summations cosc 3101, prof. j. elder 2 recall: insertion sort

63
Summations n i=1 Evaluating f(i)

Upload: barbra-malone

Post on 18-Jan-2016

224 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

Summationsn

i=1

Evaluating f (i)

Page 2: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 2

Recall: Insertion Sort

2

2

( 1)Worst case (reverse order): : 1 ( ) ( )

2

n

jj

n nt j j T n n

Page 3: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 3

∑i=1..n i = 1 + 2 + 3 + . . . + n

= ?

Arithmetic Sum

Page 4: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 4

1 + 2 + 3 + . . . + n-1 + n = S

n + n-1 + n-2 + . . . + 2 + 1 = S

(n+1) + (n+1) + (n+1) + . . . + (n+1) + (n+1) = 2S

n (n+1) = 2S

2

1)(n n S

Page 5: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 5

Let’s restate this argument using a

geometric representation

Algebraic argument

1 + 2 + 3 + . . . + n-1 + n = S

n + n-1 + n-2 + . . . + 2 + 1 = S

(n+1) + (n+1) + (n+1) + . . . + (n+1) + (n+1) = 2S

n (n+1) = 2S

Page 6: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 6

1 2 . . . . . . . . n

= number of blue dots.

1 + 2 + 3 + . . . + n-1 + n = S

n + n-1 + n-2 + . . . + 2 + 1 = S

(n+1) + (n+1) + (n+1) + . . . + (n+1) + (n+1) = 2S

n (n+1) = 2S

Page 7: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 7

1 2 . . . . . . . . n

= number of blue dots

= number of black dots

n . . . . . . . 2 1

1 + 2 + 3 + . . . + n-1 + n = S

n + n-1 + n-2 + . . . + 2 + 1 = S

(n+1) + (n+1) + (n+1) + . . . + (n+1) + (n+1) = 2S

n (n+1) = 2S

Page 8: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 8

n+1 n+1 n+1 n+1 n+1

n

n

n

n

n

n

There are n(n+1) dots in the grid

(n+1) + (n+1) + (n+1) + . . . + (n+1) + (n+1) = 2S

n (n+1) = 2S

= number of blue dots

= number of black dots

1 + 2 + 3 + . . . + n-1 + n = S

n + n-1 + n-2 + . . . + 2 + 1 = S

Page 9: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 9

n+1 n+1 n+1 n+1 n+1

n

n

n

n

n

n

Note = (# of terms · last term))

(n+1) + (n+1) + (n+1) + . . . + (n+1) + (n+1) = 2S

n (n+1) = 2S

= number of blue dots

= number of black dots

1 + 2 + 3 + . . . + n-1 + n = S

n + n-1 + n-2 + . . . + 2 + 1 = S

2

1)(n n S

Page 10: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 10

∑i=1..n i = 1 + 2 + 3 + . . . + n

= (# of terms · last term)

Arithmetic Sum

True whenever terms increase slowly

Page 11: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 11

∑i=0..n 2i = 1 + 2 + 4 + 8 +. . . + 2n

= ?

Geometric Sum

Page 12: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 12

Geometric Sum

Page 13: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 13

∑i=0..n 2i = 1 + 2 + 4 + 8 +. . . + 2n

= 2 · last term - 1

Geometric Sum

Page 14: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 14

∑i=0..n ri = r0 + r1 + r2 +. . . + rn

= ?

Geometric Sum

Page 15: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 15

S

Sr r r r ... r r

S Sr 1 r

Sr 1

r 1

2 3 n n 1

n 1

n 1

1 r r r ...2 3 rn

Geometric Sum

Page 16: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 16

∑i=0..n rir 1

r 1

n 1

Geometric Sum

θ(rn)Biggest TermWhen r>1

Page 17: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 17

∑i=0..n ri = r0 + r1 + r2 +. . . + rn

= (biggest term)

Geometric Increasing

True whenever terms increase quickly

Page 18: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 18

∑i=0..n ri

Geometric Sum

When r<1?1 r

1 r

n 1

Page 19: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 19

∑i=0..n ri

Geometric Sum

1 r

1 r

n 1

θ(1)When r<1

Biggest Term

Page 20: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 20

∑i=0..n ri = r0 + r1 + r2 +. . . + rn

= (1)

Bounded Tail

True whenever terms decrease quickly

Page 21: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 21

f(i) = 1∑i=1..n f(i) = n

n

Sum of Shrinking Function

Page 22: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 22

f(i) = 1/2i

Sum of Shrinking Function

1

1 11 (1)

2 2

n

i ni

Page 23: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 23

f(i) = 1/i∑i=1..n f(i) = ?

n

Sum of Shrinking Function

Page 24: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 24

∑i=1..n 1/i

= 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + …+ 1/n

= ?

