBAB 80 12 2 76.5 285

Functionalized ZIF-95 Defect Cyclohexene

oxide TBAB 80 12 2 15 285

Functionalized ZIF-95 Defect Epoxyhexane TBAB 80 12 2 61 285

MTV-MOF-5 Defect + Linker Propylene oxide TEAB 140

3 90 286

MMPF-18 Linker Propylene oxide TBAB 25 1 48 97 126

MMPF-18 Linker 1,2-epoxybutane TBAB 25 1 48 97 126

MMPF-18 Linker Allyl glycidyl

ether TBAB 25 1 48 99.6 126

MMPF-18 Linker Phenyl glycidyl

ether TBAB 25 1 48 33 126

MIL-68(In)-NH2

Linker Styrene oxide DMF 150 8 8 70 287

IRMOF-3 Linker Propylene oxide - 140 20 5 2 288

Ni(salphen) MOF Linker Propylene oxide TBAB 80 20 4 80 289

Ni(salphen) MOF Linker Epichlorohydrin TBAB 80 20 4 84 289

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 29: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

29

Common Name

Active site Substrate

Co-cataly

st

Temp. (˚C)

P CO2 (bar)

Time (h)

Conversion / Yield (%) Ref.

Ni(salphen) MOF Linker Styrene oxide TBAB 80 20 4 81 289

Ni(salphen) MOF Linker

Phenyl glycidyl ehter TBAB 80 20 4 55 289

PCN-224 Linker Propylene oxide TBAC 100 20 4 42 290

Quartenary Ammonium Functionalized ZIF-90

Linker Allyl glycidyl

ether - 120 11.7 6 97 283

Quartenary Ammonium Functionalized ZIF-90

Linker Styrene oxide - 120 11.7 6 62.8 283

Quartenary Ammonium Functionalized ZIF-90

Linker Propylene oxide - 120 11.7 6 89

283

Quartenary Ammonium Functionalized ZIF-90

Linker Epichlorohydrin - 120 11.7 6 95 283

Quartenary Ammonium Functionalized ZIF-90

Linker Phenyl glycidyl ether - 120 11.7 6 96.7 283

Quartenary Ammonium Functionalized ZIF-90

Linker Cyclohexene oxide - 120 11.7 6 2.4 283

MOF-205 SBU Propylene oxide TBAB 25 12 24 92 291

MOF-205 SBU Epichlorohydrin TBAB 25 12 24 82 291

MOF-205 SBU Styrene oxide TBAB 25 12 24 58 291

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 30: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

30

Common Name

Active site Substrate

Co-cataly

st

Temp. (˚C)

P CO2 (bar)

Time (h)

Conversion / Yield (%) Ref.

MOF-205 SBU cyclohexene

oxide TBAB 25 12 24 10 291

UiO-66 SBU Styrene oxide - 100 20 4 98 292

HKUST-1 SBU Styrene oxide - 100 20 4 48 292

MIL-101 SBU Styrene oxide - 100 20 4 63 292

Hf-NU-1000 SBU Styrene oxide TBAB 25 1 56 100 293

Hf-NU-1000 SBU Propylene oxide TBAB 25 1 26 100 293

Hf-NU-1000 SBU Divinylbezene

dioxide TBAB 55 1 19 100 293

MOF-505 SBU Propylene oxide TBAB 25 1 48 48 294

MMCF-2 SBU Propylene oxide TBAB 25 1 48 95 294

MMCF-2 SBU 1,2-epoxybutane TBAB 25 1 48 88.5 294

MMCF-2 SBU Allyl glycidyl ether TBAB 25 1 48 43 294

MMCF-2 SBU Butyl glycidyl

ether TBAB 25 1 48 42 294

MMCF-2 SBU Benzyl phenyl glycidyl ether TBAB 25 1 48 37.6 294

gea-MOF-1 SBU Propylene oxide TBAB 120 20 6 88 295

gea-MOF-1 SBU Styrene oxide TBAB 120 20 6 85 295

gea-MOF-1 SBU Epichlorohydrin TBAB 120 20 6 89 295

gea-MOF-1 SBU 1,2-epoxybutane TBAB 120 20 6 94 295

In(OH)(BTC) (HBTC)L SBU Propylene oxide TBAB 25 1 48 78 296

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 31: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

31

Common Name

Active site Substrate

Co-cataly

st

Temp. (˚C)

P CO2 (bar)

Time (h)

Conversion / Yield (%) Ref.

In(OH)(BTC) (HBTC)L SBU 1,2-epoxybutane TBAB 25 1 48 60 296

In(OH)(BTC) (HBTC)L SBU

Butyl glycidyl ether TBAB 25 1 48 44 296

In(OH)(BTC) (HBTC)L

SBU Styrene oxide TBAB 25 1 48 32 296

{Ni(muco)(bpa)(2H2O)}·2H2

O] SBU Styrene oxide TBAB 80 8 12 81 297

{Ni(muco)(bpee)(2H2O)}·2.5H2O]

SBU Styrene oxide TBAB 80 8 12 79.5 297

[{Ni(muco)(azopy)(2H2O)}·2H2O]

SBU Styrene oxide TBAB 80 8 12 80.5 297

{Ni(muco)(bpa)(2H2O)}·2H2

O] SBU Propylene oxide TBAB 80 8 12 100 297

{Ni(muco)(bpa)(2H2O)}·2H2

O] SBU 1,2-epoxybutane TBAB 80 8 12 84.8 297

{Ni(muco)(bpa)(2H2O)}·2H2

O] SBU 1,2-

epoxyhexane TBAB 80 8 12 58.1 297

{Ni(muco)(bpa)(2H2O)}·2H2

O] SBU 1,2-epoxydecane TBAB 80 8 12 31 297

Cu4(L1) SBU Propylene oxide TBAB 25 1 48 96 175

Cu4(L1) SBU 1,2-epoxybutane TBAB 25 1 48 83 175

Cu4(L1) SBU Epichlorohydrin TBAB 25 1 48 85 175

Cu4(L1) SBU Epibromohydrin TBAB 25 1 48 88

175

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 32: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

32

Common Name

Active site Substrate

Co-cataly

st

Temp. (˚C)

P CO2 (bar)

Time (h)

Conversion / Yield (%) Ref.

UMCM-1-NH2 SBU + Linker Propylene oxide TBAB 120 12 24 95 298

UMCM-1-NH2 SBU + Linker Epichlorohydrin TBAB 120 12 24 78 298

UMCM-1-NH2 SBU + Linker

Allyl glycidyl ether TBAB 120 12 24 55 298

UMCM-1-NH2 SBU + Linker Styrene oxide TBAB 120 12 24 53 298

UMCM-1-NH2 SBU + Linker

Cyclohexene oxide TBAB 120 12 24 10 298

ZnGlu SBU + Linker Propylene oxide TBAB 25 10 24 92 299

ZnGlu SBU + Linker

2-methylaziridine TBAB 25 10 24 94 299

Ti-ZIF SBU + Linker Propylene oxide TBAB 100 1.7 8 95 300

Ti-ZIF SBU + Linker Styrene oxide TBAB 100 1.7 8 98 300

Ti-ZIF SBU + Linker

2-(4-chlorophenyl)ox

irane TBAB 100 1.7 8 98 300

Ti-ZIF SBU + Linker

2-(4-bromophenyl)ox

irane TBAB 100 1.7 8 98 300

Ti-ZIF SBU + Linker

cyclopentene oxide TBAB 100 1.7 8 96 300

Ti-ZIF SBU + Linker

cyclohexene oxide TBAB 100 1.7 8 95 300

Co-MOF-74 SBU + Linker Styrene oxide - 100 10 4 >95 301

MIL-101-N(n-Bu)3Br

SBU + Linker Propylene oxide - 80 20 8 99 302

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 33: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

33

Common Name

Active site Substrate

Co-cataly

st

Temp. (˚C)

P CO2 (bar)

Time (h)

Conversion / Yield (%) Ref.

MIL-101-N(n-Bu)3Br

SBU + Linker 1,2-epoxybutane - 80 20 8 87.5 302

MIL-101-N(n-Bu)3Br

SBU + Linker

allyl glycidyl ether - 80 20 8 69 302

MIL-101-N(n-Bu)3Br

SBU + Linker

Butyl glycidyl ether - 80 20 8 62 302

MIL-101-N(n-Bu)3Br

SBU + Linker

Phenyl glycidyl ether - 80 20 8 40 302

MIL-101-P(n-Bu)3Br

SBU + Linker Propylene oxide - 80 20 8 98 302

MIL-101-P(n-Bu)3Br

SBU + Linker 1,2-epoxybutane - 80 20 8 86 302

MIL-101-P(n-Bu)3Br

SBU + Linker

allyl glycidyl ether - 80 20 8 66 302

MIL-101-P(n-Bu)3Br

SBU + Linker

Butyl glycidyl ether - 80 20 8 61 302

MIL-101-P(n-Bu)3Br

SBU + Linker

Phenyl glycidyl ether - 80 20 8 37 302

MIL-101-NH2 SBU + Linker Propylene oxide - 80 20 8 23 302

MIL-101-Br SBU + Linker Propylene oxide - 80 20 8 25 302

MOF-253 SBU + Linker Propylene oxide TBAB 25 1 72 82 284

UiO-66-NH2 SBU + Linker Styrene oxide - 100 20 4 70 292

UiO-66-NH2 SBU + Linker

1,2-epoxyhexane - 100 20 3 97 292

UiO-66-NH2 SBU + Linker

Cyclohexene oxide - 100 20 6 95 292

F-IRMOF-3 SBU + Linker Propylene oxide - 140 20 1.5 98 288

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 34: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

34

Common Name

Active site Substrate

Co-cataly

st

Temp. (˚C)

P CO2 (bar)

Time (h)

Conversion / Yield (%) Ref.

F-IRMOF-3 SBU + Linker Epichlorohydrin - 140 20 1.5 80 288

F-IRMOF-3 SBU + Linker 1,2-epoxybutane - 140 20 1.5 92 288

F-IRMOF-3 SBU + Linker Styrene oxide - 140 20 1.5 84 288

Mg-MOF-74 SBU + Linker Styrene oxide - 100 20 4 >95 303

MMPF-9 SBU + Linker Propylene oxide TBAB 25 1 48 87 304

MMPF-9 SBU + Linker 1,2-epoxybutane TBAB 25 1 48 80 304

MMPF-9 SBU + Linker

butyl glycidyl ether TBAB 25 1 48 30.5 304

MMPF-9 SBU + Linker

allyl glycidyl ether TBAB 25 1 48 30 304

MOF-53 SBU + Linker Epichlorohydrin DMA

P 100 16 2 97 305

L = ligand is derived from 1,2,4-H3btc and piperazine via an in situ ligand reaction; L1 = 5,5′,5″,5‴-((methanetetrayltetrakis(benzene-4,1-diyl)) tetrakis (1H-1,2,3-triazole-4,1-diyl)) tetraisophthalic acid.

