summer study course on many-body quantum chaos

22
Summer study course on many-body quantum chaos Session 1: Overview of classical mechanics and Hamiltonian chaos Wednesday June 2 nd 2021 Pablo Poggi Center for Quantum Information and Control (CQuIC) University of New Mexico Background picture: Tent Rocks, New Mexico (USA)

Upload: others

Post on 18-Dec-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Summer study course on many-body quantum chaos

Summer study course on many-body quantum chaos

Session 1: Overview of classical mechanics and Hamiltonian chaosWednesday June 2nd 2021

Pablo PoggiCenter for Quantum Information and Control (CQuIC)University of New Mexico

Background picture: Tent Rocks, New Mexico (USA)

Page 2: Summer study course on many-body quantum chaos

2/17This course

โ€ข Format: self-study. Not a class. Not a seminar.

โ€ข Participants read materials about the topics they have chosen, and then use what they learned to introduce the topic and lead a discussion about it.

โ€ข Goals: learn about the fundamentals and get a taste of new developments in a fast-moving field. Accumulate material for future reference.

โ€ข Start at โˆผ 4 pm MDT โ€“ we go until 5.15 pm MDT including discussion

โ€ข Schedule and materials available online at http://www.unm.edu/~ppoggi/

โ€ข Presentations will be recorded each week

โ€ข UNM people can access recordings via Stream using their NetID

โ€ข People outside of UNM can accessa shared folder with therecordings via this link (password required)

Page 3: Summer study course on many-body quantum chaos

3/17Quantum chaos: why?

Chaos in classical dynamical systems - deterministic randomness and butterfly effect Extreme sensitivity of trajectories to changes in

initial conditionsQuantum systems

No trajectories, observables evolve quasi-periodically in time. No obvious characterization of chaos

Correspondence: generic properties of quantum systems whose classical counterpart is chaotic (level statistics, eigenstate properties, semiclassical analysis, connection to random matrix theory)

1980โ€™s: G. Casati, M. Berry, O. Bohigas, M. Giannoni, C. Schmit

โ€˜Quantum Chaologyโ€™

Complete characterization of quantum chaos?

โ€ข Dynamics: connection to ergodicity and thermalization in statistical mechanics

โ€ข Include systems without a well-defined classical limit. Quantum integrability.

โ€ข Properties of quantum features (i.e. entanglement) in generic (nonintegrable) quantum many body systems

1

2,3

5

4, 9, 10

Quantum information

Dynamics of interacting quantum systems out of equilibriumHard to simulate classically (in general)

Quantum computers to study quantum chaos!

Sensitivity of quantum states to external perturbations Reliable quantum information processing

Quantum metrology

Dynamics of quantum information and generation of randomness Scrambling and random circuits

6,7

8

Page 4: Summer study course on many-body quantum chaos

4/17Todayโ€™s menu

1. Classical mechanics and Hamiltonian formalism

2. Integrability in classical systems and KAM theorem

3. Area-preserving maps and transition to chaos

4. Lyapunov exponents

5. Ergodicity and mixing

Todayโ€™s presentation is mostly based on โ€œNonlinear dynamics and quantum chaos: an Introductionโ€ โ€“ by S. Wimberger

๐‘

๐‘ž

โ„˜

โ„˜

โ„˜

โ„˜ โ„˜โ„˜

๐’›โˆ—

๐‘Š+๐‘Šโˆ’

Page 5: Summer study course on many-body quantum chaos

5/17Hamiltonian systems

โ€ข Lagrangian formalism

โ€ข Hamiltonian formalism

โ€œconfiguration spaceโ€

โ€œphase spaceโ€(degrees of freedom)

Equations of motion

Or, in fancy form:

Symplectic matrix

Autonomous and non autonomous systems

โ€ข ๐ป(๐‘ž, ๐‘) time-independent โ‡’ ๐ป ๐‘ž ๐‘ก , ๐‘ ๐‘ก = ๐ป ๐‘ž 0 , ๐‘ 0 = ๐ธ

โ€ข ๐ป(๐‘ž, ๐‘, ๐‘ก) = ๐ธ(๐‘ก) explicitly time-dependent

โ€ข Mappable to an autonomous system in an extended phase space

โ€ข Can be visualized using surfaces of section (coming in a few slides)

๐œƒ

e.g. Particle in 1D

Pendulum ๐ป ๐œƒ, ๐‘๐œƒ =๐‘๐œƒ2

2๐‘šโˆ’๐‘š๐‘”๐ฟ ๐‘๐‘œ๐‘  ๐œƒ

๐œƒ

๐‘๐œƒ

๐ธ1

๐ธ2

๐ธ3

โ€ฆ

Liouvilleโ€™s theorem: time-evolution of a Hamiltonian system preserves phase space volume