Harmonic Sum

Page 25: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

Harmonic Sum

2 2 21 1

From this it f ollows that

1 1 1log log ( 1) 1 (log )

2

n n

i i

n n ni i

Page 26: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 26

∑i=1..n 1/i

= 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + …+ 1/n

= (log(n))

Harmonic Sum

Page 27: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 27

Approximating Sum by Integrating

The area under the curve approximates the sum

∑i=1..n f(i) ≈ ∫x=1..n f(x) dx

Page 28: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 28

Approximating Sums by Integrating: Harmonic Sum

11 1

1 1log log

nnn

i

dx x ni x

Page 29: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 29

1 1

0 0

1( ) ( )

1

(number of terms last term)

(True whenever terms increase slowly)

nnc c c c c

i

i x dx n n n nc

Approximating Sums by Integrating: Arithmetic Sums

Page 30: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 30

0 00

1 1( 1) ( )

ln ln

(last term)

(True whenever terms increase rapidly)

nnni x x n n

i

b b dx b b bb b

Approximating Sums by Integrating: Geometric Sum

Page 31: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 31

Adding Made Easy

We will now classify (most) functions f(i) into four classes:

–Geometric Like–Arithmetic Like–Harmonic–Bounded Tail

For each class, we will give an easy rule for approximating its sum θ( ∑i=1..n f(i) )

Page 32: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 32

Adding Made Easy

f(n)

n

Harmonic

( ) (log )f n n

Page 33: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 33

If the terms f(i) grow sufficiently quickly, then the sum will

be dominated by the largest term.

f(n) 2Ω(n) ∑i=0..n f(i) = θ(f(n))

Geometric Like:

Classic example:

∑i=0..n 2i = 2n+1-1 ≈ 2 f(n)

Page 34: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 34

If the terms f(i) grow sufficiently quickly, then the sum will

be dominated by the largest term.

f(n) 2Ω(n) ∑i=1..n f(i) = θ(f(n))

Geometric Like:

For which functions f(i) is this true?

How fast and how slow can it grow?

Page 35: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 35

∑i=1..n (1000)i ≈ 1.001(1000)n

= 1.001 f(n)

Even bigger?

f(n) 2Ω(n) ∑i=1..n f(i) = θ(f(n))

Geometric Like:

Page 36: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 36

2n2i

∑i=1..n 22 ≈ 22 = 1f(n)

No Upper Extreme:

Even bigger!

f(n) 2Ω(n) ∑i=1..n f(i) = θ(f(n))

Geometric Like:

Page 37: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 37

f(n) 2Ω(n) ∑i=1..n f(i) = θ(f(n))

Geometric Like:

3 ( )100 100

2 2e.g. ( ) 8 ( ( )) ( ) 2

(The strongest f unction determines the class.)

n nnf n n f n

n n

Page 38: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 38

f(n) 2Ω(n) ∑i=1..n f(i) = θ(f(n))

Geometric Like:

32 41

1

2

3 4

( )

1

In general, if ( ) log

where

1

,

Then ( ) 2

and ( ) ( ( ))

cc n c

n

n

i

f n c b n n

b

c

c

c c

f n

f i f n

Page 39: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 39

Do All functions in 2Ω(n) have this property?Maybe not.

f(n) 2Ω(n) ∑i=1..n f(i) = θ(f(n))Geometric Like:

Page 40: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 40

Functions that oscillate with exponentially increasing amplitude do not have this property.

f(n) 2Ω(n) ∑i=1..n f(i) = θ(f(n))Geometric Like:

Page 41: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 41

Functions expressed with +, -, , , exp, log

do not oscillate continually.

They are well behaved for sufficiently large n.

These do have this property.

f(n) 2Ω(n) ∑i=1..n f(i) = θ(f(n))Geometric Like:

Page 42: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 42

Adding Made Easy

f(n)

n

Page 43: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 43

If the terms f(i) are increasing or decreasing relatively slowly, then the sum is roughly the number of terms, n, times the final value.

Example 1:

∑i=1..n 1 = n · 1

f(n) = nθ(1)-1 ∑i=1..n f(i) = θ(n·f(n))Arithmetic Like:

Page 44: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 44

If the terms f(i) are increasing or decreasing relatively slowly, then the sum is roughly the number of terms, n, times the final value.

