subject: phase 1 design of retaining wall 6 – improvements

81
June 4, 2020 Mr. Robert G. Campbell (RGC) Robert G. Campbell & Associates 7523 Taggart Lane Knoxville, TN 37938 Subject: Phase 1 Design of Retaining Wall 6 – Improvements to Cherokee Trail/Alcoa Highway Interchange, Knoxville, TN Schnabel Project Number 20C55009.00 Dear Mr. Campbell: SCHNABEL ENGINEERING, LLC has completed our Phase 1 feasibility evaluation of the referenced Wall 6 design according to the scope of work listed in our proposal dated May 4, 2020. The following report includes brief descriptions of each of the components of our work. Further, appended to this report are preliminary schematic drawings, and the results of our cantilever soldier pile analyses, Geofoam backfill analyses and global stability analyses. BACKGROUND TDOT is in the process of construction/planning of the widening of Alcoa Highway in Knoxville, Tennessee. A key part of this widening are improvements at the Cherokee Trail interchange which provides critical access to UT Hospital. Retaining Wall 6 is required for the improvements and will vary in height from about 3.5 feet up to 29 feet, and includes a three sided bridge abutment fill with wall heights up to about 41 feet. Based on a review of the geotechnical report for the project, we understand that the subsurface conditions include intervals of very soft clay soils and a highly variable top of rock profile (i.e., pinnacles and slots) indicative of karst topography. It was anticipated by TDOT that a retaining wall to support the required wall heights would include large piles, tie-back anchors and/or Mechanically Stabilized Earth (MSE) walls. Further, due to concerns regarding the potential for large settlements of the clay soils under the fill heights, TODT anticipated the need for a minimum 90 day preload of the soils to expedite soil consolidation. We were contacted by TDOT/RGC with a request to examine the use of lightweight backfill (Geofoam) for the planned retaining walls versus tie-back supported soldier piles and/or MSE walls. The idea was to significantly reduce the need for anchors/large piles and possibly eliminate the need for preloading the soft subsoils at the site. Phase 1 of the project is proposed to be a feasibility review for the Geofoam backfill Option. Phase 2 is proposed to be a detailed design of the retaining walls with Geofoam backfill.

Upload: others

Post on 03-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

June 4, 2020 Mr. Robert G. Campbell (RGC) Robert G. Campbell & Associates 7523 Taggart Lane Knoxville, TN 37938
Subject: Phase 1 Design of Retaining Wall 6 – Improvements to Cherokee Trail/Alcoa Highway Interchange, Knoxville, TN Schnabel Project Number 20C55009.00
Dear Mr. Campbell: SCHNABEL ENGINEERING, LLC has completed our Phase 1 feasibility evaluation of the referenced Wall 6 design according to the scope of work listed in our proposal dated May 4, 2020. The following report includes brief descriptions of each of the components of our work. Further, appended to this report are preliminary schematic drawings, and the results of our cantilever soldier pile analyses, Geofoam backfill analyses and global stability analyses. BACKGROUND TDOT is in the process of construction/planning of the widening of Alcoa Highway in Knoxville, Tennessee. A key part of this widening are improvements at the Cherokee Trail interchange which provides critical access to UT Hospital. Retaining Wall 6 is required for the improvements and will vary in height from about 3.5 feet up to 29 feet, and includes a three sided bridge abutment fill with wall heights up to about 41 feet. Based on a review of the geotechnical report for the project, we understand that the subsurface conditions include intervals of very soft clay soils and a highly variable top of rock profile (i.e., pinnacles and slots) indicative of karst topography. It was anticipated by TDOT that a retaining wall to support the required wall heights would include large piles, tie-back anchors and/or Mechanically Stabilized Earth (MSE) walls. Further, due to concerns regarding the potential for large settlements of the clay soils under the fill heights, TODT anticipated the need for a minimum 90 day preload of the soils to expedite soil consolidation. We were contacted by TDOT/RGC with a request to examine the use of lightweight backfill (Geofoam) for the planned retaining walls versus tie-back supported soldier piles and/or MSE walls. The idea was to significantly reduce the need for anchors/large piles and possibly eliminate the need for preloading the soft subsoils at the site. Phase 1 of the project is proposed to be a feasibility review for the Geofoam backfill Option. Phase 2 is proposed to be a detailed design of the retaining walls with Geofoam backfill.