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 35: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

35

Section 6: Glossary

2,3-BME-bdc = 2,3-bis(2-methoxyethoxy)-1,4- benzenedicarboxylate 2-ntp = 2-nitroterephthalate 4,4’-BPE = 4,4‘-trans-bis(4-pyridyl)ethylene 4-bpdb = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene 4-pna = 4-pyridylnicotinamide 6FDA = 4,4′-(hexafluoroisopropylidene) diphthalic anhydride ABDC = 2-aminobenzene-1,4-dicarboxylate Abtc = azobenzene-3,5,4′-tricarboxylate ad = adenine AD6 = alkanedioate AEP = 1-(2-aminoethyl)piperazine; Ain = 2-aminoisonicotinate APTES = (3-aminopropyl)triethoxysilane ATPA = 2-aminoterephthalate ATTCA = 2-amino-[1,1:3,1-terphenyl]-4,4’,5-tricarboxylate atz/ATZ = 3-NH2-1H-1,2,4-triazole Azbpy/azbpy = 4,4′-azobispyridine AzDC = azobenzene to the 4,4′-dicarboxylate AzoD = azobenzene-3,3′-dicarboxylate azopy = 4,4′-bis(azobipyridine) bcta = benzene-1,2,4,5-tetracarboxylate bdc-(CH3)2 = dimethylbenzene dicarboxylate bdc-(OMe)2 = dimethoxybenzene dicarboxylate bdc/BDC = benzenedicarboxylate bpa = 1,2-bis(4-pyridyl)ethane bpa = bisphenol A bpdc/BPDC = 4,4’-biphenyldicarboxylate bpee = 1,2-bis(4-pyridyl)ethylene bpmh = N,N-bis-pyridin-4-ylmethylenehydrazine bpNDI = N,N’-bis-(4-pyridyl)-1,4,5,8-naphthalenediimide bpp/Bpp = 1,3-bis(4-pyridyl)propane bpta = 3,6-di(4-pyridyl)-1,2,4,5-tetrazine bpy/BPY = 4,4′-bipyridine Bpy = 2,2-bipyridine-4,4′-dicarboxylate, bpydb = 4,4′-(4,4′-bipyridine-2,6-diyl)dibenzoate bpy-ea = 1,2-bis(4-pyridyl)ethane bpz = 3,3′,5,5′-tetramethyl-4,4′-bipyrazole BTB = 1,3,5-tris(4-carboxyphenyl)benzene BTB = benzene-1,3,5-tribenzoate BTC/btc = benzenetricarboxylate btca = 1,2,3-benzotriazole-5-carboxylate btec = 1,2,4,5-benzenetetracarboxylate btt/BTT = 1,3,5-tris(2H-tetrazol-5-yl)benzene BTTri = 1,3,5-tris(1H-1,2,3-triazol-4-yl)benzene Btz = benzotriazolate

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 36: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

36

btz =1,5-bis(5-tetrazolo)-3-oxapentane btzmb = 1,1′-bis(tetrazolmethyl)-4,4′-bipyridinium Bu = butyl bza = benzoate cca = 4-carboxycinnamate cpeip = 5-((4-carboxyphenyl)ethynyl)isophthalate dabco = 1,4-diazabicyclo[2.2.2]octane DADPA = 3,3’-diaminodipropylamine DAM = 2,4,6-trimethyl-m-phenylenediamine dbip = 5-(3,5-dicarboxybenzyloxy)isophthalate ddcba = 3,5-(di(2′,5′-dicarboxylphenyl)benzoate DETA = diethylenetriamine DHT = 2,5-dihydroxyterephthalate dhtp = 2,5-dihydroxyterephthalate dipy = dipyridyl DMA = N,N’-dimethylacetamide DMAP = 4-dimethylaminopyridine DMBPY = 2,2′-dimethyl-4,4′-bipyridine dmen = N,N-dimethylethylenediamine dmpu/DMPU = 3-dimethylpropyleneurea DMTDC = 3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylate DOBDC = 2,5-dioxidobenzene dicarboxylate dobpdc = 4,4′-dioxido-3,3′-biphenyldicarboxylate dpmbi/DPMBI = N,N′-di-(4-pyridylmethyl)-1,2,4,5-benzenetetracarboxydiimide Durene diamine = 2,3,5,6-tetramethyl-p-phenylenediamine EA = ethanolamine ebdc = 5,5′-(1,2-ethynediyl)bis(1,3-benzenedicarboxylate) ED = ethylenediamine en = ethylenediamine EX = exchanged fma/FMA = fumarate ftzb = 2-fluoro-4-(1H-tetrazol-5-yl)benzoate glu/Glu = glutarate GO = graphene oxide Hbpz = mono-protonated 3,3′,5,5′-tetramethyl-4,4′-bipyrazole Hbzza = mono-protonated benzimidazole-5-carboxylate Hcbptz = mono-protonated 3-(4-carboxylbenzene)-5-(2-pyrazinyl)- 1H-1,2,4-triazole Hdmf = mono-protonated N,N’-dimethylformamide Hfipbb = 4,4′-(hexafluoroisopropylidene)bis(benzoate) hfipbba = 4,4′-(hexafluoroisopropylidene)bis(benzoate) hmt = hexamethylenetetramine Hptz = 4-(1,2,4-triazol-4-yl)phenylphosphonate IL–CS = ionic liquid/chitosan Imda = imidazole-4,5-dicarboxylate Ina/INA = isonicotinate MA = melamine

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 37: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

37

mand = mandelate Me3mpba = N,N′-2,4,6-trimethyl-1,3-phenylenebis(oxamate). Me-4py-trz-ia = 5-(3-methyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-4-yl)isophthalate Metrz-pba = 4,4'-(5,5'-dimethyl-4H,4'H-3,3'-bi(1,2,4-triazole)-4,4'-diyl)dibenzoate Mmen = N,N′- dimethylethylenediamine muco = trans,trans-muconic acid Na = nicotinate ndc/NDC = 2,6-naphthalenedicarboxylate NMF = N-methylformamide NMP = N-methyl-2-pyrrolidone OBn = benzyloxy ox = oxalate pdc/PDC = pyridine-2, 5-dicarboxylate PDMS = polydimethylsiloxane Pebax = poly(amide-b-ethylene oxide) PEI = polyethyleneimine phen = 1,10-phenanthroline PI = polyimide pico = picolylamine pip = piperazine pmdc = pyrimidine-4,6-dicarboxylate ppt = 3-(2-phenol)-5-(4-pyridyl)-1,2,4-triazolate PTCA = pyrene-1,3,6,8-tetracarboxylate py-pzpypz = 4-(4-pyridyl)-2,5-dipyrazyl-pyridine pyr = pyrazole pyz = pyrazine TATB = 4,4',4''-s-triazine-2,4,6-triyltribenzoate TBAB = tetrabutylammonium bromide TBAC = tetrabutylammonium chloride TBAPy = 1,3,6,8-tetrakis(p-benzoic acid)pyrene TCPP = 4,4′,4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrabenzoate tcpt/TCPT = 2,4,6-tris-(4-carboxyphenoxy)-1,3,5-triazine TDC/tdc = 2,5-thiophenedicarboxylate TDPAT = 2,4,6-tris(3,5- dicarboxylphenylamino)-1,3,5-triazine. TEAB = tetraethylammonium bromide ted/TED = triethylenediamine TEPA = tetraethylenepentamine TFA = trifluoroacetic acid TIA = 5-triazole isophthalate TPBTM = N,N′,N′′-tris(isophthalyl)-1,3,5-benzenetricarboxamide tpo = tris-(4-carboxylphenyl)phosphine oxide tp-PMBB-1-asc-1 = trigonal prismatic primary molecular building block TRZ = 1,2,4-triazolate ur = urotropine XLPEO = polyethylene oxide

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 38: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

38

Section 7: References

1. Bao, Z., Yu, L., Ren, Q., Lu, X. & Deng, S. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J. Colloid Interface Sci. 353, 549-556 (2011).

2. Lu, Y., Dong, Y. & Qin, J. Porous pcu-type Zn(II) framework material with high

adsorption selectivity for CO2 over N2. J. Mol. Struct. 1107, 66-69 (2016). 3. Märcz, M., Johnsen, R. E., Dietzel, P. D. & Fjellvåg, H. The iron member of the CPO-27

coordination polymer series: Synthesis, characterization, and intriguing redox properties. Microporous Mesoporous Mater. 157, 62-74 (2012).

4. McDonald, T. M. et al. Capture of carbon dioxide from air and flue gas in the

alkylamine-appended metal–organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056-7065 (2012).

5. Liu, Y. et al. Chemical adsorption enhanced CO2 capture and photoreduction over a

copper porphyrin based metal organic framework. ACS Appl. Mater. Interfaces 5, 7654-7658 (2013).

6. Cao, Y., Song, F., Zhao, Y. & Zhong, Q. Capture of carbon dioxide from flue gas on

TEPA-grafted metal-organic framework Mg2(dobdc). J. Environ. Sci. 25, 2081-2087 (2013).

7. Forrest, K.A., Pham, T., McLaughlin, K., Hogan, A. & Space, B. Insights into an

intriguing gas sorption mechanism in a polar metal-organic framework with open-metal sites and narrow channels. Chem. Commun. 50, 7283-7286 (2014).

8. Li, B. et al. Enhanced binding affinity, remarkable selectivity, and high capacity of CO2

by dual functionalization of a rht-type metal-organic framework. Angew. Chem. Int. Ed. 51, 1412-1415 (2012).

9. Yazaydın, A.O. et al. Screening of metal-organic frameworks for carbon dioxide capture

from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198-18199 (2009).

10. Luebke, R. et al. Microporous heptazine functionalized (3,24)-connected rht-metal–

organic framework: Synthesis, structure, and gas sorption analysis. Cryst. Growth Des. 14, 414-418 (2014).

11. Aprea, P., Caputo, D., Gargiulo, N., Iucolano, F. & Pepe, F. Modeling carbon dioxide

adsorption on microporous substrates: Comparison between Cu-BTC metal-organic framework and 13X zeolitic molecular sieve. J. Chem. Eng. Data 55, 3655-3661 (2010).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 39: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

39

12. Spanopoulos, I. et al. Exceptional gravimetric and volumetric CO2 uptake in a palladated NbO-type MOF utilizing cooperative acidic and basic, metal-CO2 interactions. Chem. Commun. 52, 10559-10562 (2016).

13. Liao, P.-Q. et al. Putting an ultrahigh concentration of amine groups into a metal-organic

framework for CO2 capture at low pressures. Chem. Sci. 7, 6528-6533 (2016). 14. Zheng, B., Bai, J., Duan, J., Wojtas, L. & Zaworotko, M. J. Enhanced CO2 binding affinity

of a high-uptake rht-type metal-organic framework decorated with acylamide groups. J. Am. Chem. Soc. 133, 748-751 (2010).