Page 6: Summer study course on many-body quantum chaos

6/17Canonical transformations

โ€ข I can take my original Hamiltonian and transform coordinates

โ€ข Suppose we have a canonical transformation โ„ณ such that ๐ปโ€ฒ = ๐ปโ€ฒ(๐‘ท) (independent of Q)

and

โ€ข In this coordinates, the system is easily solvable

โ€ข โ„ณ has a generating function ๐‘€(๐’’,๐‘ท) such that ๐‘๐‘˜ = ๐œ•๐‘€/๐œ•๐‘ž๐‘˜ and ๐‘„๐‘˜ = ๐œ•๐‘€/๐œ•๐‘ƒ๐‘˜

We look for a transformation such that

Hamilton-Jacobi equation(one nonlinear partial differential equation)

โ€ข Relevant transformations are those which preserve the form of Hamiltonโ€™s EOMs:

Canonical transformations

โ€ข Transformation โ„ณ is canonical if and only if

โ€ข Poisson bracket:

Page 7: Summer study course on many-body quantum chaos

7/17Integrable systems

โ€ข Hamilton-Jacobi equation is hard to solve in general (except ๐‘› = 1, or separable systems)

โ€ข In some cases, this can be achieved via identifying constants of motion

Quantum integrability โ€“ session 4

Integrability: A Hamiltonian system with ๐‘› degrees of freedom and ๐‘  = ๐‘› constants of motion ๐‘๐‘– ๐’’, ๐’‘ is called

integrable

constants

involution

independent

โ€ข In that case, the canonical transformation gives a solution to the H-J equation with ๐‘ฐ๐’Š = ๐’„๐’Š

โ€ข Property: For ๐‘› = 1, all autonomous Hamiltonian systems are integrable: the required constant of motion is the energy ๐ป(๐‘ž, ๐‘)

โ€ข Dynamics of an integrable system is restricted to a n-dimensional hypersurface in the 2n-dimensional phase space, which can be thought of as torus

Motion is periodic if ๐Ž. ๐’Œ = 0 for some ๐’Œ โˆˆ โ„ค๐‘›

Page 8: Summer study course on many-body quantum chaos

8/17KAM theorem

How stable are the โ€˜regularโ€™ structures (invariant tori) of ๐‘ฏ๐ŸŽ?

Consequence: regular structures persist under the presence of a small (non-integrable) perturbation. In this regime, the system is โ€˜quasi-integrableโ€™ (constant of motion are only approximate)

Let

Integrable(๐œƒ, ๐ผ)

Non-integrable perturbation

โ€ข Kolmogorov โ€“ Arnold โ€“ Moser (KAM) theorem: for small enough ํœ€, there exists a torus for ๐ป with action angle variables

New torus is โ€˜nearโ€™ the old one, and they transform smoothly

Comment: for a given energy, a tori is fixed, and KAM assumes is nonresonant (motion is not periodic)

Chaosperturbation

strength

complete integrability

KAM regime โ€“quasi-integrability

wBreakdown of integrability and transition to chaos

Sketch of proof in Section 3.7.4 of โ€œNonlinear dynamics and quantum chaos: an Introductionโ€ by S. Wimberger

Page 9: Summer study course on many-body quantum chaos

9/17Poincarรฉ maps and transition to chaos

Poincarรฉ Map (โ„˜): Gives the evolution in the S.O.S. ๐ณ๐ง+๐Ÿ = โ„˜ ๐’›๐’

โ€ข We want to study the transition between regular and chaotic motion in simple cases: small ๐‘› (degrees of freedom)

โ€ข Recall all autonomous systems with ๐‘› = 1 are integrable โ€“ we need to add time-dependence

โ€ข Discrete dynamical system

โ€ข Time evolution is unique (each initial condition has its own trajectory)

โ€ข Inherits many properties from the continuous dynamical system.