Example 2:

∑i=1..n i = 1 + 2 + 3 + . . . + n

f(n) = nθ(1)-1 ∑i=1..n f(i) = θ(n·f(n))Arithmetic Like:

1

( 1)2n n

Page 45: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 45

Note that the final term is within a constant multiple of the middle term:

Thus half the terms are roughly the same and the sum is roughly the number of terms, n, times this value

∑i=1..n i =

1 + . . . + n/2 + . . . + n

∑i=1..n i = θ(n · n)

f(n) = nθ(1)-1 ∑i=1..n f(i) = θ(n·f(n))Arithmetic Like:

( )

2( / 2) / 2

f n n

f n n

Page 46: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 46

Is the statement true for this function?

∑i=1..n i2 = 12 + 22 + 32 + . . . + n2

f(n) = nθ(1)-1 ∑i=1..n f(i) = θ(n·f(n))Arithmetic Like:

Page 47: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 47

Again half the terms are roughly the same.

∑i=1..n i =

12 + . . . + (n/2)2 + . . . + n2

1/4 n2

f(n) = nθ(1)-1 ∑i=1..n f(i) = θ(n·f(n))Arithmetic Like:

∑i=1..n i2 = θ(n · n2)

Page 48: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 48

area of small square

∑i=1..n f(i)

≈ area under curve

area of big square

f(n) = nθ(1)-1 ∑i=1..n f(i) = θ(n·f(n))Arithmetic Like:

= n/2 · f(n/2)

n · f(n)

Page 49: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 49

∑i=1..n i2 = 12 + 22 + 32 + . . . + n2

f(n) = nθ(1)-1 ∑i=1..n f(i) = θ(n·f(n))Arithmetic Like:

f(n) = n2

f(n/2) = θ(f(n))

The key property is

= ?

Page 50: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 50

Adding Made Easy

Half done

f(n)

n

Page 51: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 51

f(i) = 1∑i=1..n f(i) = θ(n)

n

Sum of Shrinking Function

Page 52: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 52

f(i) = ?∑i=1..n f(i) = θ(n1/2)

n

Sum of Shrinking Function

1/i1/2 (1) 1( )

1(1)

2

f n n

Page 53: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 53

f(i) = 1/i∑i=1..n f(i) = θ(log n)

n

Sum of Shrinking Function

Page 54: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 54

Does the statement hold for the Harmonic Sum?

∑i=1..n 1/i = 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + … + 1/n

∑i=1..n f(i)

= θ(n · f(n))

= ∑i=1..n 1/i = θ(log n)

θ(1) = θ(n · 1/n)≠

No the statement does not hold!

f(n) = nθ(1)-1 ∑i=1..n f(i) = θ(n·f(n))Arithmetic Like:

(1) 11n

n

Page 55: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 55

Adding Made Easy

not included

Page 56: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 56

∑i=1..n 1 = n · 1 = n · f(n)

Intermediate Case:

Lower Extreme: ∑i=1..n 1/i0.9999

= θ(n0.0001) = θ(n · f(n))

Upper Extreme: ∑i=1..n i1000 = 1/1001 n1001

= 1/1001 n · f(n)

f(n) = nθ(1)-1 ∑i=1..n f(i) = θ(n·f(n))Arithmetic Like:

Page 57: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 57

Adding Made Easy

Done

Page 58: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 58

Adding Made Easy

Page 59: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 59

If the terms f(i) decrease towards zerosufficiently quickly,

then the sum will be a constant.

The classic example ∑i=0..n 1/2i = 1 + 1/2 + 1/4 + 1/8 + … < 2.

f(n) n-1-Ω(1) ∑i=1..n f(i) = θ(1)Bounded Tail:

Page 60: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 60

Upper Extreme: ∑i=1..n 1/i1.0001

= θ(1)

No Lower Extreme:2i

∑i=1..n 22 = θ(1).

1

All functions in between.

f(n) n-1-Ω(1) ∑i=1..n f(i) = θ(1)Bounded Tail:

Page 61: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 61

Adding Made Easy

Done

Page 62: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

COSC 3101, PROF. J. ELDER 62

Summary

• Geometric Like: If f(n) 2Ω(n), then ∑i=1..n f(i) = θ(f(n)).

• Arithmetic Like: If f(n) = nθ(1)-1, then ∑i=1..n f(i) = θ(n · f(n)).

• Harmonic: If f(n) = 1/n , then ∑i=1..n f(i) = θ(logn).

• Bounded Tail: If f(n) n-1-Ω(1), then ∑i=1..n f(i) = θ(1).

(For +, -, , , exp, log functions f(n))

Page 63: Summations COSC 3101, PROF. J. ELDER 2 Recall: Insertion Sort

End of Lecture 3

March 11, 1009