Robert G. Campbell & Associates Phase 1 Design of Retaining Wall 6
Project No. 20C55009.00 / June 4, 2020 Page 2 Schnabel Engineering, LLC
WALL 6 DESIGN The preliminary sections provided to us are in project roadway stationing (project station starting at 116+00, extending to station 121+50 and then to the bridge abutment) and we have also included Wall 6 stations on the sections (starting at a corresponding station of 7+97.26 and extending to station 15+26.15, or roughly 729 linear feet in face view). For discussion purposes we will refer to the project stationing in this report. The current staging of the Wall 6 retaining wall includes Phase 1 construction segments from project station 116+00 to 119+00 and from station 120+50 to the new bridge abutment. Phase 3 would be a fill-in segment between stations 119+00 to 120+50. We anticipate that the retaining wall from station 116+00 to 119+00 will consist of a soldier pile and lagging cantilever wall as originally envisioned by TDOT. This wall will initially support a below grade cut up to a height of about 12 feet. Further, traffic loads along Cherokee Trail will need to be maintained for this segment. The eventual retaining wall in this segment will also include an above grade segment raising the retaining wall to a maximum total height of about 19 feet (i.e., a 7 feet raise). We anticipate that the tops of the soldier piles will be structurally tied to the load transfer platform to help control pile deflections. Given this large height, significant pile deflections are likely to occur during construction and may require a series of intermediate deadman anchors to limit pile movements. As shown on the feasibility level drawings included in Appendix I, we estimate that the use of Geofoam materials for backfill behind the above grade portion of the retaining wall could begin at about project station 117+50. The height of the Geofoam backfill materials would gradually increase up to station 119+00, and would also replace a thin interval of the existing soils and roadway surface behind lower portions of the final wall configuration. For the Phase 1 construction retaining wall segment from project station 120+50 to the bridge abutment, we understand that the retaining wall will initially support a combination of both cut and fill and then quickly transition to supporting above ground fill only. Further, we understand that there are less constraints for how we achieve the final wall height for this segment. In order to take full advantage of the Geofoam backfill materials and provide flexibility to the contractor for staging, we show an excavation of the in situ clay soils on a 2 horizontal to 1 vertical (2H:1V) slope. In addition, we also show the rockfill materials with an outslope of 1.5H:1V. In this manner, the contractor could mostly construct the back slopes behind the retaining wall and preload the lower soft clay soils prior to constructing this portion of the retaining wall. The retaining wall could then be constructed and backfilled with Geofoam materials in front of and benched into the created backslope as shown on the section drawing at station 120+50. We estimate that the retaining wall could be constructed with a concrete fascia panel wall and footing for this segment of Phase 1 construction (see detail included with the drawings). It should be noted that the Geofoam materials are not intended to transfer significant lateral earth pressures. The constructed backslopes should be self-supporting and not transfer significant lateral loads to the Geofoam backfill. Phase 1 construction beyond project station 120+50 would transition to an above ground retaining wall to station 121+50 and then to the bridge abutment. The geometry of the Geofoam backfill would remain similar, benching the foam blocks into a sloping contact line against a prebuilt (or alternately built concurrently) 1.5H:1V rockfill backslope. Phase 3 construction consists of the fill-in segment between stations 119+00 and 120+50. We envision this segment of wall being built in a similar manner to the example shown at station 120+50 and discussed in detail above.
Robert G. Campbell & Associates Phase 1 Design of Retaining Wall 6
Project No. 20C55009.00 / June 4, 2020 Page 3 Schnabel Engineering, LLC
DESIGN ANALYSES Soil Parameters Review We have reviewed the Geotechnical Engineering Foundation Report for Retaining Wall 6. We expect that the clay soil design strength parameters listed in Table 6 of the Foundation Report are indicative of the very soft clay soil layer often observed just above the limestone bedrock and are based on the drilling results beneath the proposed bridge abutment. We expect that the clay soils in the proposed cuts beneath the active Cherokee Trail roadway (i.e., at the maximum cantilever pile wall height at station 119+00) would likely have higher shear strengths. We have used the recommended conservative strength parameters in our global stability analyses. We understand that the likely proposed materials for the raised fill portions of the Wall 6 project will be shot rockfill from cuts to the south along Alcoa Highway. We have assumed a friction angle of 36 degrees and a unit weight of 120 pcf for these materials. Cantilever Retaining Wall For feasibility level retaining wall design, we examined what we considered to be a critical section along the proposed retaining wall. Specifically, we examined the section at Station 119+00 where the highest cantilever wall will occur along with full traffic loading. We modeled both the initial conditions (i.e., a 12 feet high cantilever wall with traffic loading) and final proposed condition (19 feet high wall with geofoam backfill and traffic loading). Our analyses were performed with the aid of computer program Shoring Suite by Civil Tech Software. The program does not readily model high levels of cohesion, so we assumed a range of friction angle with an assumed lower level of cohesion. Due to limitations of the Shoring Suite program, the long term condition was analyzed using two different geometries to attempt to bracket the required pile size and spacing. Analysis A models the geofoam blocks, road subbase, and the traffic surcharge as a combined surcharge 11 ft down from the top of the wall. This was done to take the stability of the geofoam blocks into account since the blocks will not exhibit a lateral load on the piles. However, this methods does not adequately capture the road subbase or the traffic surcharge at the top of the pile and is therefore unconservative as it under predicts movement at the top of the pile.  Analysis B models the geofoam as soil with the road subbase and traffic loading modeled as surcharges. This method correctly places the road subbase and traffic surcharges at the top of the wall, however the geofoam incorrectly places a lateral load on the pile wall as it is modeled as soil. Therefore, the result of analysis B is overly conservative as it over predicts movement at the top of the pile. Depending on the model used and how loads are applied through the upper Geofoam materials, we arrived at a pile size and spacing ranging from HP14x89 on 7.5 feet centers to HP14x117 on 6 feet centers. The results of our preliminary calculations are included in Appendix II.
Robert G. Campbell & Associates Phase 1 Design of Retaining Wall 6
Project No. 20C55009.00 / June 4, 2020 Page 4 Schnabel Engineering, LLC
Geofoam Backfill EPS Geofoam is a cellular plastic material that is strong but has very low density (1% of traditional earth materials). It can be manufactured in block form (i.e., Geofoam Blocks) and has been used for DOT roadway projects. The blocks can range in density from about 1 pcf up to about 3 pcf with a corresponding compressive resistance at low strain of 320 psf to 2680 psf. Advantages of using Geofoam blocks for retaining wall backfill beyond their lightweight nature include the ease and speed of moving and placing the blocks. For the feasibility level design, we modeled what we believe would be the highest segment of Geofoam backfill materials. Specifically, we examined the section at Station 50+50 at the bridge abutment. This location would have a retained backfill height of about 41 feet. We assumed a 39 feet high interval of Geofoam materials, a 2 feet load distribution cap and roadway and design traffic loading. Based on the results of our analyses we selected EPS 22 geofoam and estimated design strains below 1%. The results of our preliminary calculations are included in Appendix III. We have estimated the preliminary volume of Geofoam materials as approximately 12,000 cubic yards.
Global Slope Stability For feasibility level slope stability considerations we examined what we considered to be a critical section along the proposed retaining wall. Specifically, we examined the section at Station 120+50 where there will be a combination of cut in the clay soils and loading from the rockfill materials. Further, we modeled the temporary condition prior to the placement of geofoam and facing and the final condition with the roadway and backfill materials in place, both with design surcharge loading. Our analyses were performed with computer program Slope/W, by GEOSLOPE. The program calculates the factor of safety against failure using a circular arc or wedge failure surface. The results of our analyses are included in Table I. Computer printouts for our preliminary stability analyses are included in Appendix IV.