15. Liang, Z. et al. Design and synthesis of two porous metal-organic frameworks with nbo

and agw topologies showing high CO2 adsorption capacity. Inorg. Chem. 52, 10720-10722 (2013).

16. Bernini, M.C. et al. Tuning the target composition of amine-grafted CPO-27-Mg for

capture of CO2 under post-combustion and air filtering conditions: A combined experimental and computational study. Dalton Trans. 44, 18970-18982 (2015).

17. Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics

for CO2 separation. Nature 495, 80-84 (2013). 18. Jiao, J. et al. An aminopyrimidine-functionalized cage-based metal-organic framework

exhibiting highly selective adsorption of C2H2 and CO2 over CH4. Dalton Trans. 45, 13373-13382 (2016).

19. Burd, S. D. et al. Highly selective carbon dioxide uptake by [Cu(bpy-n)2(SiF6)](bpy-1 =

4,4′-bipyridine; bpy-2 = 1,2-bis(4-pyridyl)ethene). J. Am. Chem. Soc. 134, 3663-3666 (2012).

20. Liu, B. et al. Significant enhancement of gas uptake capacity and selectivity via the

judicious increase of open metal sites and Lewis basic sites within two polyhedron-based metal-organic frameworks. Chem. Commun. 52, 3223-3226 (2016).

21. Song, C. et al. The accessibility of nitrogen sites makes a difference in selective CO2

adsorption of a family of isostructural metal-organic frameworks. J. Mater. Chem. A 3, 19417-19426 (2015).

22. Lu, Z. et al. The utilization of amide groups to expand and functionalize metal-organic

frameworks simultaneously. Chem. Eur. J. 22, 6277-6285 (2016). 23. Cui, P. et al. Multipoint interactions enhanced CO2 uptake: A zeolite-like zinc-tetrazole

framework with 24-nuclear zinc cages. J. Am. Chem. Soc. 134, 18892-18895 (2012). 24. Lin, Y., Yan, Q., Kong, C. & Chen, L. Polyethyleneimine incorporated metal-organic

frameworks adsorbent for highly selective CO2 capture. Sci. Rep. 3, 1859 (2013).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 40: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

40

25. Duan, X. et al. A new microporous metal-organic framework with open metal sites and

exposed carboxylic acid groups for selective separation of CO2/CH4 and C2H2/CH4. RSC Adv. 4, 36419-36424 (2014).

26. Wang, X.-S. et al. Quest for highly porous metal-metalloporphyrin framework based

upon a custom-designed octatopic porphyrin ligand. Chem. Commun. 48, 7173-7175 (2012).

27. Wang, D. et al. A polyhedral metal-organic framework based on the supermolecular

building block strategy exhibiting high performance for carbon dioxide capture and separation of light hydrocarbons. Chem. Commun. 51, 15287-15289 (2015).

28. Xue, D.-X. et al. Tunable rare-earth fcu-MOFs: A platform for systematic enhancement

of CO2 adsorption energetics and uptake. J. Am. Chem. Soc. 135, 7660-7667 (2013). 29. Jiao, J., Liu, H., Bai, D. & He, Y. A chemically cross-linked NbO-type metal-organic

framework: Cage or window partition? Inorg. Chem. 55, 3974-3979 (2016). 30. He, H., Sun, F., Ma, S. & Zhu, G. Reticular synthesis of a series of HKUST-like MOFs

with carbon dioxide capture and separation. Inorg. Chem. 55, 9071-9076 (2016). 31. Lu, W., Yuan, D., Makal, T. A., Li, J. R. & Zhou, H. C. A highly porous and robust

(3,3,4)-connected metal-organic framework assembled with a 90° bridging-angle embedded octacarboxylate ligand. Angew. Chem. Int. Ed. 51, 1580-1584 (2012).

32. Li, C. et al. A pcu-type metal-organic framework based on covalently quadruple cross-

linked supramolecular building blocks (SBBs): Structure and adsorption properties. CrystEngComm 14, 1929-1932 (2012).

33. Du, L., Lu, Z., Ma, M., Su, F. & Xu, L. A porous cobalt-based MOF with high CO2

selectivity and uptake capacity. RSC Adv. 5, 29505-29508 (2015). 34. Gao, W.-Y. et al. The local electric field favours more than exposed nitrogen atoms on

CO2 capture: A case study on the rht-type MOF platform. Chem. Commun. 51, 9636-9639 (2015).

35. Zhang, L. et al. A (3,8)-connected metal-organic framework with a unique binuclear

[Ni2(µ2-OH)(COO)2] node for high H2 and CO2 adsorption capacities. J. Mater. Chem. A 3, 15399-15402 (2015).

36. Gao, W.-Y., Palakurty, S., Wojtas, L., Chen, Y.-S. & Ma, S. Open metal sites dangled on

cobalt trigonal prismatic clusters within porous MOF for CO2 capture. Inorg. Chem. Front. 2, 369-372 (2015).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 41: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

41

37. Liu, B., Jiang, Y.-H., Li, Z.-S., Hou, L. & Wang, Y.-Y. Selective CO2 adsorption in a microporous metal-organic framework with suitable pore sizes and open metal sites. Inorg. Chem. Front. 2, 550-557 (2015).

38. Nguyen, P. T. K. et al. Synthesis and selective CO2 capture properties of a series of

hexatopic linker-based metal-organic frameworks. Inorg. Chem. 54, 10065-10072 (2015). 39. Peng, Y. et al. Simultaneously high gravimetric and volumetric methane uptake

characteristics of the metal–organic framework NU-111. Chem. Commun. 49, 2992-2994 (2013).

40. Stylianou, K. C., Bacsa, J., Bradshaw, D. & Rosseinsky, M. J. A 3D porous metal organic

framework based on infinite 1D nickel(II) chains with rutile topology displaying open metal sites. Z. Anorg. Allg. Chem. 640, 2123-2131 (2014).

41. Zheng, B. et al. Solvent-controlled assembly of ionic metal-organic frameworks based on

indium and tetracarboxylate ligand: Topology variety and gas sorption properties. Cryst. Growth Des. 16, 5554-5562 (2016).

42. Nguyen, N. T. T. et al. Mixed-metal zeolitic imidazolate frameworks and their selective

capture of wet carbon dioxide over methane. Inorg. Chem. 55, 6201-6207 (2016). 43. Stoeck, U., Krause, S., Bon, V., Senkovska, I. & Kaskel, S. A highly porous metal-

organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake. Chem. Commun. 48, 10841-10843 (2012).

44. Sanz, R., Martínez, F., Orcajo, G., Wojtas, L. & Briones, D. Synthesis of a honeycomb-

like Cu-based metal-organic framework and its carbon dioxide adsorption behaviour. Dalton Trans. 42, 2392-2398 (2013).

45. Ren, G.-J. et al. Construction of a polyhedron decorated MOF with a unique network

through the combination of two classic secondary building units. Chem. Commun. 52, 2079-2082 (2016).

46. Wang, D., Zhao, T., Li, G., Huo, Q. & Liu, Y. A porous sodalite-type MOF based on

tetrazolcarboxylate ligands and [Cu4Cl]7+ squares with open metal sites for gas sorption. Dalton Trans. 43, 2365-2368 (2014).

47. Kim, J., Oliver, A. G., Neumann, G. T. & Hicks, J. C. Zn-MOFs containing pyridine and

bipyridine carboxylate organic linkers and open Zn2+ sites. Eur. J. Inorg. Chem. 2015, 3011-3018 (2015).

48. Duan, X. et al. Three-dimensional copper(II) metal-organic framework with open metal

sites and anthracene nucleus for highly selective C2H2/CH4 and C2H2/CO2 gas separation at room temperature. Microporous Mesoporous Mater. 181, 99-104 (2013).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 42: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

42

49. Luo, J., Wang, J., Li, G., Huo, Q. & Liu, Y. Assembly of a unique octa-nuclear copper cluster-based metal-organic framework with highly selective CO2 adsorption over N2 and CH4. Chem. Commun. 49, 11433-11435 (2013).

50. Li, B. & Chen, B. A flexible metal-organic framework with double interpenetration for

highly selective CO2 capture at room temperature. Sci. China Chem. 59, 965-969 (2016). 51. Chen, D.-M., Tian, J.-Y., Liu, C.-S. & Du, M. A CoII-based metal-organic framework

based on [Co6(µ3-OH)4] units exhibiting selective sorption of C2H2 over CO2 and CH4. CrystEngComm 18, 3760-3763 (2016).

52. Hou, C. et al. Novel (3,4,6)-connected metal-organic framework with high stability and

gas-uptake capability. Inorg. Chem. 51, 8402-8408 (2012). 53. Yang, H., Wang, F., Kang, Y., Li, T.-H. & Zhang, J. A microporous indium–organic

framework with high capacity and selectivity for CO2 or organosulfurs. Dalton Trans. 41, 2873-2876 (2012).

54. Wang, X. et al. Lanthanide metal-organic frameworks containing a novel flexible ligand

for luminescence sensing of small organic molecules and selective adsorption. J. Mater. Chem. A 3, 12777-12785 (2015).

55. Yan, Y.-T. et al. Four new 3D metal–organic frameworks constructed by the

asymmetrical pentacarboxylate: Gas sorption behaviour and magnetic properties. Dalton Trans. 45, 15473-15480 (2016).

56. Zhang, Z. et al. Triple framework interpenetration and immobilization of open metal sites

within a microporous mixed metal-organic framework for highly selective gas adsorption. Inorg. Chem. 51, 4947-4953 (2012).

57. Mu, B., Li, F., Huang, Y. & Walton, K.S. Breathing effects of CO2 adsorption on a

flexible 3D lanthanide metal–organic framework. J. Mater. Chem. 22, 10172-10178 (2012).

58. Lee, W. R. et al. Exceptional CO2 working capacity in a heterodiamine-grafted metal-

organic framework. Chem. Sci. 6, 3697-3705 (2015). 59. Lee, W. R. et al. Diamine-functionalized metal-organic framework: Exceptionally high

CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism. Energy Environ. Sci. 7, 744-751 (2014).

60. Ilyes, E. et al. A robust metal-organic framework constructed from alkoxo-bridged

binuclear nodes and hexamethylenetetramine spacers: Crystal structure and sorption studies. Inorg. Chem. 51, 7954-7956 (2012).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 43: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

43

61. Wang, X., Li, H. & Hou, X.-J. Amine-functionalized metal organic framework as a highly selective adsorbent for CO2 over CO. J. Phys. Chem. C 116, 19814-19821 (2012).

62. Yan, Q., Lin, Y., Kong, C. & Chen, L. Remarkable CO2/CH4 selectivity and CO2

adsorption capacity exhibited by polyamine-decorated metal-organic framework adsorbents. Chem. Commun. 49, 6873-6875 (2013).