โ€ข Area preserving map (as Liouvilleโ€™s theorem)

โ€ข If the system shows a periodic orbit for an initial condition ๐‘ง0 โˆˆ ๐‘†๐‘‚๐‘†, then

the map has a fixed point of some order ๐‘˜ at ๐’›๐ŸŽ: โ„˜๐’Œ ๐’›๐ŸŽ = ๐’›๐ŸŽ

๐‘

๐‘ž

โ„˜

โ„˜

โ„˜

โ„˜ โ„˜

โ„˜

Surface of section (SOS): a tool for visualizing trajectories in low dimensional systems and to identify differences between regular and chaotic motion

โ€ข n=1, non conservative and periodic

โ€ข n=2, conservative๐’’

Page 10: Summer study course on many-body quantum chaos

10/17

So, Tr(โ„ณ ๐’›โˆ— ) determines type of motion near fixed point:

Fixed points, stability and instability

Fixed points: โ„˜ ๐’›โˆ— = ๐’›โˆ— for ๐‘งโˆ— โˆˆ ๐‘†๐‘‚๐‘†

Near a fixed point, dynamics is given by the tangent map โ„ณ ๐’› =๐œ•โ„˜

๐œ•๐’›=

๐œ•โ„˜๐‘ž

๐œ•๐‘ž

๐œ•โ„˜๐‘ž

๐œ•๐‘

๐œ•โ„˜๐‘

๐œ•๐‘ž

๐œ•โ„˜๐‘

๐œ•๐‘

๐‘› = 1

โ„˜ ๐’›โˆ— + ๐›ฟ๐’› = ๐’›โˆ— +โ„ณ ๐’›โˆ— . ๐›ฟ๐ณ

= 1

Eigenvalues of โ„ณ ๐’›โˆ— :

solutions of ๐‘ฅ2 โˆ’ ๐‘‡๐‘Ÿ โ„ณ ๐‘ฅ + det โ„ณ = 0

Tr โ„ณ < 2 โ†’ ๐‘ฅยฑ = ๐‘’ยฑ๐‘–๐›ฝ

Elliptic fixed point

Tr โ„ณ = 2 โ†’ ๐‘ฅยฑ = ยฑ1Parabolic fixed point

๐’›โˆ—

Tr โ„ณ > 2 โ†’ ๐‘ฅยฑ = ๐‘’ยฑ๐œ†

Hyperbolic fixed point

unstable and stablemanifolds

๐’›โˆ—

๐‘Š+๐‘Šโˆ’

Very unstable under perturbations!

Separatrix: ๐‘Šโˆ’ and ๐‘Š+ coincide

pendulum๐œƒ

๐‘๐œƒ

rotation

libration

separatrix

Page 11: Summer study course on many-body quantum chaos

11/17Perturbed motion: all hell breaking looseWe introduce a nonintegrable perturbation:

๐‘Šโˆ’ and ๐‘Š+ coincide (separatrix) Fixed ๐ผ

๐‘Šโˆ’ and ๐‘Š+ intersect (homoclinic points) Variable ๐ผ (broken integrability)

โ€ข A homoclinic point (HP) is a point in the SOS which belongs to both ๐‘Šโˆ’ and ๐‘Š+

โ€ข Since ๐‘Šยฑ are โ€˜invariant curvesโ€™ โ„˜ ๐‘Šยฑ = ๐‘Šยฑ, then if ๐‘ง is a HP โ‡’ โ„˜(๐‘ง) is a HP. So: there is an infinite sequence of them, bunched up together

โ€ข Points in the either ๐‘Šยฑ which are not HPโ€™s, also evolve according to โ„˜, area preserving map

Complicated motion, highly unstable with large

deviations with respect to initial conditions! โ€“ onset of

Chaos

โ„˜

Fixed point

Homoclinic points

โ€ฆ

Page 12: Summer study course on many-body quantum chaos

12/17Homoclinic tangle and stochastic layer

Homoclinic tangle

From S. Wimberger, Nonlinear dynamics and quantum chaos: an Introduction From R. Ramirez-Ros, Physica D: Nonlinear Phenomena, 210 149-179 (2005)

Stochastic layer: complex motion around the (former) separatrix, makes the SOS trajectories look like randomly distributed points

Driven pendulum๐œ– = 0 ๐œ– > 0

A. Chernikov, R. Zagdeev and G. Zaslavsky, โ€œChaos: how regular can it be?โ€ Physics Today 41, 11, 27 (1988)

Page 13: Summer study course on many-body quantum chaos

13/17Transition to chaos in a kicked topPhase space variables are the components of the angular

momentum ๐‘ฑ = (๐ฝ๐‘ฅ , ๐ฝ๐‘ฆ , ๐ฝ๐‘ง). Also, ๐‘ฑ2 = ๐ฝ๐‘ฅ2 + ๐ฝ๐‘ฆ

2 + ๐ฝ๐‘ง2 is

conserved

Phase space dimension = 2 โ‡’ ๐’ = ๐Ÿperturbation

F. Haake, M. Kus and R. Scharf, Classical and quantum chaos for a kicked top. Z. Phys. B โ€“ Cond. Mat. 65, 381-395 (1987)