TABLE I
STATION CONDITION FACTOR OF SAFETY 120+50 TEMPORARY 1.45 120+50 FINAL 1.35
SUMMARY AND RECOMMENDATIONS Based on our initial analyses and our understanding of the Wall 6 project, we believe that the concepts presented herein are feasible based on some reasonable assumptions regarding soil strength parameters and construction staging. We recommend that you either consider allowing somewhat higher shear strength parameters beneath the active roadway segments of Wall 6 or perform a few select borings and shear strength testing in this area to justify the same.
Robert G. Campbell & Associates Phase 1 Design of Retaining Wall 6
Project No. 20C55009.00 / June 4, 2020 Page 5 Schnabel Engineering, LLC
We appreciate the opportunity to be of service for this project. Please contact the undersigned if you have any questions regarding this report.
Sincerely,
GTB: AWC
Appendices: Appendix I – Preliminary Drawings Appendix II – Cantilever Wall Analyses Appendix III – Geofoam Backfill Analyses Appendix IV – Global Slope Stability Analyses
Project No. 20C55009.00 / June 4, 2020 Schnabel Engineering, LLC
APPENDIX I
PRELIMINARY DRAWINGS
WALL FOOTING
ROAD
GEOFOAM BLOCK (TYP)
© Schnabel Engineering 2019 All Rights Reserved
SK-001
20C55009.00
N.T.S.
APPENDIX II
OF EXISTING ROADWAY SURFACE
SK-001
KNOXVILLE, TENNESSEE 20C55009.00
Sta. 119+00.00 Temporary Condition H=12.0ft Strength Limit
<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com
Force Equilibrium Moment Equilibrium
Licensed to 4324324234 3424343 Date: 6/2/2020
File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Temporary Condition\Sta. 119+00 H=12.0ft (Strength Limit).sh8
Wall Height=12.0 Pile Diameter=2.0 Pile Spacing=7.5 Wall Type: 2. Soldier Pile, Drilled PILE LENGTH: Min. Embedment=8.59 Min. Pile Length=20.59 MOMENT IN PILE: Max. Moment=518.44 per Pile Spacing=7.5 at Depth=18.05
PILE SELECTION: Request Min. Section Modulus = 124.4 in3/pile=2038.96 cm3/pile, Fy= 50 ksi = 345 MPa, Fb/Fy=1 HP14X89 has Section Modulus = 131.0 in3/pile=2146.70 cm3/pile. It is greater than Min. Requirements! Top Deflection = 1.04(in) based on E (ksi)=29000.00 and I (in4)/pile=904.0 DRIVING PRESSURES (ACTIVE, WATER, & SURCHARGE):
Z1 P1 Z2 P2 Slope * Above Base
1.256 0.000 12.000 0.865 0.080528 * Below Base
12.000 0.865 18.000 1.348 0.080528 18.000 -172.148 100.000 -166.402 0.070074
* Sur- charge 0.000 0.000 0.600 0.051 0.085196 0.600 0.051 1.200 0.095 0.072648 1.200 0.095 1.800 0.127 0.054232 1.800 0.127 2.400 0.149 0.036760 2.400 0.149 3.000 0.163 0.023286 3.000 0.163 3.600 0.172 0.013925 3.600 0.172 4.200 0.176 0.007720 4.200 0.176 4.800 0.178 0.003667 4.800 0.178 5.400 0.179 0.001013 5.400 0.179 6.000 0.179 -0.000744 6.000 0.179 6.600 0.177 -0.001922 6.600 0.177 7.200 0.176 -0.002725
7.200 0.176 7.800 0.174 -0.003278 7.800 0.174 8.400 0.172 -0.003662 8.400 0.172 9.000 0.169 -0.003931 9.000 0.169 9.600 0.167 -0.004119 9.600 0.167 10.200 0.164 -0.004248
10.200 0.164 10.800 0.162 -0.004336 10.800 0.162 11.400 0.159 -0.004392 11.400 0.159 12.000 0.156 -0.004424 12.000 0.156 13.200 0.151 -0.004439 13.200 0.151 14.400 0.146 -0.004419 14.400 0.146 15.600 0.141 -0.004366 15.600 0.141 16.800 0.135 -0.004293 16.800 0.135 18.000 0.130 -0.004204 18.000 0.130 19.200 0.125 -0.004106 19.200 0.125 20.400 0.121 -0.004000 20.400 0.121 21.600 0.116 -0.003888
PASSIVE PRESSURES:
12.000 0.111 18.000 1.278 0.194522 18.000 261.390 100.000 287.234 0.315171
ACTIVE SPACING:
No. Z depth Spacing 1 0.00 7.50 2 12.00 2.00
PASSIVE SPACING:
UNITS: Width,Spacing,Diameter,Length,and Depth - ft; Force - kip; Moment - kip-ft Friction,Bearing,and Pressure - ksf; Pres. Slope - kip/ft3; Deflection - in
Sta. 119+00.00 Temporary Condition H=12.0ft Strength Limit
File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Temporary Condition\Sta. 119+00 H=12.0ft (Strength Limit).sh8
Licensed to 4324324234 3424343
<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com
PRESSURE, SHEAR, MOMENT, AND DEFLECTION DIAGRAMS Based on pile spacing: 7.5 foot or meter
User Input Pile, hp14x89: E (ksi)=29000.0, I (in4)/pile=904.0
Force Equilibrium Moment Equilibrium
934.12 kip 0
1.043(in) 0
Deflection Diagram
Sta. 119+00.00 Temporary Condition H=12.0ft Strength LimitStrength Limit
<Surcharge> CIVILTECH SOFTWARE USA www.civiltech.com
Pressure (ksf)0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200Depth(ft) 0
5
10
15
20
25
30
Z
0.16
0.18
0.17
0.16
0.13
0.11
Licensed to 4324324234 3424343
Date: 6/2/2020 File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Temporary Condition\Sta. 119+00 H=12.0ft (Strength Limit).lp8
Wall Height, H= 12 Load Depth, D= 0
Load Factor of Surcharge Loading = 1.75
Flexible Wall Condition -- Movement or deflection are allowed.