63. Hu, Y., Verdegaal, W. M., Yu, S. H. & Jiang, H. L. Alkylamine-tethered stable metal-

organic framework for CO2 capture from flue gas. ChemSusChem 7, 734-737 (2014). 64. Fracaroli, A .M. et al. Metal-organic frameworks with precisely designed interior for

carbon dioxide capture in the presence of water. J. Am. Chem. Soc. 136, 8863-8866 (2014).

65. Das, A. et al. Carbon dioxide adsorption by physisorption and chemisorption interactions

in piperazine-grafted Ni2(dobdc) (dobdc = 1,4-dioxido-2,5-benzenedicarboxylate). Dalton Trans. 41, 11739-11744 (2012).

66. Montoro, C. et al. Functionalisation of MOF open metal sites with pendant amines for

CO2 capture. J. Mater. Chem. 22, 10155-10158 (2012). 67. Li, L.-J. et al. Grafting alkylamine in UiO-66 by charge-assisted coordination bonds for

carbon dioxide capture from high-humidity flue gas. J. Mater. Chem. A 3, 21849-21855 (2015).

68. Lin, R.-B., Chen, D., Lin, Y.-Y., Zhang, J.-P. & Chen, X.-M. A zeolite-like zinc

triazolate framework with high gas adsorption and separation performance. Inorg. Chem. 51, 9950-9955 (2012).

69. De, D. et al. A versatile CuII metal-organic framework exhibiting high gas storage

capacity with selectivity for CO2: Conversion of CO2 to cyclic carbonate and other catalytic abilities. Chem. Eur. J. 22, 3387-3396 (2016).

70. Huang, Y., Qin, W., Li, Z. & Li, Y. Enhanced stability and CO2 affinity of a UiO-66 type

metal-organic framework decorated with dimethyl groups. Dalton Trans. 41, 9283-9285 (2012).

71. Tan, Y. X., He, Y. P. & Zhang, J. Temperature-/pressure-dependent selective separation

of CO2 or benzene in a chiral metal-organic framework material. ChemSusChem 5, 1597-1601 (2012).

72. Hahm, H. et al. Synthesis of secondary and tertiary amine-containing MOFs: C–N bond

cleavage during MOF synthesis. CrystEngComm 17, 5644-5650 (2015). 73. Ethiraj, J. et al. Carbon dioxide adsorption in amine-functionalized mixed-ligand metal-

organic frameworks of UiO-66 topology. ChemSusChem 7, 3382-3388 (2014).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 44: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

44

74. Cmarik, G. E., Kim, M., Cohen, S. M. & Walton, K. S. Tuning the adsorption properties

of UiO-66 via ligand functionalization. Langmuir 28, 15606-15613 (2012). 75. Rada, Z. H., Abid, H .R., Sun, H. & Wang, S. Bifunctionalized metal organic

frameworks, UiO-66-NO2-N (N = -NH2, -(OH)2, -(COOH)2), for enhanced adsorption and selectivity of CO2 and N2. J. Chem. Eng. Data 60, 2152-2161 (2015).

76. Abid, H. R., Shang, J., Ang, H.-M. & Wang, S. Amino-functionalized Zr-MOF

nanoparticles for adsorption of CO2 and CH4. Int. J. Smart Nano Mater. 4, 72-82 (2013). 77. Deng, M. et al. A series of metal-organic frameworks built of triazolate-trinuclear and

paddlewheel units: Solid-solution framework approach for optimizing CO2 adsorption and separation. Cryst. Growth Des. 15, 5794-5801 (2015).

78. Zhang, Z., Liu, J., Li, Z. & Li, J. Experimental and theoretical investigations on the

MMOF selectivity for CO2 vs. N2 in flue gas mixtures. Dalton Trans. 41, 4232-4238 (2012).

79. Yang, E., Li, H.-Y., Wang, F., Yang, H. & Zhang, J. Enhancing CO2 adsorption enthalpy

and selectivity via amino functionalization of a tetrahedral framework material. CrystEngComm 15, 658-661 (2013).

80. Mukherjee, S., Desai, A. V., More, Y. D., Inamdar, A. I. & Ghosh, S. K. A bifunctional

metal-organic framework: Striking CO2-selective sorption features along with guest-induced tuning of luminescence. ChemPlusChem 81, 702-707 (2016).

81. Yao, Z. et al. Direct evidence of CO2 capture under low partial pressure on a pillared

metal-organic framework with improved stabilization by intramolecular hydrogen-bonding. ChemPlusChem 81, 850-856 (2016).

82. Abid, H. R., Rada, Z. H., Shang, J. & Wang, S. Synthesis, characterization, and CO2

adsorption of three metal-organic frameworks (MOFs): MIL-53, MIL-96, and amino-MIL-53. Polyhedron 120, 103-111 (2016).

83. Greenaway, A. et al. In situ synchrotron IR microspectroscopy of CO2 adsorption on

single crystals of the functionalized MOF Sc2(BDC-NH2)3. Angew. Chem. Int. Ed. 53, 13483-13487 (2014).

84. Parshamoni, S., Sanda, S., Jena, H.S. & Konar, S. Tuning CO2 uptake and reversible

iodine adsorption in two isoreticular MOFs through ligand functionalization. Chem. Asian J. 10, 653-660 (2015).

85. Wu, L. et al. Amino-modified MIL-68(In) with enhanced hydrogen and carbon dioxide

sorption enthalpy. Microporous Mesoporous Mater. 157, 75-81 (2012).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 45: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

45

86. Li, T. et al. Systematic modulation and enhancement of CO2:N2 selectivity and water stability in an isoreticular series of bio-MOF-11 analogues. Chem. Sci. 4, 1746-1755 (2013).

87. Parshamoni, S. & Konar, S. Selective CO2 adsorption in four zinc(II)-based metal organic

frameworks constructed using a rigid N,N′-donor linker and various dicarboxylate ligands. CrystEngComm 18, 4395-4404 (2016).

88. Xiang, Z., Leng, S. & Cao, D. Functional group modification of metal-organic

frameworks for CO2 capture. J. Phys. Chem. C 116, 10573-10579 (2012). 89. Dhankhar, S.S., Kaur, M. & Nagaraja, C. Green synthesis of a microporous, partially

fluorinated ZnII paddlewheel metal-organic framework: H2/CO2 adsorption behavior and solid-state conversion to a ZnO–C nanocomposite. Eur. J. Inorg. Chem. 2015, 5669-5676 (2015).

90. Grünker, R. et al. Dye encapsulation inside a new mesoporous metal-organic framework

for multifunctional solvatochromic-response function. Chem. Eur. J. 18, 13299-13303 (2012).

91. Sim, J. et al. Gas adsorption properties of highly porous metal-organic frameworks

containing functionalized naphthalene dicarboxylate linkers. Dalton Trans. 43, 18017-18024 (2014).

92. Luo, F., Meng, P.P., Feng, X.F., Dang, L.L. & Zhang, X.J. A complex self-catenated

coordination framework with a rare (3,12)-connected underlying net showing selective adsorption of CO2. Eur. J. Inorg. Chem. 2015, 4633-4637 (2015).

93. Yang, Y. et al. Synthesis and characterization of three amino-functionalized metal-

organic frameworks based on the 2-aminoterephthalic ligand. Dalton Trans. 44, 8190-8197 (2015).

94. Yao, Z. et al. Extraordinary separation of acetylene-containing mixtures with

microporous metal-organic frameworks with open O donor sites and tunable robustness through control of the helical chain secondary building units. Chem. Eur. J. 22, 5676-5683 (2016).

95. Zhao, Y.-P. et al. Tetrazole-viologen-based flexible microporous metal-organic

framework with high CO2 selective uptake. Inorg. Chem. 55, 7335-7340 (2016). 96. Banerjee, A., Nandi, S., Nasa, P. & Vaidhyanathan, R. Enhancing the carbon capture

capacities of a rigid ultra-microporous MOF through gate-opening at low CO2 pressures assisted by swiveling oxalate pillars. Chem. Commun. 52, 1851-1854 (2016).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 46: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

46

97. Song, C. et al. CO2 adsorption of three isostructural metal-organic frameworks depending on the incorporated highly polarized heterocyclic moieties. Dalton Trans. 45, 190-197 (2016).

98. Wen, H.-M. et al. A microporous metal-organic framework with Lewis basic nitrogen

sites for high C2H2 storage and significantly enhanced C2H2/CO2 separation at ambient conditions. Inorg. Chem. 55, 7214-7218 (2016).

99. Seth, S., Savitha, G. & Moorthy, J.N. Carbon dioxide capture by a metal-organic

framework with nitrogen-rich channels based on rationally designed triazole-functionalized tetraacid organic linker. Inorg. Chem. 54, 6829-6835 (2015).

100. Sikdar, N., Bonakala, S., Haldar, R., Balasubramanian, S. & Maji, T.K. Dynamic

entangled porous framework for hydrocarbon (C2–C3) storage, CO2 capture, and separation. Chem. Eur. J. 22, 6059-6070 (2016).

101. Bae, Y.-S. et al. The effect of pyridine modification of Ni–DOBDC on CO2 capture

under humid conditions. Chem. Commun. 50, 3296-3298 (2014). 102. Zhang, X., Zhang, Y.-Z., Zhang, D.-S., Zhu, B. & Li, J.-R. A hydrothermally stable Zn

(II)-based metal–organic framework: Structural modulation and gas adsorption. Dalton Trans. 44, 15697-15702 (2015).

103. Chen, C., Jia, M., Wang, G., Li, X. & Li, S. High and selective CO2 uptake in a nitrogen-

rich pillar-layered metal organic framework. RSC Adv. 5, 104932-104935 (2015). 104. Sastre, G., van den Bergh, J., Kapteijn, F., Denysenko, D. & Volkmer, D. Unveiling the

mechanism of selective gate-driven diffusion of CO2 over N2 in MFU-4 metal-organic framework. Dalton Trans. 43, 9612-9619 (2014).

105. Hou, D.-C., Jiang, G.-Y., Fu, H.-R., Zhao, Z. & Zhang, J. A microporous nickel-organic

framework with an unusual 10-connected bct net and high capacity for CO2, H2 and hydrocarbons. CrystEngComm 15, 9499-9503 (2013).

106. Zhang, H.X., Fu, H.R., Li, H.Y., Zhang, J. & Bu, X. Porous ctn-type boron imidazolate

framework for gas storage and separation. Chem. Eur. J. 19, 11527-11530 (2013). 107. Gao, Q., Zhao, X.-L., Chang, Z., Xu, J. & Bu, X.-H. Structural stabilization of a metal–

organic framework for gas sorption investigation. Dalton Trans. 45, 6830-6833 (2016). 108. Qin, J.-S. et al. N-rich zeolite-like metal-organic framework with sodalite topology: high

CO2 uptake, selective gas adsorption and efficient drug delivery. Chem. Sci. 3, 2114-2118 (2012).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 47: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

47

109. Bao, S.-J. et al. A stable metal-organic framework with suitable pore sizes and rich uncoordinated nitrogen atoms on the internal surface of micropores for highly efficient CO2 capture. J. Mater. Chem. A 3, 7361-7367 (2015).

