supersymmetric electroweak baryogenesis

30
Supersymmetric Electroweak Baryogenesis and Mixing in Transport Equations Thomas Konstandin in collaboration with T. Prokopec and M.G. Schmidt hep-ph/0410135 Stockholm, 18/02/05 – p.1/30

Upload: others

Post on 04-Feb-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supersymmetric Electroweak Baryogenesis

Supersymmetric ElectroweakBaryogenesis

and Mixing in Transport EquationsThomas Konstandin

in collaboration with T. Prokopec and M.G. Schmidt

hep-ph/0410135

Stockholm, 18/02/05 – p.1/30

Page 2: Supersymmetric Electroweak Baryogenesis

Outline

• Introduction to Electroweak Baryogenesis• EWB in the MSSM• Former Approaches• Transport Theory and EWB• Diffusion to the Quark Sector• Numerical Results• Conclusions

Stockholm, 18/02/05 – p.2/30

Page 3: Supersymmetric Electroweak Baryogenesis

IntroductionBaryogenesis is one of the cornerstones of theCosmological Standard Model.

The celebrated Sakharov conditions state the necessaryingredients for baryogenesis:

• C and CP violation• non-equilibrium• B-violation

B-violation is in the hot universe present due tosphaleron precesses.

C is violated in the electroweak sector of the SM

Stockholm, 18/02/05 – p.3/30

Page 4: Supersymmetric Electroweak Baryogenesis

Introduction

The sphaleron process:

• ∆B = 3, ∆L = 3, ∆NCS = 1

• B + L violating• B − L conserving• Exponentially suppressed

by the W mass• Topological effect of the

SU(2) gauge sector

Sphaleron bL

bL

tLsL

sL

cL

dL

dL

uLνe

νµ

ντ

Stockholm, 18/02/05 – p.4/30

Page 5: Supersymmetric Electroweak Baryogenesis

IntroductionCross-over versus electroweak phase transition:

<h>

VH<h>L at T >> 100 GeV

<h>

VH<h>L at T ~ 100 GeV

<h>

VH<h>L at T ~ 100 GeV

Phase transition Cross-over

<h>

VH<h>L at T = 0 GeV

Stockholm, 18/02/05 – p.5/30

Page 6: Supersymmetric Electroweak Baryogenesis

IntroductionElectroweak Baryogenesis:SHAPOSHNIKOV (’87)

Stockholm, 18/02/05 – p.6/30

Page 7: Supersymmetric Electroweak Baryogenesis

EWB in the MSSM

EWB in the SM excluded:• CP violation too small• No strong first order phase transition

EWB in the MSSM not excluded/disproved:• CP violation in the Higgsino/chargino sector• Strong first order phase transition in case of a light

stop

Stockholm, 18/02/05 – p.7/30

Page 8: Supersymmetric Electroweak Baryogenesis

EWB in the MSSM

In the MSSM case the Higgsino/chargino mass matrix is:

m =

(M2 g h2(z)

g h1(z) µc

)

with M2 and µc complex and

∂zm =

(0 g ∂zh2(z)

g ∂zh1(z) 0

)

and Tr(∂zMM † −M∂zM

†) ∼ Im(M2µ∗c) 6= 0 . CP-violation

is present on the tree level while in the SM ∂zM ∼M .

Stockholm, 18/02/05 – p.8/30

Page 9: Supersymmetric Electroweak Baryogenesis

EWB in the MSSM

Connection between macroscopic and microscopicscales:

• CP violation is a microscopic effect produced byinteraction of single quanta in the plasma.

• Transport is a macroscompic effect based onstatistical physics and particle densities.

Filling this gap means deriving semiclassical Boltzmannequations from first principles.

Stockholm, 18/02/05 – p.9/30

Page 10: Supersymmetric Electroweak Baryogenesis

Former Approaches

A) Via dispersion relations:CLINE, JOYCE, KAINULAINEN (’97, ’00)

The CP violating dispersion relation E(p, z) for a varyingmass m(z) = |m(z)|eiθ(z) is determined by the WKBmethod and put into the classical Boltzmann equation forthe particle density f :

E2 = ~p2 +m2 ± m2∂zθ

2pz(∂t + ∂pzE ∂z − ∂zE ∂pz)f = Coll.

This procedure does not contain mixing effects.

Stockholm, 18/02/05 – p.10/30

Page 11: Supersymmetric Electroweak Baryogenesis

Former ApproachesB) Via source terms:CARENA, MORENO, QUIROS, SECO, WAGNER (’00, ’02)

The additional term in the Schwinger-Dyson equation isinterpreted as an interaction term

The CP violating source is calculated from

jµ(Xµ) =1

τ

∫d4p

(2π)4pµδg(pµ, Xµ)

and put ’by hand’ into diffusion equations.