Max. Pressure = 0.179 at depth = 5.40
X Width Strip Load
Xp=0,Xa=0
Sta. 119+00.00 Temporary Condition H=12.0ft Strength Limit
<EarthPres> CIVILTECH SOFTWARE www.civiltech.com * Licensed to 4324324234 3424343 UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf
Date: 6/2/2020 File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Temporary Condition\Sta. 119+00 H=12.0ft (Strength Limit).ep8
* INPUT DATA * Wall Height=12.0 Total Soil Types= 2
Soil No. Weight Saturate Phi Cohesion Nspt Type Description
1 118.0 123.0 22 .05 0 2 Clay
2 140.0 145.0 30 100 0 4 Limestone
Ground Surface at Active Side:
Line Z1 Xa1 Z2 Xa2 Soil No. Description
1 0.0 0.0 0.0 800.0 1 Clay
2 18.0 0.0 18.0 800.0 2 Limestone
Water Table at Active Side:
Point Z-water X-water
1 100.0 0.0
2 100.0 800.0
Line Z1 Xp1 Z2 Xp2 Soil No. Description
1 12.0 0.0 12.0 800.0 1 Clay
2 18.0 0.0 18.0 800.0 2 Limestone
Water Table at Passive Side:
Point Z-water X-water
1 100.0 0.0
2 100.0 800.0
Wall Batter Angle = 0
* OUTPUT RESULTS * Total Force above Base= 4.65 per one linear foot (or meter) width along wall height
Total Static Force above Base= 4.65
Driving Pressure above Base - Output to Shoring - Multiplier of Pressure = 1.5
Z1 Pa1 Z2 Pa2 Slope Coef.
1.26 0.00 12.00 0.87 0.0805 0.6824
Driving Pressure below Base - Output to Shoring - Multiplier of Pressure = 1.5
Z1 Pa1 Z2 Pa2 Slope Ka or Ko
12.00 0.87 18.00 1.35 0.0805 0.6824
18.00 -172.21 24.00 -171.70 0.0838 0.5987
Passive Pressure below Base - Output to Shoring - Multiplier of Pressure = 0.75
Z1 Pp1 Z2 Pp2 Slope Kp
12.00 0.11 18.00 1.28 0.195 1.6485
18.00 261.26 24.00 263.34 0.346 2.4721
UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf
Date: 6/2/2020 File Name: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Temporary Condition\Sta. 119+00 H=12.0ft (Strength Limit).ep8
Sta. 119+00.00 Temporary Condtion H=12.0ft Service Limit
<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com
Force Equilibrium Moment Equilibrium
Licensed to 4324324234 3424343 Date: 6/2/2020
File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Temporary Condition\Sta. 119+00 H=12.0ft (Service Limit).sh8
Wall Height=12.0 Pile Diameter=2.0 Pile Spacing=7.5 Wall Type: 2. Soldier Pile, Drilled PILE LENGTH: Min. Embedment=8.30 Min. Pile Length=20.30 MOMENT IN PILE: Max. Moment=358.68 per Pile Spacing=7.5 at Depth=18.04
PILE SELECTION: Request Min. Section Modulus = 86.1 in3/pile=1410.66 cm3/pile, Fy= 50 ksi = 345 MPa, Fb/Fy=1 HP14X89 has Section Modulus = 131.0 in3/pile=2146.70 cm3/pile. It is greater than Min. Requirements! Top Deflection = 0.74(in) based on E (ksi)=29000.00 and I (in4)/pile=904.0 DRIVING PRESSURES (ACTIVE, WATER, & SURCHARGE):
Z1 P1 Z2 P2 Slope * Above Base
1.256 0.000 12.000 0.577 0.053685 * Below Base
12.000 0.577 18.000 0.899 0.053685 18.000 -114.765 100.000 -110.934 0.046716
* Sur- charge 0.000 0.000 0.600 0.042 0.070104 0.600 0.042 1.200 0.078 0.059779 1.200 0.078 1.800 0.105 0.044625 1.800 0.105 2.400 0.123 0.030248 2.400 0.123 3.000 0.134 0.019161 3.000 0.134 3.600 0.141 0.011459 3.600 0.141 4.200 0.145 0.006352 4.200 0.145 4.800 0.147 0.003017 4.800 0.147 5.400 0.147 0.000833 5.400 0.147 6.000 0.147 -0.000612 6.000 0.147 6.600 0.146 -0.001582 6.600 0.146 7.200 0.145 -0.002242
7.200 0.145 7.800 0.143 -0.002697 7.800 0.143 8.400 0.141 -0.003014 8.400 0.141 9.000 0.139 -0.003235 9.000 0.139 9.600 0.137 -0.003389 9.600 0.137 10.200 0.135 -0.003496
10.200 0.135 10.800 0.133 -0.003568 10.800 0.133 11.400 0.131 -0.003614 11.400 0.131 12.000 0.129 -0.003640 12.000 0.129 13.200 0.124 -0.003652 13.200 0.124 14.400 0.120 -0.003636 14.400 0.120 15.600 0.116 -0.003593 15.600 0.116 16.800 0.111 -0.003532 16.800 0.111 18.000 0.107 -0.003460 18.000 0.107 19.200 0.103 -0.003379 19.200 0.103 20.400 0.099 -0.003291
PASSIVE PRESSURES:
12.000 0.148 18.000 1.704 0.259362 18.000 348.520 100.000 382.979 0.420228
ACTIVE SPACING:
No. Z depth Spacing 1 0.00 7.50 2 12.00 2.00
PASSIVE SPACING:
UNITS: Width,Spacing,Diameter,Length,and Depth - ft; Force - kip; Moment - kip-ft Friction,Bearing,and Pressure - ksf; Pres. Slope - kip/ft3; Deflection - in
Sta. 119+00.00 Temporary Condtion H=12.0ft Service Limit
File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Temporary Condition\Sta. 119+00 H=12.0ft (Service Limit).sh8
Licensed to 4324324234 3424343
<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com
PRESSURE, SHEAR, MOMENT, AND DEFLECTION DIAGRAMS Based on pile spacing: 7.5 foot or meter
User Input Pile, hp14x89: E (ksi)=29000.0, I (in4)/pile=904.0
Force Equilibrium Moment Equilibrium
800.42 kip 0
0.736(in) 0
Deflection Diagram
Sta. 119+00.00 Temporary Condtion H=12.0ft Service LimitService Limit
<Surcharge> CIVILTECH SOFTWARE USA www.civiltech.com
Pressure (ksf)0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200Depth(ft) 0
5
10
15
20
25
30
Z
0.09
0.10
0.10
0.09
0.07
0.06
Licensed to 4324324234 3424343
Date: 6/2/2020 File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Temporary Condition\Sta. 119+00 H=12.0ft (Service Limit).lp8
Wall Height, H= 12 Load Depth, D= 0
Load Factor of Surcharge Loading = 1
Flexible Wall Condition -- Movement or deflection are allowed.