110. Moushi, E. E. et al. A Microporous Co2+ Metal Organic Framework with Single-Crystal

to Single-Crystal Transformation Properties and High CO2 Uptake. Cryst. Growth Des. 15, 185-193 (2014).

111. Wu, Y.-L. et al. High CO2 uptake capacity and selectivity in a fascinating nanotube-

based metal-organic framework. Inorg. Chem. (2016). 112. Tan, Y., Zhang, Y., Zhang, J. & Zheng, Y. Carbon dioxide capture and dyes separation in

a porous framework with anionic sql net. Int. J. Nanosci. 13, 1460001 (2014). 113. Yun, R. et al. Formation of a metal–organic framework with high gas uptakes based upon

amino-decorated polyhedral cages. RSC Adv. 5, 2374-2377 (2015). 114. Liu, B., Hou, L., Wu, W.-P., Dou, A.-N. & Wang, Y.-Y. Highly selective luminescence

sensing for Cu2+ ions and selective CO2 capture in a doubly interpenetrated MOF with Lewis basic pyridyl sites. Dalton Trans. 44, 4423-4427 (2015).

115. Chen, D.-M., Tian, J.-Y. & Liu, C.-S. Ligand symmetry modulation for designing Mixed-

ligand metal-organic frameworks: Gas sorption and luminescence sensing properties. Inorg. Chem. 55, 8892-8897 (2016).

116. Chen, D.-M., Tian, J.-Y., Chen, M., Liu, C.-S. & Du, M. Moisture-stable Zn(II) metal-

organic framework as a multifunctional platform for highly efficient CO2 capture and nitro pollutant vapor detection. ACS Appl. Mater. Interfaces 8, 18043-18050 (2016).

117. Yue, Y. et al. A flexible metal-organic framework: Guest molecules controlled dynamic

gas adsorption. J. Phys. Chem. C 119, 9442-9449 (2015). 118. Schmieder, P., Grzywa, M., Denysenko, D., Hambach, M. & Volkmer, D. CFA-7: An

interpenetrated metal-organic framework of the MFU-4 family. Dalton Trans. 44, 13060-13070 (2015).

119. Liu, B. et al. Two isostructural amine-functionalized 3D self-penetrating microporous

MOFs exhibiting high sorption selectivity for CO2. CrystEngComm 15, 2057-2060 (2013).

120. Alduhaish, O. et al. A threefold interpenetrated pillared-layer metal-organic framework

for selective separation of C2H2/CH4 and CO2/CH4. ChemPlusChem 81, 764-769 (2016). 121. Chen, G., Zhang, Z., Xiang, S. & Chen, B. A microporous metal-organic framework with

Lewis basic pyridyl sites for selective gas separation of C2H2/CH4 and CO2/CH4 at room temperature. CrystEngComm 15, 5232-5235 (2013).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 48: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

48

122. Wang, S. et al. Functionalization of microporous lanthanide-based metal-organic

frameworks by dicarboxylate ligands with methyl-substituted thieno[2,3-b]thiophene groups: sensing activities and magnetic properties. Inorg. Chem. 55, 5139-5151 (2016).

123. Hu, X.L. et al. Evidence of amine–CO2 interactions in two pillared-layer MOFs probed

by X-ray crystallography. Chem. Eur. J. 21, 7238-7244 (2015). 124. Ren, H.-Y. & Zhang, X.-M. Enhanced selective CO2 capture upon incorporation of

dimethylformamide in the cobalt metal-organic framework [Co3(OH)2(btca)2]. Energy Fuels 30, 526-530 (2015).

125. Maity, D.K., Halder, A., Bhattacharya, B., Das, A. & Ghoshal, D. Selective CO2

adsorption by nitro functionalized metal organic frameworks. Cryst. Growth Des. 16, 1162-1167 (2016).

126. Gao, W.-Y. et al. Interpenetrating metal-metalloporphyrin framework for selective CO2

uptake and chemical transformation of CO2. Inorg. Chem. 55, 7291-7294 (2016). 127. Lincke, J. et al. A novel Zn4O-based triazolyl benzoate MOF: Synthesis, crystal structure,

adsorption properties and solid state 13C NMR investigations. Dalton Trans. 41, 817-824 (2012).

128. Du, J. & Zou, G. A novel microporous zinc(II) metal-organic framework with highly

selectivity adsorption of CO2 over CH4. Inorg. Chem. Commun. 69, 20-23 (2016). 129. Zhang, L. et al. A polyhedron-based cobalt-organic framework for gas adsorption and

separation. Inorg. Chem. Commun. 67, 10-13 (2016). 130. Hu, X.-L. et al. Assembly of Zn-metal organic frameworks based on a N-rich ligand:

selective sorption for CO2 and luminescence sensing of nitro explosives. RSC Adv. 5, 49606-49613 (2015).

131. Hou, C., Liu, Q., Wang, P. & Sun, W.-Y. Porous metal–organic frameworks with high

stability and selective sorption for CO2 over N2. Microporous Mesoporous Mater. 172, 61-66 (2013).

132. Ibarra, I. A. et al. Adsorption properties of MFM-400 and MFM-401 with CO2 and

hydrocarbons: Selectivity derived from directed supramolecular interactions. Inorg. Chem. 55, 7219-7228 (2016).

133. Wang, C., Li, L., Tang, S. & Zhao, X. Enhanced uptake and selectivity of CO2 adsorption

in a hydrostable metal-organic frameworks via incorporating methylol and methyl groups. ACS Appl. Mater. Interfaces 6, 16932-16940 (2014).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 49: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

49

134. Hu, Z., Nalaparaju, A., Peng, Y., Jiang, J. & Zhao, D. Modulated hydrothermal synthesis of UiO-66(Hf)-type metal-organic frameworks for optimal carbon dioxide separation. Inorg. Chem. 55, 1134-1141 (2016).

135. Zhao, Y. et al. Enhancing gas adsorption and separation capacity through ligand

functionalization of microporous metal-organic framework structures. Chem. Eur. J. 17, 5101-5109 (2011).

136. Spanopoulos, I., Xydias, P., Malliakas, C.D. & Trikalitis, P.N. A straight forward route

for the development of metal–organic frameworks functionalized with aromatic −OH groups: synthesis, characterization, and gas (N2, Ar, H2, CO2, CH4, NH3) sorption properties. Inorg. Chem. 52, 855-862 (2013).

137. Wang, H. H. et al. A cationic MOF with high uptake and selectivity for CO2 due to

multiple CO2-philic sites. Chem. Eur. J. 21, 16525-16531 (2015). 138. Leong, C. F. et al. Enhancing selective CO2 adsorption via chemical reduction of a redox-

active metal-organic framework. Dalton Trans. 42, 9831-9839 (2013). 139. Shekhah, O. et al. A facile solvent-free synthesis route for the assembly of a highly CO2

selective and H2S tolerant NiSIFSIX metal-organic framework. Chem. Commun. 51, 13595-13598 (2015).

140. Shekhah, O. et al. Made-to-order metal-organic frameworks for trace carbon dioxide

removal and air capture. Nat. Commun. 5 (2014). 141. Lin, Z.-J., Huang, Y.-B., Liu, T.-F., Li, X.-Y. & Cao, R. Construction of a polyhedral

metal–organic framework via a flexible octacarboxylate ligand for gas adsorption and separation. Inorg. Chem. 52, 3127-3132 (2013).

142. Mohamed, M. H. et al. Highly selective CO2 uptake in uninodal 6-Connected “mmo”

nets based upon MO42– (M= Cr, Mo) pillars. J. Am. Chem. Soc. 134, 19556-19559 (2012).

143. Yang, H., Wang, F., Kang, Y., Li, T.-H. & Zhang, J. Chiral assembly of dodecahedral

cavities into porous metal–organic frameworks. Chem. Commun. 48, 9424-9426 (2012). 144. Hu, Z. et al. Combination of optimization and metalated-ligand exchange: An effective

approach to functionalize UiO-66(Zr) MOFs for CO2 separation. Chem. Eur. J. 21, 17246-17255 (2015).

145. Dong, B. et al. Gas storage and separation in a water-stable [CuI

5BTT3]4− anion framework comprising a giant multi-prismatic nanoscale cage. Chem. Commun. 51, 5691-5694 (2015).

146. Bhatt, P.M. et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2

removal and air capture using physisorption. J. Am. Chem. Soc. 138, 9301-9307 (2016).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 50: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

50

147. Kanoo, P. et al. Unusual room temperature CO2 uptake in a fluoro-functionalized MOF:

insight from Raman spectroscopy and theoretical studies. Chem. Commun. 48, 8487-8489 (2012).

148. Lin, Z.-J., Yang, Z., Liu, T.-F., Huang, Y.-B. & Cao, R. Microwave-assisted synthesis of

a series of lanthanide metal-organic frameworks and gas sorption properties. Inorg. Chem. 51, 1813-1820 (2012).

149. Gu, J. M., Hong, J. Y., Won, Y. S., Park, S. S. & Huh, S. Experimental and theoretical

investigations of CO2 sorption by a 3D In-MOF with multiple 1D channels. Eur. J. Inorg. Chem. 2015, 4038-4043 (2015).

150. Yang, Y. et al. An unusual bifunctional Tb-MOF for highly sensitive sensing of Ba2+ ions

and with remarkable selectivities for CO2–N2 and CO2–CH4. J. Mater. Chem. A 3, 13526-13532 (2015).

151. Yang, S. et al. A partially interpenetrated metal-organic framework for selective

hysteretic sorption of carbon dioxide. Nat. Mater. 11, 710-716 (2012). 152. Wang, X. et al. Metal-ion metathesis and properties of triarylboron-functionalized metal-

organic frameworks. Chem. Asian J. 10, 1535-1540 (2015). 153. Lin, J.-B., Xue, W., Zhang, J.-P. & Chen, X.-M. An ionic porous coordination framework

exhibiting high CO2 affinity and CO2/CH4 selectivity. Chem. Commun. 47, 926-928 (2011).

154. Yoon, J. H. et al. Microporous metal–organic framework containing cages with

adjustable portal dimensions for adsorptive CO2 separation. RSC Adv. 2, 11566-11573 (2012).

155. Ferrando-Soria, J. et al. Selective gas and vapor sorption and magnetic sensing by an

isoreticular mixed-metal–organic framework. J. Am. Chem. Soc. 134, 15301-15304 (2012).

156. Hu, Z. et al. A pH-responsive phase transformation of a sulfonated metal–organic

framework from amorphous to crystalline for efficient CO2 capture. CrystEngComm 18, 2803-2807 (2016).

157. Gu, J.-M., Kim, S.-J., Kim, Y. & Huh, S. Structural isomerism of an anionic nanoporous

In-MOF with interpenetrated diamond-like topology. CrystEngComm 14, 1819-1824 (2012).