Stockholm, 18/02/05 – p.11/30

Page 12: Supersymmetric Electroweak Baryogenesis

Transport Theory and EWBC) Kadanoff-Baym Equations:

Statistical analogon to Schwinger-Dyson equations

(S−10 − ΣR)S< − Σ<SR =

1

2Σ<S> − 1

2Σ>S< = Coll.,

(S−10 − ΣR)A− ΣASR = 0,

and all functions depend on xµ and yµ. Used definitions:

S< := S+−, S> := S−+,

A := i2(S< − S>), SR := S++ − i

2(S< + S>),

Stockholm, 18/02/05 – p.12/30

Page 13: Supersymmetric Electroweak Baryogenesis

Transport Theory and EWB

Wigner space: Using

X = (x+ y)/2, r = (x− y)/2

and performing a Fourier transformation with respect to r

e−i♦{S−10 − ΣR, S

<} − e−i♦{Σ<, SR} = Coll.,

e−i♦{S−10 − ΣR,A} − e−i♦{ΣA, SR} = 0,

with2♦{A,B} := ∂XµA∂kµB − ∂kµA∂XµB,

all quantities become functions of Xµ and kµ.

Stockholm, 18/02/05 – p.13/30

Page 14: Supersymmetric Electroweak Baryogenesis

Transport Theory and EWBFree bosonic theory with a constant mass in equilibrium:• The constraint and kinetic equations are (KMS):

(k2 −m2)S< = 0, kµ∂µS< = 0

• And the solution reads:

iS< = 2π sign(k0) δ(k2 −m2) n(k0), n(k0) =1

exp(βk0)− 1

where we can read off the particle density∫

k0>0

d4k

(2π)42ik0 S

< =

∫d3k

(2π)3n(

√~k2 +m2)

Stockholm, 18/02/05 – p.14/30

Page 15: Supersymmetric Electroweak Baryogenesis

Transport Theory and EWBGradient expansion:

For space-time dependent mass matrices, theKadanoff-Baym equations can be expanded in gradientsas long as the background is weakly varying

∂k∂X ≈1

Tclw� 1 → e−i♦ ≈ 1− i♦

what is true in the MSSM (lw ≈ 20/Tc).

The simplest example for an transport equation in avarying background is for one flavour with real mass

(k2 −m2)S< = 0, (kµ∂µ −1

2(∂zm

2) ∂kz)S< = Coll..

Stockholm, 18/02/05 – p.15/30

Page 16: Supersymmetric Electroweak Baryogenesis

Transport Theory and EWB

After spin projection and in the wall frame:

2ik0gs0 − (2iskz + s∂z) g

s3 − 2imhEg

s1 − 2imaEg

s2 = 0

2ik0gs1 − (2skz − is∂z) gs2 − 2imhEg

s0 + 2maEg

s3 = 0

2ik0gs2 + (2skz − is∂z) gs1 − 2mhEg

s3 − 2imaEg

s0 = 0

2ik0gs3 − (2iskz + s∂z) g

s0 + 2mhEg

s2 − 2maEg

s1 = 0

with

E ≡ exp( i

2

←∂ z→∂ kz

), E† ≡ exp

(− i

2

←∂ kz→∂ z

).

Stockholm, 18/02/05 – p.16/30

Page 17: Supersymmetric Electroweak Baryogenesis

Transport Theory and EWB

In first order the kinetic equation is: g = geq + δg

kz∂zδgR +i

2

[m†m, δgR

]− 1

4

{(m†m)′, ∂kzδgR

}D

+k0ΓδgR − kz[V †′V, δgR

]= SR[geqR , g

eqL ]

• The source S depends on the lowest order solutionsgeqR and geqL

• We introduced a damping term in the time-likedirection to fulfill the boundary conditions at z → ±∞simultaneously

Stockholm, 18/02/05 – p.17/30

Page 18: Supersymmetric Electroweak Baryogenesis

Transport Theory and EWB

Sources:

SR[geqR , geqL ] = −kz

[V †′V, geq0 − g

eq3

]+

1

4

{(m†m)′, ∂kz(g

eq0 − g

eq3 )}T

− s

4k0

[m†′m−m†m′, g(0)

0

]T− s

4k0

{(m†m)′, g(0)

0

}T

where

geq3 ≡ V †geq3dV = (g(0)R − V †Ug

eqL U

†V )/2

geq0 ≡ V †geq0dV = (g(0)R + V †UgeqL U

†V )/2

Stockholm, 18/02/05 – p.18/30

Page 19: Supersymmetric Electroweak Baryogenesis

Transport Theory and EWB

Comments:

• The constraint equation is non-algebraic.• It is possible to decouple the kinetic equations, such

that it does not contain k0 explicitely and noinformation about the spectral function is needed.