Max. Pressure = 0.102 at depth = 5.40
X Width Strip Load
Xp=0,Xa=0
Sta. 119+00.00 Temporary Condtion H=12.0ft Service Limit
<EarthPres> CIVILTECH SOFTWARE www.civiltech.com * Licensed to 4324324234 3424343 UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf
Date: 6/2/2020 File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Temporary Condition\Sta. 119+00 H=12.0ft (Service Limit).ep8
* INPUT DATA * Wall Height=12.0 Total Soil Types= 2
Soil No. Weight Saturate Phi Cohesion Nspt Type Description
1 118.0 123.0 22 .05 0 2 Clay
2 140.0 145.0 30 100 0 4 Limestone
Ground Surface at Active Side:
Line Z1 Xa1 Z2 Xa2 Soil No. Description
1 0.0 0.0 0.0 800.0 1 Clay
2 18.0 0.0 18.0 800.0 2 Limestone
Water Table at Active Side:
Point Z-water X-water
1 100.0 0.0
2 100.0 800.0
Line Z1 Xp1 Z2 Xp2 Soil No. Description
1 12.0 0.0 12.0 800.0 1 Clay
2 18.0 0.0 18.0 800.0 2 Limestone
Water Table at Passive Side:
Point Z-water X-water
1 100.0 0.0
2 100.0 800.0
Wall Batter Angle = 0
* OUTPUT RESULTS * Total Force above Base= 3.10 per one linear foot (or meter) width along wall height
Total Static Force above Base= 3.10
Driving Pressure above Base - Output to Shoring - Multiplier of Pressure = 1
Z1 Pa1 Z2 Pa2 Slope Coef.
1.26 0.00 12.00 0.58 0.0537 0.4550
Driving Pressure below Base - Output to Shoring - Multiplier of Pressure = 1
Z1 Pa1 Z2 Pa2 Slope Ka or Ko
12.00 0.58 18.00 0.90 0.0537 0.4550
18.00 -114.80 24.00 -114.47 0.0559 0.3992
Passive Pressure below Base - Output to Shoring - Multiplier of Pressure = 1
Z1 Pp1 Z2 Pp2 Slope Kp
12.00 0.15 18.00 1.70 0.259 2.1980
18.00 348.35 24.00 351.12 0.461 3.2961
UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf
Date: 6/2/2020 File Name: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Temporary Condition\Sta. 119+00 H=12.0ft (Service Limit).ep8
8.25'
9'
2'
10' ROCK SOCKET24"-30" DIAMETER
AT TOP OF PILE
SK-002
KNOXVILLE, TENNESSEE 20C55009.00
STA 119+00.00 - PERMANENT CONDITION 2
Sta. 119+00.00 Permanent Condition Analysis A H=19.25ft Strength Limit
<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com
Force Equilibrium Moment Equilibrium
Licensed to 4324324234 3424343 Date: 6/2/2020
File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition A\Sta. 119+00 H=19.25ft (Strength Limit) (Composite Surcharge).sh8
Wall Height=19.3 Pile Diameter=2.0 Pile Spacing=8.0 Wall Type: 2. Soldier Pile, Drilled PILE LENGTH: Min. Embedment=10.33 Min. Pile Length=29.58 MOMENT IN PILE: Max. Moment=484.79 per Pile Spacing=8.0 at Depth=26.81
PILE SELECTION: Request Min. Section Modulus = 116.4 in3/pile=1906.64 cm3/pile, Fy= 50 ksi = 345 MPa, Fb/Fy=1 HP14X89 has Section Modulus = 131.0 in3/pile=2146.70 cm3/pile. It is greater than Min. Requirements! Top Deflection = 1.42(in) based on E (ksi)=29000.00 and I (in4)/pile=904.0 DRIVING PRESSURES (ACTIVE, WATER, & SURCHARGE):
Z1 P1 Z2 P2 Slope * Above Base
12.256 0.000 19.250 0.563 0.080528 * Below Base
19.250 0.563 26.750 1.167 0.080528 26.750 -172.278 176.000 -161.828 0.070017
* Sur- charge 10.587 0.000 11.550 0.431 0.447842 11.550 0.431 12.512 0.420 -0.011233 12.512 0.420 13.475 0.409 -0.011200 13.475 0.409 14.437 0.399 -0.011150 14.437 0.399 15.400 0.388 -0.011085 15.400 0.388 16.362 0.377 -0.011004 16.362 0.377 17.325 0.367 -0.010907 17.325 0.367 18.287 0.357 -0.010797 18.287 0.357 19.250 0.346 -0.010673 19.250 0.346 21.175 0.336 -0.005268 21.175 0.336 23.100 0.326 -0.005193 23.100 0.326 25.025 0.316 -0.005113
25.025 0.316 26.950 0.307 -0.005027 26.950 0.307 28.875 0.297 -0.004937 28.875 0.297 30.800 0.288 -0.004842
PASSIVE PRESSURES:
19.250 0.111 26.750 1.570 0.194522 26.750 261.790 176.000 308.816 0.315080
ACTIVE SPACING:
No. Z depth Spacing 1 0.00 8.00 2 19.25 2.00