158. Mathivathanan, L. et al. Selective CO2 adsorption on metal-organic frameworks based on

trinuclear Cu3-pyrazolato complexes: An experimental and computational study. Cryst. Growth Des. 13, 2628-2635 (2013).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 51: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

51

159. Im, J. H. et al. Enhanced water stability and CO2 gas sorption properties of a methyl

functionalized titanium metal-organic framework. New J. Chem. 38, 2752-2755 (2014). 160. Nguyen, N. T. T. et al. Selective capture of carbon dioxide under humid conditions by

hydrophobic chabazite-type zeolitic imidazolate frameworks. Angew. Chem., Int. Ed. 53, 10645-10648 (2014).

161. Jasuja, H. & Walton, K. S. Experimental study of CO2, CH4, and water vapor adsorption

on a dimethyl-functionalized UiO-66 framework. J. Phys. Chem. C 117, 7062-7068 (2013).

162. Park, J. et al. Reversible alteration of CO2 adsorption upon photochemical or thermal

treatment in a metal–organic framework. J. Am. Chem. Soc. 134, 99-102 (2011). 163. Dey, C., Das, R., Poddar, P. & Banerjee, R. Solid phase morphological diversity of a fare

vanadium cubane (V4O16) based metal organic framework. Cryst. Growth Des. 12, 12-17 (2011).

164. Bataille, T. et al. Solvent dependent synthesis of micro-and nano-crystalline phosphinate

based 1D tubular MOF: Structure and CO2 adsorption selectivity. CrystEngComm 14, 7170-7173 (2012).

165. Sim, J. et al. Gas adsorption properties of highly porous metal–organic frameworks

containing functionalized naphthalene dicarboxylate linkers. Dalton Trans. 43, 18017-18024 (2014).

166. Bétard, A. et al. Fabrication of a CO2-selective membrane by stepwise liquid-phase

deposition of an alkylether functionalized pillared-layered metal-organic framework [Cu2L2P]n on a macroporous support. Microporous Mesoporous Mater. 150, 76-82 (2012).

167. Hong, D. H. & Suh, M. P. Selective CO2 adsorption in a metal–organic framework

constructed from an organic ligand with flexible joints. Chem. Commun. 48, 9168-9170 (2012).

168. Du, L., Yang, S., Xu, L., Min, H. & Zheng, B. Highly selective carbon dioxide uptake by

a microporous kgm-pillared metal–organic framework with acylamide groups. CrystEngComm 16, 5520-5523 (2014).

169. Pal, T. K., De, D., Senthilkumar, S., Neogi, S. & Bharadwaj, P. K. A partially

fluorinated, water-stable Cu(II)–MOF derived via transmetalation: Significant gas adsorption with high CO2 selectivity and catalysis of Biginelli reactions. Inorg. Chem. 55, 7835-7842 (2016).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 52: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

52

170. Yan, Y. et al. Modulating the packing of [Cu24(isophthalate)24] cuboctahedra in a triazole-containing metal–organic polyhedral framework. Chem. Sci. 4, 1731-1736 (2013).

171. Wang, Z. et al. High-capacity gas storage by a microporous oxalamide-functionalized

NbO-type metal–organic framework. Cryst. Growth Des. 13, 5001-5006 (2013). 172. Zhai, Q.-G., Bai, N., Li, S.n., Bu, X. & Feng, P. Design of pore size and functionality in

pillar-layered Zn-triazolate-dicarboxylate frameworks and their high CO2/CH4 and C2 hydrocarbons/CH4 selectivity. Inorg. Chem. 54, 9862-9868 (2015).

173. Du, L. et al. Fine-tuning pore size by shifting coordination sites of ligands and surface

polarization of metal–organic frameworks to sharply enhance the selectivity for CO2. J. Am. Chem. Soc. 135, 562-565 (2012).

174. Cheng, R.-R. et al. A dual functional porous NbO-type metal–organic framework

decorated with acylamide groups for selective sorption and catalysis. Inorg. Chem. Commun. 46, 226-228 (2014).

175. Li, P.-Z. et al. A triazole-containing metal–organic framework as a highly effective and

substrate size-dependent catalyst for CO2 conversion. J. Am. Chem. Soc. 138, 2142-2145 (2016).

176. Dang, Q.-Q., Zhan, Y.-F., Duan, L.-N. & Zhang, X.-M. A pyridyl-decorated MOF-505

analogue exhibiting hierarchical porosity, selective CO2 capture and catalytic capacity. Dalton Trans. 44, 20027-20031 (2015).

177. Duan, J. et al. Highly selective CO2 capture of an agw-type metal–organic framework

with inserted amides: experimental and theoretical studies. Chem. Commun. 48, 3058-3060 (2012).

178. Wang, Q., Jiang, J., Zhang, M. & Bai, J. A (3,6)-Connected MOF with pyr Topology and

Highly Selective CO2 Adsorption. Cryst. Growth Des. 17, 16-18 (2016). 179. Fan, W. et al. Expanded porous metal–organic frameworks by SCSC: Organic building

units modifying and enhanced gas-adsorption properties. Inorg. Chem. 55, 6420-6425 (2016).

180. Liu, B., Zhou, H.-F., Hou, L., Zhu, Z. & Wang, Y.-Y. A chiral metal–organic framework

with polar channels: Unique interweaving six-fold helices and high CO2/CH4 separation. Inorg. Chem. Front. 3, 1326-1331 (2016).

181. Gao, W.-Y. et al. Porous metal–organic framework based on a macrocyclic

tetracarboxylate ligand exhibiting selective CO2 uptake. CrystEngComm 14, 6115-6117 (2012).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 53: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

53

182. Mondal, S. S. et al. Gate effects in a hexagonal zinc-imidazolate-4-amide-5-imidate framework with flexible methoxy substituents and CO2 selectivity. Chem. Commun. 49, 7599-7601 (2013).

183. Chen, D.-S. et al. A new porous 2D copper(II) metal–organic framework for selective

adsorption of CO2 over N2. Inorg. Chem. Commun. 38, 104-107 (2013). 184. Hwang, I. H. et al. Bifunctional 3D Cu-MOFs containing glutarates and bipyridyl

ligands: Selective CO2 sorption and heterogeneous catalysis. Dalton Trans. 41, 12759-12765 (2012).

185. Mallick, A. et al. Fine-tuning the balance between crystallization and gelation and enhancement of CO2 uptake on functionalized calcium based MOFs and metallogels. J. Mater. Chem. 22, 14951-14963 (2012).

186. Miller, R. G., Southon, P. D., Kepert, C. J. & Brooker, S. Commensurate CO2 capture,

and shape selectivity for HCCH over H2CCH2, in zigzag channels of a robust CuI(CN)(L) metal–organic framework. Inorg. Chem. 55, 6195-6200 (2016).

187. Xiang, S. et al. Microporous metal-organic framework with potential for carbon dioxide

capture at ambient conditions. Nat. Commun. 3, 954 (2012). 188. Zhai, F. et al. Crystal transformation synthesis of a highly stable phosphonate MOF for

selective adsorption of CO2. CrystEngComm 15, 2040-2043 (2013). 189. Xiong, Y. et al. Amide and N-oxide functionalization of T-shaped ligands for isoreticular

MOFs with giant enhancements in CO2 separation. Chem. Commun. 50, 14631-14634 (2014).

190. Li, H. et al. A robust metal organic framework for dynamic light-induced swing

adsorption of carbon dioxide. Chem. Eur. J. 22, 11176-11179 (2016). 191. Schoedel, A. et al. The asc trinodal platform: Two-step assembly of triangular,

tetrahedral, and trigonal-prismatic molecular building blocks. Angew. Chem., Int. Ed. 52, 2902-2905 (2013).

192. Keceli, E. et al. A series of amide functionalized isoreticular metal organic frameworks.

Microporous Mesoporous Mater. 194, 115-125 (2014). 193. Huang, Y.-L., Zhong, D.-C., Jiang, L., Gong, Y.-N. & Lu, T.-B. Two Li–Zn cluster-based

metal–organic frameworks: Strong H2/CO2 binding and high selectivity to CO2. Inorg. Chem. (2016).

194. Cabello, C. P. et al. A rapid microwave-assisted synthesis of a sodium–cadmium metal–

organic framework having improved performance as a CO2 adsorbent for CCS. Dalton Trans. 44, 9955-9963 (2015).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 54: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

54

195. Hong, D. H. & Suh, M. P. Enhancing CO2 separation ability of a metal–organic framework by post-synthetic ligand exchange with flexible aliphatic carboxylates. Chem. Eur. J. 20, 426-434 (2014).

196. Zheng, B., Yang, Z., Bai, J., Li, Y. & Li, S. High and selective CO2 capture by two

mesoporous acylamide-functionalized rht-type metal–organic frameworks. Chem. Commun. 48, 7025-7027 (2012).

197. Cepeda, J. et al. Porous MII/pyrimidine-4,6-dicarboxylato neutral frameworks: Synthetic

influence on the adsorption capacity and evaluation of CO2-adsorbent interactions. Chem. Eur. J. 20, 1554-1568 (2014).

198. Wang, B. et al. Tuning CO2 selective adsorption over N2 and CH4 in UiO-67 analogues

through ligand functionalization. Inorg. Chem. 53, 9254-9259 (2014). 199. Noh, K., Ko, N., Park, H. J., Park, S. & Kim, J. Two porous metal–organic frameworks

containing zinc–calcium clusters and calcium cluster chains. CrystEngComm 16, 8664-8668 (2014).

200. Chen, S.-Q., Zhai, Q.-G., Li, S.-N., Jiang, Y.-C. & Hu, M.-C. Channel partition into

nanoscale polyhedral cages of a triple-self-interpenetrated metal–organic framework with high CO2 uptake. Inorg. Chem. 54, 10-12 (2014).

201. Wang, H.-H. et al. A new porous MOF with two uncommon metal–carboxylate–

pyrazolate clusters and high CO2/N2 selectivity. Inorg. Chem. 54, 1841-1846 (2015). 202. Zheng, S.-T. et al. Development of composite inorganic building blocks for MOFs. J.

Am. Chem. Soc. 134, 4517-4520 (2012). 203. Xuan, Z.-H., Zhang, D.-S., Chang, Z., Hu, T.-L. & Bu, X.-H. Targeted structure

modulation of “pillar-layered” metal–organic frameworks for CO2 capture. Inorg. Chem. 53, 8985-8990 (2014).

204. Seth, S., Savitha, G., Jhulki, S. & Moorthy, J.N. Diverse metal–organic materials

(MOMs) based on 9,9′-bianthryldicarboxylic acid linker: Luminescence properties and CO2 capture. Cryst. Growth Des. 16, 2024-2032 (2016).