• The kinetic equation for the deviation from thermalequilibrium in the mass eigenbasis reads g = geq + δg

kz∂zδg +i

2

[m2, δg

]+ · · · = S(geq)

Stockholm, 18/02/05 – p.19/30

Page 20: Supersymmetric Electroweak Baryogenesis

Transport Theory and EWBkz∂zδg + i

2

[m2, δg

]+ k0Γδg + · · · = S(geq)

• The term i2

[m2, δgR

]will lead to an oscillatory

behaviour of the off-diagonal particle densities,similar to neutrino oscillations with frequency∼ (m2

1 −m22)/kz. This can be seen using

i [σ3, σ1] = σ2, i [σ3, σ2] = −σ1

• Without this oscillation term CP would be conservedup to first order in gradients

• The phenomenological damping term k0Γδg has beenintroduced after identification of CP violating sources

Stockholm, 18/02/05 – p.20/30

Page 21: Supersymmetric Electroweak Baryogenesis

Transport Theory and EWB

Parameters chosen: M2 = 200 GeV, µc = 220 Gev

-2e-06

-1e-06

0

1e-06

2e-06

3e-06

4e-06

5e-06

6e-06

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

j/Tc3

z in GeV-1

j5j

j5(2)

Stockholm, 18/02/05 – p.21/30

Page 22: Supersymmetric Electroweak Baryogenesis

Transport Theory and EWB

Concluding remarks:

The first principle derivation of the transport equationsshows:

• Oscillations in the CP violating densities areimportant for the dynamics

• CP violation on the microscopic level has to beidentified before time-invariance is broken byphenomenological damping terms

and both effects suppress CP-violating effects relative tofromer approaches.

Stockholm, 18/02/05 – p.22/30

Page 23: Supersymmetric Electroweak Baryogenesis

Diffusion and the Sphaleron

Missing parts to determine the baryon asymmetry of theuniverse:

h~

q~

q

Y

and

Sphaleron bL

bL

tLsL

sL

cL

dL

dL

uLνe

νµ

ντ

Stockholm, 18/02/05 – p.23/30

Page 24: Supersymmetric Electroweak Baryogenesis

Diffusion and the Sphaleron

Diffusion equations:HUET,NELSON (’95)

vw n′Q = Dq n

′′Q − ΓY

[nQkQ− nTkT− nH + nh

kH

]− Γm

[nQkQ− nTkT

]

−6 Γss

[2nQkQ− nTkT

+ 9nQ + nTkB

]

vw n′T = Dq n

′′T + ΓY

[nQkQ− nTkT− nH + nh

kH

]+ Γm

[nQkQ− nTkT

]

+3 Γss

[2nQkQ− nTkT

+ 9nQ + nTkB

]

Stockholm, 18/02/05 – p.24/30

Page 25: Supersymmetric Electroweak Baryogenesis

Diffusion and the Sphaleron

Weak sphaleron:

nB = −3 Γwsvw

∫ 0

−∞dz nL(z) exp

(z

15Γws4 vw

)

and finally the baryon-to-entropy ratio is determined via

η =nBs, s ≈ 51.1 T 3

c .

and can be compared with

ηBBN ≈ 0.9× 10−10

Stockholm, 18/02/05 – p.25/30

Page 26: Supersymmetric Electroweak Baryogenesis

Numerical ResultsParameters chosen: M2 = 200 GeV, vw = 0.05,lw = 20/Tc, mA = 200 GeV, sin(φ)=1.0

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300 350 400 450 500

η / η

BB

N

µc

Stotal

Sa

Sb

Sc

Sd

Stockholm, 18/02/05 – p.26/30

Page 27: Supersymmetric Electroweak Baryogenesis

Numerical ResultsParameters chosen: vw = 0.05, lw = 20/Tc, mA = 200 GeV

100 200 300 400M2

100

200

300

400µ c

mA=200

Stockholm, 18/02/05 – p.27/30

Page 28: Supersymmetric Electroweak Baryogenesis

Pessimistic Conclusion

Supersymmetric baryogenesis is a rather unlikelyscenario based on• A light stop to acquire a strong first order phase

transition• The condition µc ≈M2 � 400 GeV of the a priori

unrelated parameters M2 and µc• A large CP-violating phase that hardly satisfies

experimental EDM bounds

Stockholm, 18/02/05 – p.28/30

Page 29: Supersymmetric Electroweak Baryogenesis

Optimistic Conclusion

We have been able to derive a formalism that reproducesthe qualitative behaviour of two existing methods in theirrange of applicability. In addition we found two additionalfeatures in the transport equations not taken into accountbefore.

Based on our analysis, supersymmetric baryogenesis isa scenario that• Can explain the BAU• Predicts µc ≈M2 � 400 GeV• Will be testable soon

Stockholm, 18/02/05 – p.29/30

Page 30: Supersymmetric Electroweak Baryogenesis

The End

Stockholm, 18/02/05 – p.30/30