PASSIVE SPACING:
UNITS: Width,Spacing,Diameter,Length,and Depth - ft; Force - kip; Moment - kip-ft Friction,Bearing,and Pressure - ksf; Pres. Slope - kip/ft3; Deflection - in
Sta. 119+00.00 Permanent Condition Analysis A H=19.25ft Strength Limit
File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition A\Sta. 119+00 H=19.25ft (Strength Limit) (Composite Surcharge).sh8
Licensed to 4324324234 3424343
<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com
PRESSURE, SHEAR, MOMENT, AND DEFLECTION DIAGRAMS Based on pile spacing: 8.0 foot or meter
User Input Pile, hp14x89: E (ksi)=29000.0, I (in4)/pile=904.0
Force Equilibrium Moment Equilibrium
894.67 kip 0
1.417(in) 0
Deflection Diagram
Sta. 119+00.00 Permanent Condition Analysis A H=19.25ft Strength LimitStrength Limit
<Surcharge> CIVILTECH SOFTWARE USA www.civiltech.com
Pressure (ksf)0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500Depth(ft) 0
5
10
15
20
25
30
35
40
45
Z
0.00
0.00
0.40
0.35
0.30
0.25
Licensed to 4324324234 3424343
Date: 6/2/2020 File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition A\Sta. 119+00 H=19.25ft (Strength Limit) (Composite Surcharge).lp8
Wall Height, H= 19.25 Load Depth, D= 11
Load Factor of Surcharge Loading = 1.75
Flexible Wall Condition -- Movement or deflection are allowed.
Max. Pressure = 0.431 at depth = 11.55
X Width Strip Load
Xp=0,Xa=0
Z=44.0
Sta. 119+00.00 Permanent Condition Analysis A H=19.25ft Strength Limit
<EarthPres> CIVILTECH SOFTWARE www.civiltech.com * Licensed to 4324324234 3424343 UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf
Date: 6/2/2020 File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition A\Sta. 119+00 H=19.25ft (Strength Limit).ep8
* INPUT DATA * Wall Height=19.3 Total Soil Types= 2
Soil No. Weight Saturate Phi Cohesion Nspt Type Description
1 118.0 123.0 22 .05 0 2 Clay
2 140.0 145.0 30 100 0 4 Limestone
Ground Surface at Active Side:
Line Z1 Xa1 Z2 Xa2 Soil No. Description
1 11.0 0.0 11.0 800.0 1 Clay
2 26.8 0.0 26.8 800.0 2 Limestone
Ground Surface at Passive Side:
Line Z1 Xp1 Z2 Xp2 Soil No. Description
1 19.3 0.0 19.3 800.0 1 Clay
2 26.8 0.0 26.8 800.0 2 Limestone
Wall Friction Options: 1.* No wall friction
Wall Batter Angle = 0
Water Density = 62.4
Water Pressure: 6. No Water Table
* OUTPUT RESULTS * Total Force above Base= 1.97 per one linear foot (or meter) width along wall height
Total Static Force above Base= 1.97
Driving Pressure above Base - Output to Shoring - Multiplier of Pressure = 1.5
Z1 Pa1 Z2 Pa2 Slope Coef.
12.26 0.00 19.25 0.56 0.0805 0.6824
Driving Pressure below Base - Output to Shoring - Multiplier of Pressure = 1.5
Z1 Pa1 Z2 Pa2 Slope Ka or Ko
19.25 0.56 26.75 1.17 0.0805 0.6824
26.75 -172.29 44.00 -171.06 0.0713 0.5093
Passive Pressure below Base - Output to Shoring - Multiplier of Pressure = 0.75
Z1 Pp1 Z2 Pp2 Slope Kp
19.25 0.11 26.75 1.57 0.195 1.6485
26.75 261.72 44.00 267.26 0.321 2.2921
UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf
Date: 6/2/2020 File Name: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition A\Sta. 119+00 H=19.25ft (Strength Limit).ep8
Sta. 119+00.00 Permanent Condition Analysis A H=19.25ft Service Limit
<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com
Force Equilibrium Moment Equilibrium
Licensed to 4324324234 3424343 Date: 6/2/2020
File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition A\Sta. 119+00 H=19.25ft (Service Limit) (Composite Surcharge).sh8
Wall Height=19.3 Pile Diameter=2.0 Pile Spacing=8.0 Wall Type: 2. Soldier Pile, Drilled PILE LENGTH: Min. Embedment=9.94 Min. Pile Length=29.19 MOMENT IN PILE: Max. Moment=269.85 per Pile Spacing=8.0 at Depth=26.77