Page 14: Summer study course on many-body quantum chaos

14/17Lyapunov exponents

exponential separation of nearby phase space trajectoriesChaos

โ€ข Dynamics near a fixed point โ„˜ ๐’›โˆ— + ๐›ฟ๐’› = ๐’›โˆ— +โ„ณ ๐’›โˆ— . ๐›ฟ๐ณ

โ€ข Hyperbolic FP: โ„ณ ๐’›โˆ— = ๐‘’๐œ† 00 ๐‘’โˆ’๐œ†

(in normal coordinates)

โ€ข After ๐‘› time steps: โ„˜๐‘› = ๐’›โˆ— + ๐‘’๐‘›๐œ†๐›ฟ๐’›๐’– + ๐‘’โˆ’๐‘›๐œ†๐›ฟ๐’›๐’”

Lyapunov exponent (๐€)

More generally:

โ€ข Maximal Lyapunov exponent ฮ› ๐’› = lim๐‘›โ†’โˆž

lim๐›ฟ๐’›โ†’0

1

๐‘›log

| โ„˜๐‘› ๐’›+๐›ฟ๐’› โˆ’โ„˜๐‘› ๐’› |

| ๐›ฟ๐’› |

โ€ข For a generic ๐›ฟ๐’›, ฮ› ๐’› = max. eigenvalue of โ„ณ ๐’›

โ€ข If I take a set of {๐›ฟ๐’›๐’Š}, I get a โ€˜Lyapunov spectrumโ€™ {๐œ†๐‘–}

โ€ข In a globally chaotic regime, ฮ› ๐’› is mostly independent of initial condition

OTOCs and scrambling โ€“ Sessions 6 and 7 From M. Muรฑoz et al PRLPhys. Rev. Lett. 124, 110503 (2020)

Kicked top

Page 15: Summer study course on many-body quantum chaos

15/17Ergodicity and mixing

Some notation: ๐‘‡: Dynamical system ๐‘‡: ๐บ ร— ฮฉ โ†’ ฮฉ ๐บ โˆผ time ฮฉ โˆผ phase space ๐‘‡๐‘ก ๐œ” โˆˆ ฮฉ

๐œˆ: Measure such that ๐œˆ(ฮฉ) = 1, invariant under ๐‘‡: ๐œˆ Tt A = ๐œˆ(A)

Ergodicity A dynamical system is ergodic if all ๐‘ป-invariant sets (๐‘ป๐’• ๐‘จ = ๐‘จ) are such that either ๐‚ ๐€ = ๐Ÿ ๐’๐’“ ๐ŸŽ

i.e, there cannot be an invariant set which is not a fixed point, or the whole space

Phase space average = time-average: where Orbits fill the whole available phase space

Note that: Ergodicity Chaos Integrable systems can lead to ergodicity in the available phase space (torus)

Mixing A dynamical system is (strongly) mixing if for any two sets ๐‘จ,๐‘ฉ โŠ† ๐›€,

๐ด

๐‘‡๐‘ก(๐ด)

ฮฉ

๐‘‡๐‘ก(๐ด)

ฮฉ๐ด

Not mixing MixingMixing โ‡’ Ergodicity Chaos โ‡’ Mixing

Thermalization in closed quantum systems โ€“ Session 5

Page 16: Summer study course on many-body quantum chaos

16/17Ergodic hierarchy and correlation functions

Take a correlation function

with functions in ฮฉ

and

Ergodic hierarchy

Ergodic Weak Mixing Mixing

๐‘ช(๐’•) = ๐ŸŽ |๐‘ช ๐’• | = ๐ŸŽ ๐‘ช(๐’•) โ†’ ๐ŸŽโŠƒ โŠƒ โŠƒ โ€ฆ

โ€ข Analyzing the behavior of correlation functions is useful for systems with many d.o.f.s where is hard to characterize chaos โ€˜globallyโ€™ (Lyapunovs, etc)

From P. Claeys and A. Lamacraft, โ€œErgodic and Nonergodic Dual-Unitary Quantum Circuits with Arbitrary Local Hilbert Space Dimensionโ€ PRL 126 100603 (2021)

Page 17: Summer study course on many-body quantum chaos

17/17Summary

โ€ข Integrable systems are characterized by conserved quantities which allow for the dynamics to be solved using action-angle variables. Motion lies on invariant tori

โ€ข Upon addition of a nonintegrable perturbation, tori persist (KAM theorem) for a while. After that, proliferation of instabilities leads to complex motion, and hypersensitivity to initial conditions

โ€ข Global chaotic behavior can be characterized at short times via Lyapunov exponents, and for long times via mixing and ergodicity

References

โ€ข Main reference: Nonlinear dynamics and quantum chaos: an Introduction โ€“ by Sandro Wimberger

โ€ข S. Aravinda et al, From dual-unitary to quantum Bernoulli circuits: Role of the entangling power in constructing a quantum ergodic hierarchy, arxiv:2101.04580.