205. Xu, G. et al. A 2D metal–organic framework composed of a bi-functional ligand with

ultra-micropores for post-combustion CO2 capture. RSC Adv. 5, 47384-47389 (2015). 206. Masoomi, M. Y., Stylianou, K. C., Morsali, A., Retailleau, P. & Maspoch, D. Selective

CO2 capture in metal–organic frameworks with azine-functionalized pores generated by mechanosynthesis. Cryst. Growth Des. 14, 2092-2096 (2014).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 55: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

55

207. Liu, B. et al. An unprecedented acylamide-functionalized 2D→ 3D microporous metal–organic polycatenation framework exhibiting highly selective CO2 capture. Dalton Trans. 42, 9822-9825 (2013).

208. He, H. et al. A highly robust metal–organic framework based on an aromatic 12-carboxyl

ligand with highly selective adsorption of CO2 over CH4. Chem. Commun. 51, 9463-9466 (2015).

209. Ling, Y. et al. Novel iso-reticular Zn(II) metal–organic frameworks constructed by

trinuclear-triangular and paddle-wheel units: synthesis, structure and gas adsorption. Dalton Trans. 41, 4007-4011 (2012).

210. Tan, Y.-X., Zhang, Y., He, Y.-P. & Zheng, Y.-J. Microporous metal–organic layer built

from pentanuclear tetrahedral units: Gas sorption and magnetism. New J. Chem. 38, 5272-5275 (2014).

211. Li, H. et al. Metallosalen-based microporous organic polymers: Synthesis and carbon

dioxide uptake. RSC Adv. 4, 37767-37772 (2014). 212. Liu, Y. et al. Selective gas adsorption and unique phase transition properties in a stable

magnesium metal-organic framework constructed from infinite metal chains. CrystEngComm 15, 9688-9693 (2013).

213. Chen, Y.-Q. et al. Zn(II)-benzotriazolate clusters based amide functionalized porous

coordination polymers with high CO2 adsorption selectivity. Inorg. Chem. 53, 8842-8844 (2014).

214. Chen, F. et al. Lanthanide–organic frameworks constructed from an unsymmetrical

tricarboxylate for selective gas adsorption and small-molecule sensing. Eur. J. Inorg. Chem. 2016, 503-508 (2016).

215. Senthil Raja, D. et al. Solvothermal synthesis, structural diversity, and properties of alkali

metal–organic frameworks based on V-shaped ligand. Cryst. Growth Des. 13, 3785-3793 (2013).

216. Thomas-Gipson, J. et al. Paddle-wheel shaped copper(II)-adenine discrete entities as

supramolecular building blocks to afford porous supramolecular metal–organic frameworks (SMOFs). Cryst. Growth Des. 14, 4019-4029 (2014).

217. Prasad, T. K. & Suh, M. P. Control of interpenetration and gas-sorption properties of

metal–organic frameworks by a simple change in ligand design. Chem. Eur. J. 18, 8673-8680 (2012).

218. Sapchenko, S. et al. Selective gas adsorption in microporous metal–organic frameworks

incorporating urotropine basic sites: An experimental and theoretical study. Chem. Commun. 51, 13918-13921 (2015).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 56: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

56

219. Foo, M. L. et al. Ligand-based solid solution approach to stabilisation of sulphonic acid

groups in porous coordination polymer Zr6O4(OH)4(BDC)6 (UiO-66). Dalton Trans. 41, 13791-13794 (2012).

220. Ethiraj, J. et al. Solvent-driven date opening in MOF-76-Ce: Effect on CO2 adsorption.

ChemSusChem 9, 713-719 (2016). 221. Plonka, A. M. et al. Effect of ligand geometry on selective gas-adsorption: The case of a

microporous cadmium metal organic framework with a V-shaped linker. Chem. Commun. 49, 7055-7057 (2013).

222. Naeem, A. et al. Mixed-linker approach in designing porous zirconium-based metal–

organic frameworks with high hydrogen storage capacity. Chem. Commun. 52, 7826-7829 (2016).

223. Dang, L.-L. et al. Photo-responsive azo MOF exhibiting high selectivity for CO2 and

xylene isomers. J.Coord. Chem. 69, 1-9 (2016). 224. Xu, W. W., Pramanik, S., Zhang, Z., Emge, T. J. & Li, J. Microporous metal organic

framework [M2(hfipbb)2(ted)] (M = Zn, Co; H2hfipbb= 4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted = triethylenediamine): Synthesis, structure analysis, pore characterization, small gas adsorption and CO2/N2 separation properties. J. Solid State Chem. 200, 1-6 (2013).

225. Zou, X. et al. Co3(HCOO)6 microporous metal–organic framework membrane for

separation of CO2/CH4 mixtures. Chem. Eur. J. 17, 12076-12083 (2011). 226. Takamizawa, S., Takasaki, Y. & Miyake, R. Single-crystal membrane for anisotropic and

efficient gas permeation. J. Am. Chem. Soc. 132, 2862-2863 (2010). 227. Zhang, F. et al. Hydrogen selective NH2-MIL-53(Al) MOF membranes with high

permeability. Adv. Funct. Mater. 22, 3583-3590 (2012). 228. Aguado, S. et al. Facile synthesis of an ultramicroporous MOF tubular membrane with

selectivity towards CO2. New J. Chem. 35, 41-44 (2011). 229. Al-Maythalony, B. A. et al. Quest for anionic MOF membranes: Continuous sod-ZMOF

membrane with CO2 adsorption-driven selectivity. J. Am. Chem. Soc. 137, 1754-1757 (2015).

230. Li, Y., Liang, F., Bux, H., Yang, W. & Caro, J. Zeolitic imidazolate framework ZIF-7

based molecular sieve membrane for hydrogen separation. J. Membr. Sci. 354, 48-54 (2010).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 57: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

57

231. Jomekian, A., Behbahani, R., Mohammadi, T. & Kargari, A. Innovative layer by layer and continuous growth methods for synthesis of ZIF-8 membrane on porous polymeric support using poly(ether-block-amide) as structure directing agent for gas separation. Microporous Mesoporous Mater. 234, 43-54 (2016).

232. Xie, Z. et al. Deposition of chemically modified α-Al2O3 particles for high performance

ZIF-8 membrane on a macroporous tube. Chem. Commun. 48, 5977-5979 (2012). 233. Xu, G. et al. Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a

concentrated synthesis gel. J. Membr. Sci. 385, 187-193 (2011). 234. Venna, S. R. & Carreon, M. A. Highly permeable zeolite imidazolate framework-8

membranes for CO2/CH4 separation. J. Am. Chem. Soc. 132, 76-78 (2010). 235. Fu, J. et al. Fabrication of COF-MOF composite membranes and their highly selective

separation of H2/CO2. J. Am. Chem. Soc. 138, 7673-7680 (2016). 236. Liu, Y., Zeng, G., Pan, Y. & Lai, Z. Synthesis of highly c-oriented ZIF-69 membranes by

secondary growth and their gas permeation properties. J. Membr. Sci. 379, 46-51 (2011). 237. Dong, X. et al. Synthesis of zeolitic imidazolate framework-78 molecular-sieve

membrane: defect formation and elimination. J. Mater. Chem. 22, 19222-19227 (2012). 238. Huang, A. & Caro, J. Covalent post-functionalization of zeolitic imidazolate framework

ZIF-90 membrane for enhanced hydrogen selectivity. Angew. Chem., Int. Ed. 50, 4979-4982 (2011).

239. Huang, A. et al. A highly permeable and selective zeolitic imidazolate framework ZIF-95

membrane for H2/CO2 separation. Chem. Commun. 48, 10981-10983 (2012). 240. Huang, A., Liu, Q., Wang, N. & Caro, J. Organosilica functionalized zeolitic imidazolate

framework ZIF-90 membrane for CO2/CH4 separation. Microporous Mesoporous Mater. 192, 18-22 (2014).

241. Hu, J. et al. Mixed-matrix membrane hollow fibers of Cu3(BTC)2 MOF and polyimide

for gas separation and adsorption. Ind. Eng. Chem. Res. 49, 12605-12612 (2010). 242. Casado-Coterillo, C. et al. Synthesis and characterisation of MOF/ionic liquid/chitosan

mixed matrix membranes for CO2/N2 separation. RSC Adv. 5, 102350-102361 (2015). 243. Bae, T.-H. & Long, J. R. CO2/N2 separations with mixed-matrix membranes containing

Mg2(dobdc) nanocrystals. Energy Environ. Sci. 6, 3565-3569 (2013). 244. Dong, X., Liu, Q. & Huang, A. Highly permselective MIL-68(Al)/matrimid mixed matrix

membranes for CO2/CH4 separation. J. Appl. Polym. Sci. 133 (2016).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 58: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

58

245. Perez, E. V., Balkus, K. J., Ferraris, J. P. & Musselman, I. H. Mixed-matrix membranes containing MOF-5 for gas separations. J. Membr. Sci. 328, 165-173 (2009).

246. Sabetghadam, A. et al. Metal organic framework crystals in mixed-matrix membranes:

Impact of the filler morphology on the gas separation performance. Adv. Funct. Mater. 26, 3154-3163 (2016).

247. Al-Maythalony, B. A. et al. Tuning the interplay between selectivity and permeability of

ZIF-7 mixed matrix membranes. ACS Appl. Mater. Interfaces, Article ASAP (2017). 248. Li, T., Pan, Y., Peinemann, K.-V. & Lai, Z. Carbon dioxide selective mixed matrix

composite membrane containing ZIF-7 nano-fillers. J. Membr. Sci. 425, 235-242 (2013). 249. Bushell, A. F. et al. Gas permeation parameters of mixed matrix membranes based on the

polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membr. Sci. 427, 48-62 (2013).

250. Wijenayake, S. N. et al. Surface cross-linking of ZIF-8/polyimide mixed matrix

membranes (MMMs) for gas separation. Ind. Eng. Chem. Res. 52, 6991-7001 (2013). 251. Nafisi, V. & Hägg, M.-B. Development of dual layer of ZIF-8/PEBAX-2533 mixed

matrix membrane for CO2 capture. J. Membr. Sci. 459, 244-255 (2014). 252. Nafisi, V. & Hägg, M.-B. Gas separation properties of ZIF-8/6FDA-durene diamine

mixed matrix membrane. Sep. Purif. Technol. 128, 31-38 (2014). 253. Dong, L. et al. Metal-organic framework-graphene oxide composites: A facile method to

highly improve the CO2 separation performance of mixed matrix membranes. J. Membr. Sci. 520, 801-811 (2016).

254. Japip, S., Wang, H., Xiao, Y. & Chung, T. S. Highly permeable zeolitic imidazolate

framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation. J. Membr. Sci. 467, 162-174 (2014).

255. Bae, T. H. et al. A high-performance gas-separation membrane containing

submicrometer-sized metal–organic framework crystals. Angew. Chem., Int. Ed. 49, 9863-9866 (2010).

256. Wang, C., Xie, Z., deKrafft, K .E. & Lin, W. Doping metal–organic frameworks for

water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13445-13454 (2011).

257. Fu, Y. et al. An amine-functionalized titanium metal–organic framework photocatalyst

with visible-light-induced activity for CO2 reduction. Angew. Chem. 124, 3420-3423 (2012).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 59: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

59

258. Wang, S., Yao, W., Lin, J., Ding, Z. & Wang, X. Cobalt imidazolate metal–organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem., Int. Ed. 53, 1034-1038 (2014).