PILE SELECTION: Request Min. Section Modulus = 64.8 in3/pile=1061.30 cm3/pile, Fy= 50 ksi = 345 MPa, Fb/Fy=1 HP14X89 has Section Modulus = 131.0 in3/pile=2146.70 cm3/pile. It is greater than Min. Requirements! Top Deflection = 0.82(in) based on E (ksi)=29000.00 and I (in4)/pile=904.0 DRIVING PRESSURES (ACTIVE, WATER, & SURCHARGE):
Z1 P1 Z2 P2 Slope * Above Base
12.256 0.000 19.250 0.375 0.053685 * Below Base
19.250 0.375 26.750 0.778 0.053685 26.750 -114.852 176.000 -107.885 0.046678
* Sur- charge 10.587 0.000 11.550 0.246 0.255910 11.550 0.246 12.512 0.240 -0.006419 12.512 0.240 13.475 0.234 -0.006400 13.475 0.234 14.437 0.228 -0.006371 14.437 0.228 15.400 0.222 -0.006334 15.400 0.222 16.362 0.216 -0.006288 16.362 0.216 17.325 0.210 -0.006233 17.325 0.210 18.287 0.204 -0.006170 18.287 0.204 19.250 0.198 -0.006099 19.250 0.198 21.175 0.192 -0.003010 21.175 0.192 23.100 0.186 -0.002967 23.100 0.186 25.025 0.181 -0.002921
25.025 0.181 26.950 0.175 -0.002873 26.950 0.175 28.875 0.170 -0.002821 28.875 0.170 30.800 0.164 -0.002767
PASSIVE PRESSURES:
19.250 0.148 26.750 2.093 0.259362 26.750 349.053 176.000 411.754 0.420106
ACTIVE SPACING:
No. Z depth Spacing 1 0.00 8.00 2 19.25 2.00
PASSIVE SPACING:
UNITS: Width,Spacing,Diameter,Length,and Depth - ft; Force - kip; Moment - kip-ft Friction,Bearing,and Pressure - ksf; Pres. Slope - kip/ft3; Deflection - in
Sta. 119+00.00 Permanent Condition Analysis A H=19.25ft Service Limit
File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition A\Sta. 119+00 H=19.25ft (Service Limit) (Composite Surcharge).sh8
Licensed to 4324324234 3424343
<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com
PRESSURE, SHEAR, MOMENT, AND DEFLECTION DIAGRAMS Based on pile spacing: 8.0 foot or meter
User Input Pile, hp14x89: E (ksi)=29000.0, I (in4)/pile=904.0
Force Equilibrium Moment Equilibrium
683.43 kip 0
0.818(in) 0
Deflection Diagram
Sta. 119+00.00 Permanent Condtion Analysis A H=19.25 Service LimitService Limit
<Surcharge> CIVILTECH SOFTWARE USA www.civiltech.com
Pressure (ksf)0.000 0.030 0.060 0.090 0.120 0.150 0.180 0.210 0.240 0.270 0.300Depth(ft) 0
5
10
15
20
25
30
35
40
45
Z
0.00
0.00
0.23
0.20
0.17
0.14
Licensed to 4324324234 3424343
Date: 6/2/2020 File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition A\Sta. 119+00 H=19.25ft (Service Limit) (Composite Surcharge).lp8
Wall Height, H= 19.25 Load Depth, D= 11
Load Factor of Surcharge Loading = 1
Flexible Wall Condition -- Movement or deflection are allowed.
Max. Pressure = 0.246 at depth = 11.55
X Width Strip Load
Xp=0,Xa=0
Z=44.0
Sta. 119+00.00 Permanent Condition Analysis A H=19.25ft Service Limit
<EarthPres> CIVILTECH SOFTWARE www.civiltech.com * Licensed to 4324324234 3424343 UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf
Date: 6/2/2020 File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition A\Sta. 119+00 H=19.25ft (Service Limit).ep8
* INPUT DATA * Wall Height=19.3 Total Soil Types= 2
Soil No. Weight Saturate Phi Cohesion Nspt Type Description
1 118.0 123.0 22 .05 0 2 Clay
2 140.0 145.0 30 100 0 4 Limestone
Ground Surface at Active Side:
Line Z1 Xa1 Z2 Xa2 Soil No. Description
1 11.0 0.0 11.0 800.0 1 Clay
2 26.8 0.0 26.8 800.0 2 Limestone
Ground Surface at Passive Side:
Line Z1 Xp1 Z2 Xp2 Soil No. Description
1 19.3 0.0 19.3 800.0 1 Clay
2 26.8 0.0 26.8 800.0 2 Limestone
Wall Friction Options: 1.* No wall friction
Wall Batter Angle = 0
Water Density = 62.4
Water Pressure: 6. No Water Table
* OUTPUT RESULTS * Total Force above Base= 1.31 per one linear foot (or meter) width along wall height
Total Static Force above Base= 1.31
Driving Pressure above Base - Output to Shoring - Multiplier of Pressure = 1
Z1 Pa1 Z2 Pa2 Slope Coef.