โ€ข A. Chernikov, R. Zagdeev and G. Zaslavsky, Chaos: how regular can it be?. Physics Today 41, 11, 27 (1988)

โ€ข Notes from the course โ€œChaos and Quantum Chaos 2021โ€ at TU Dresden, taught by Roland Ketzmerick. Some materials publicly available in English at https://tu-dresden.de/mn/physik/itp/cp/studium/lehrveranstaltungen/chaos-and-quantum-chaos-2021?set_language=en

Next week: Introduction to quantum chaos. Some good reads to get some background:

โ€ข F. Haake โ€“ โ€˜Quantum signatures of chaosโ€™ โ€“ Chapter 1

โ€ข M. Berry โ€“ โ€˜Chaos and the semiclassical limit of quantum mechanicsโ€™ (link)

โ€ข D. Poulin โ€“ โ€˜A rough guide to quantum chaosโ€™ (link)

Page 18: Summer study course on many-body quantum chaos

Extra stuff

Page 19: Summer study course on many-body quantum chaos

Autonomous and non autonomous systems

โ€ข ๐ป(๐‘ž, ๐‘) time-independent โ‡’ ๐ป ๐‘ž ๐‘ก , ๐‘ ๐‘ก = ๐ป ๐‘ž 0 , ๐‘ 0 = ๐ธ

โ€ข ๐ป(๐‘ž, ๐‘, ๐‘ก) = ๐ธ(๐‘ก) explicitly time-dependent

๐‘โ€ฒ = โˆ’๐ธ, ๐‘๐‘žโ€ฒ = (๐‘ก, ๐‘ž)

Can be mapped to an autonomous system in an extended phase

space

โ„‹ ๐‘โ€ฒ, ๐‘žโ€ฒ = ๐ป ๐‘ž, ๐‘, ๐‘ก โˆ’ ๐ธ(๐‘ก)๐‘‘๐‘žโ€ฒ

๐‘‘๐œ=

๐œ•โ„‹

๐œ•๐‘โ€ฒ,๐‘‘๐‘โ€ฒ

๐‘‘๐œ= โˆ’

๐œ•โ„‹

๐œ•๐‘žโ€ฒ

๐‘ž0

๐‘0

New Hamiltonian

New EOMs

This leads to

โ€ข๐‘‘๐‘ž0

๐‘‘๐œ=

๐œ•โ„‹

๐œ•๐‘0โ†”

๐‘‘๐‘ก

๐‘‘๐œ= โˆ’

๐œ•โ„‹

๐œ•๐ธ= 1 โ†’ ๐œ = ๐‘ก + ๐‘๐‘œ๐‘›๐‘ ๐‘ก.

โ€ข๐‘‘๐‘0

๐‘‘๐œ= โˆ’

๐œ•โ„‹

๐œ•๐‘ž0โ†” โˆ’

๐‘‘๐ธ

๐‘‘๐‘ก= โˆ’

๐œ•โ„‹

๐œ•๐‘ก

This variable becomes โ€˜trivialโ€™

One extra independent variableโ€œone and a half

degrees of freedomโ€

Also แˆถ๐‘ž =๐œ•๐ป

๐œ•๐‘, แˆถ๐‘ = โˆ’

๐œ•๐ป

๐œ•๐‘ž

for the old variables

Page 20: Summer study course on many-body quantum chaos
Page 21: Summer study course on many-body quantum chaos

Phase space variables are the components of the angular momentum ๐‘ฑ = (๐ฝ๐‘ฅ , ๐ฝ๐‘ฆ , ๐ฝ๐‘ง). Also, ๐‘ฑ2 = ๐ฝ๐‘ฅ

2 + ๐ฝ๐‘ฆ2 + ๐ฝ๐‘ง

2 is

conserved

Phase space dimension = 2 โ‡’ ๐’ = ๐Ÿperturbation

Page 22: Summer study course on many-body quantum chaos

Existence / separability of H-J equations and integrability

From: โ€˜Integrable vs non-integrable systemsโ€™ on Physics.StackExchange. Seealso: โ€˜Constants of motion vs integrals of

motion vs first integralsโ€™ onPhysics.StackExchange