259. Wang, D., Huang, R., Liu, W., Sun, D. & Li, Z. Fe-based MOFs for photocatalytic CO2

reduction: Role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 4, 4254-4260 (2014).

260. Chambers, M. B. et al. Photocatalytic carbon dioxide reduction with rhodium-based

catalysts in solution and heterogenized within metal–organic frameworks. ChemSusChem 8, 603-608 (2015).

261. Lee, Y., Kim, S., Kang, J.K. & Cohen, S.M. Photocatalytic CO2 reduction by a mixed

metal (Zr/Ti), mixed ligand metal–organic framework under visible light irradiation. Chem. Commun. 51, 5735-5738 (2015).

262. Fei, H., Sampson, M. D., Lee, Y., Kubiak, C. P. & Cohen, S. M. Photocatalytic CO2

reduction to formate using a Mn(I) molecular catalyst in a robust metal–organic framework. Inorg. Chem. 54, 6821-6828 (2015).

263. Sun, D. et al. Studies on photocatalytic CO2 reduction over NH2-UiO-66(Zr) and its

derivatives: Towards a better understanding of photocatalysis on metal–organic frameworks. Chem. Eur. J. 19, 14279-14285 (2013).

264. Sun, D. et al. Construction of a supported Ru complex on bifunctional MOF-253 for

photocatalytic CO2 reduction under visible light. Chem. Commun. 51, 2645-2648 (2015). 265. Zhang, S. et al. Hierarchical metal-organic framework nanoflowers for effective CO2

transformation driven by visible light. J. Mater. Chem. A 3, 15764-15768 (2015). 266. Li, L. et al. Effective visible-light driven CO2 photoreduction via a promising

bifunctional iridium coordination polymer. Chem. Sci. 5, 3808-3813 (2014). 267. Zhang, S., Li, L., Zhao, S., Sun, Z. & Luo, J. Construction of interpenetrated ruthenium

metal–organic frameworks as stable photocatalysts for CO2 reduction. Inorg. Chem. 54, 8375-8379 (2015).

268. Lee, Y., Kim, S., Fei, H., Kang, J. K. & Cohen, S. M. Photocatalytic CO2 reduction using

visible light by metal-monocatecholato species in a metal–organic framework. Chem. Commun. 51, 16549-16552 (2015).

269. Khaletskaya, K. et al. Fabrication of gold/titania photocatalyst for CO2 feduction based

on pyrolytic conversion of the metal–organic framework NH2-MIL-125(Ti) loaded with gold nanoparticles. Chem. Mater. 27, 7248-7257 (2015).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 60: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

60

270. Nakada, A., Koike, K., Maeda, K. & Ishitani, O. Highly efficient visible-light-driven CO2 reduction to CO using a Ru(II)–Re(I) supramolecular photocatalyst in an aqueous solution. Green Chem. 18, 139-143 (2016).

271. Xu, H.-Q. et al. Visible-light photoreduction of CO2 in a metal–organic framework:

boosting electron–hole separation via electron trap states. J. Am. Chem. Soc. 137, 13440-13443 (2015).

272. Sun, D., Liu, W., Qiu, M., Zhang, Y. & Li, Z. Introduction of a mediator for enhancing

photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chem. Commun. 51, 2056-2059 (2015).

273. Kajiwara, T. et al. Photochemical reduction of low concentrations of CO2 in a porous

coordination polymer with a ruthenium(II)–CO complex. Angew. Chem. 128, 2747-2750 (2016).

274. Wu, P. et al. Photoactive metal-organic framework and its film for light-driven hydrogen

production and carbon dioxide reduction. Inorg. Chem. 55, 8153-8159 (2016). 275. Kornienko, N. et al. Metal–organic frameworks for electrocatalytic reduction of carbon

dioxide. J. Am. Chem. Soc. 137, 14129-14135 (2015). 276. Kumar, R. S., Kumar, S. S. & Kulandainathan, M. A. Highly selective electrochemical

reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochem. Commun. 25, 70-73 (2012).

277. Hod, I. et al. Fe-porphyrin-based metal–organic framework films as high-surface

concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 5, 6302-6309 (2015).

278. Hinogami, R. et al. Electrochemical reduction of carbon dioxide using a copper rubeanate

metal organic framework. ECS Electrochem. Lett. 1, H17-H19 (2012). 279. Song, J. et al. MOF-5/n-Bu4NBr: An efficient catalyst system for the synthesis of cyclic

carbonates from epoxides and CO2 under mild conditions. Green Chem. 11, 1031-1036 (2009).

280. Miralda, C .M., Macias, E. E., Zhu, M., Ratnasamy, P. & Carreon, M. A. Zeolitic

imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate. ACS Catal. 2, 180-183 (2011).

281. Yang, L. et al. Zeolitic imidazolate framework-68 as an efficient heterogeneous catalyst

for chemical fixation of carbon dioxide. J. Mol. Catal. A: Chem. 392, 278-283 (2014).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 61: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

61

282. Kuruppathparambil, R. R. et al. A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates. Appl. Catal., B 182, 562-569 (2016).

283. Jose, T., Hwang, Y., Kim, D.-W., Kim, M.-I. & Park, D.-W. Functionalized zeolitic

imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl ether. Catal. Today 245, 61-67 (2015).

284. Jiang, Z. R., Wang, H., Hu, Y., Lu, J. & Jiang, H. L. Polar group and defect engineering

in a metal–organic framework: Synergistic promotion of carbon dioxide sorption and conversion. ChemSusChem 8, 878-885 (2015).

285. Bhin, K. M. et al. Catalytic performance of zeolitic imidazolate framework ZIF-95 for the

solventless synthesis of cyclic carbonates from CO2 and epoxides. J. CO2 Util. 17, 112-118 (2017).

286. Kleist, W., Jutz, F., Maciejewski, M. & Baiker, A. Mixed-linker metal-organic

frameworks as catalysts for the synthesis of propylene carbonate from propylene oxide and CO2. Eur. J. Inorg. Chem. 2009, 3552-3561 (2009).

287. Lescouet, T., Chizallet, C. & Farrusseng, D. The origin of the activity of amine-

functionalized metal–organic frameworks in the catalytic synthesis of cyclic carbonates from epoxide and CO2. ChemCatChem 4, 1725-1728 (2012).

288. Zhou, X., Zhang, Y., Yang, X., Zhao, L. & Wang, G. Functionalized IRMOF-3 as

efficient heterogeneous catalyst for the synthesis of cyclic carbonates. J. Mol. Catal. A: Chem. 361, 12-16 (2012).

289. Ren, Y. et al. Ni(salphen)-based metal–organic framework for the synthesis of cyclic

carbonates by cycloaddition of CO2 to epoxides. RSC Adv. 3, 2167-2170 (2013). 290. Feng, D. et al. Construction of ultrastable porphyrin Zr metal–organic frameworks

through linker elimination. J. Am. Chem. Soc. 135, 17105-17110 (2013). 291. Babu, R., Roshan, R., Kathalikkattil, A. C., Kim, D. W. & Park, D.-W. Rapid,

microwave-assisted synthesis of cubic, three-dimensional, highly porous MOF-205 for room temperature CO2 fixation via cyclic carbonate synthesis. ACS Appl. Mater. Interfaces 8, 33723-33731 (2016).

292. Kim, J., Kim, S.-N., Jang, H.-G., Seo, G. & Ahn, W.-S. CO2 cycloaddition of styrene oxide over MOF catalysts. Appl. Catal., A 453, 175-180 (2013).

293. Beyzavi, M. H. et al. A hafnium-based metal–organic framework as an efficient and

multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. J. Am. Chem. Soc. 136, 15861-15864 (2014).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats

Page 62: Supplementary information for - Nature 3(BTC) 2@4pico 5.8 298 1 66 Cu 3(BTC) 2@en 2.6 298 1 66 SUPPLEMENTARY INFORMATION In format provided by 5SJDLFUU et al . (doi:10.1038/natrevmats.2017.45)

62

294. Gao, W. Y. et al. Crystal engineering of an nbo topology metal–organic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem., Int. Ed. 53, 2615-2619 (2014).

295. Guillerm, V. et al. Discovery and introduction of a (3,18)-connected net as an ideal

blueprint for the design of metal–organic frameworks. Nat. Chem. 6, 673-680 (2014). 296. Liu, L. et al. Exceptionally robust In-based metal–organic framework for highly efficient

carbon dioxide capture and conversion. Inorg. Chem. 55, 3558-3565 (2016). 297. Ugale, B., Dhankhar, S.S. & Nagaraja, C. Construction of 3-fold-interpenetrated three-

dimensional metal–organic frameworks of nickel(II) for highly efficient capture and conversion of carbon dioxide. Inorg. Chem. 55, 9757-9766 (2016).

298. Babu, R. et al. Dual-porous metal organic framework for room temperature CO2 fixation

via cyclic carbonate synthesis. Green Chem. 18, 232-242 (2016). 299. Kathalikkattil, A. C. et al. A sustainable protocol for the facile synthesis of zinc-

glutamate MOF: An efficient catalyst for room temperature CO2 fixation reactions under wet conditions. Chem. Commun. 52, 280-283 (2016).

300. Verma, S., Baig, R. N., Nadagouda, M. N. & Varma, R. S. Titanium-based zeolitic

imidazolate framework for chemical fixation of carbon dioxide. Green Chem. 18, 4855-4858 (2016).

301. Cho, H.-Y., Yang, D.-A., Kim, J., Jeong, S.-Y. & Ahn, W.-S. CO2 adsorption and

catalytic application of Co-MOF-74 synthesized by microwave heating. Catal. Today 185, 35-40 (2012).

302. Ma, D. et al. Bifunctional MOF heterogeneous catalysts based on the synergy of dual

functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions. J. Mater. Chem. A 3, 23136-23142 (2015).

303. Yang, D.-A., Cho, H.-Y., Kim, J., Yang, S.-T. & Ahn, W.-S. CO2 capture and conversion

using Mg-MOF-74 prepared by a sonochemical method. Energy Environ. Sci. 5, 6465-6473 (2012).

304. Gao, W.-Y., Wojtas, L. & Ma, S. A porous metal–metalloporphyrin framework featuring

high-density active sites for chemical fixation of CO2 under ambient conditions. Chem. Commun. 50, 5316-5318 (2014).

305. Demir, S., Usta, S., Tamar, H. & Ulusoy, M. Solvent free utilization and selective

coupling of epichlorohydrin with carbon dioxide over zirconium metal-organic frameworks. Microporous Mesoporous Mater. 244, 251-257 (2017).

In format provided by Trickett et al. (doi:10.1038/natrevmats.2017.45)SUPPLEMENTARY INFORMATION

NATURE REVIEWS | MATERIALS www.nature.com/natrevmats