12.26 0.00 19.25 0.38 0.0537 0.4550
Driving Pressure below Base - Output to Shoring - Multiplier of Pressure = 1
Z1 Pa1 Z2 Pa2 Slope Ka or Ko
19.25 0.38 26.75 0.78 0.0537 0.4550
26.75 -114.86 44.00 -114.04 0.0475 0.3395
Passive Pressure below Base - Output to Shoring - Multiplier of Pressure = 1
Z1 Pp1 Z2 Pp2 Slope Kp
19.25 0.15 26.75 2.09 0.259 2.1980
26.75 348.96 44.00 356.34 0.428 3.0562
UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf
Date: 6/2/2020 File Name: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition A\Sta. 119+00 H=19.25ft (Service Limit).ep8
8.25'
9'
2'
10' ROCK SOCKET24"-30" DIAMETER
AT TOP OF PILE
SK-003
KNOXVILLE, TENNESSEE 20C55009.00
Sta. 119+00.00 Permanent Condtion B H=19.25ft Strength Limit
<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com
Force Equilibrium Moment Equilibrium
Licensed to 4324324234 3424343 Date: 6/2/2020
File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition B\Sta. 119+00 H=19.25ft (Strength Limit).sh8
Wall Height=19.3 Pile Diameter=2.0 Pile Spacing=6.0 Wall Type: 2. Soldier Pile, Drilled PILE LENGTH: Min. Embedment=10.56 Min. Pile Length=29.81 MOMENT IN PILE: Max. Moment=673.56 per Pile Spacing=6.0 at Depth=26.81
PILE SELECTION: Request Min. Section Modulus = 161.7 in3/pile=2649.02 cm3/pile, Fy= 50 ksi = 345 MPa, Fb/Fy=1 HP14X117 has Section Modulus = 172.0 in3/pile=2818.56 cm3/pile. It is greater than Min. Requirements! Top Deflection = 2.71(in) based on E (ksi)=29000.00 and I (in4)/pile=1220.0 DRIVING PRESSURES (ACTIVE, WATER, & SURCHARGE):
Z1 P1 Z2 P2 Slope * Above Base
12.256 0.000 19.250 0.563 0.080528 * Below Base
19.250 0.563 26.750 1.167 0.080528 26.750 -172.278 176.000 -161.828 0.070017
* Sur- charge 10.587 0.000 11.550 0.011 0.011402 11.550 0.011 12.512 0.011 -0.000286 12.512 0.011 13.475 0.010 -0.000285 13.475 0.010 14.437 0.010 -0.000284 14.437 0.010 15.400 0.010 -0.000282 15.400 0.010 16.362 0.010 -0.000280 16.362 0.010 17.325 0.009 -0.000278 17.325 0.009 18.287 0.009 -0.000275 18.287 0.009 19.250 0.009 -0.000272 19.250 0.009 21.175 0.009 -0.000134 21.175 0.009 23.100 0.008 -0.000132 23.100 0.008 25.025 0.008 -0.000130
25.025 0.008 26.950 0.008 -0.000128 26.950 0.008 28.875 0.008 -0.000126 28.875 0.008 30.800 0.007 -0.000123
* Sur- charge 1.925 0.000 2.888 0.176 0.182430 2.888 0.176 3.850 0.171 -0.004576 3.850 0.171 4.813 0.167 -0.004562 4.813 0.167 5.775 0.162 -0.004542 5.775 0.162 6.738 0.158 -0.004515 6.738 0.158 7.700 0.154 -0.004482 7.700 0.154 8.663 0.149 -0.004443 8.663 0.149 9.625 0.145 -0.004398 9.625 0.145 10.587 0.141 -0.004348
10.587 0.141 11.550 0.137 -0.004292 11.550 0.137 12.512 0.133 -0.004231 12.512 0.133 13.475 0.129 -0.004165 13.475 0.129 14.437 0.125 -0.004095 14.437 0.125 15.400 0.121 -0.004022 15.400 0.121 16.362 0.117 -0.003945 16.362 0.117 17.325 0.114 -0.003865 17.325 0.114 18.287 0.110 -0.003782 18.287 0.110 19.250 0.106 -0.003697 19.250 0.106 21.175 0.103 -0.001805 21.175 0.103 23.100 0.099 -0.001761 23.100 0.099 25.025 0.093 -0.003386 25.025 0.093 26.950 0.087 -0.003204 26.950 0.087 28.875 0.081 -0.003022 28.875 0.081 30.800 0.075 -0.002841
* Sur- charge 0.000 0.000 0.962 0.079 0.081753 0.962 0.079 1.925 0.133 0.056052 1.925 0.133 2.888 0.161 0.029623 2.888 0.161 3.850 0.174 0.013273 3.850 0.174 4.813 0.178 0.004740 4.813 0.178 5.775 0.179 0.000416 5.775 0.179 6.738 0.177 -0.001826 6.738 0.177 7.700 0.174 -0.003030 7.700 0.174 8.663 0.171 -0.003697 8.663 0.171 9.625 0.167 -0.004072 9.625 0.167 10.587 0.163 -0.004280
10.587 0.163 11.550 0.158 -0.004388 11.550 0.158 12.512 0.154 -0.004433 12.512 0.154 13.475 0.150 -0.004437 13.475 0.150 14.437 0.146 -0.004414 14.437 0.146 15.400 0.141 -0.004371 15.400 0.141 16.362 0.137 -0.004314 16.362 0.137 17.325 0.133 -0.004247 17.325 0.133 18.287 0.129 -0.004172 18.287 0.129 19.250 0.125 -0.004091 19.250 0.125 21.175 0.118 -0.003962 21.175 0.118 23.100 0.110 -0.003779 23.100 0.110 25.025 0.103 -0.003591 25.025 0.103 26.950 0.097 -0.003399 26.950 0.097 28.875 0.091 -0.003209 28.875 0.091 30.800 0.085 -0.003021
PASSIVE PRESSURES:
19.250 0.111 26.750 1.570 0.194522 26.750 261.790 176.000 308.816 0.315080
ACTIVE SPACING:
No. Z depth Spacing 1 0.00 6.00 2 19.25 2.00
PASSIVE SPACING:
UNITS: Width,Spacing,Diameter,Length,and Depth - ft; Force - kip; Moment - kip-ft Friction,Bearing,and Pressure - ksf; Pres. Slope - kip/ft3; Deflection - in
Sta. 119+00.00 Permanent Condtion B H=19.25ft Strength Limit
File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition B\Sta. 119+00 H=19.25ft (Strength Limit).sh8
Licensed to 4324324234 3424343
<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com
PRESSURE, SHEAR, MOMENT, AND DEFLECTION DIAGRAMS Based on pile spacing: 6.0 foot or meter
User Input Pile, hp14x117: E (ksi)=29000.0, I (in4)/pile=1220.0
Force Equilibrium Moment Equilibrium
1058.28 kip 0
2.710(in) 0
Deflection Diagram
Sta. 119+00.00 Permanent Condtion B H=19.25ft Geofoam Surcharge Strength LimitGeofoam Surcharge Strength Limit
<Surcharge> CIVILTECH SOFTWARE USA www.civiltech.com
Pressure (ksf)0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020Depth(ft) 0
5
10
15
20
25
30
35
40
45
Z
0.00
0.00
0.01
0.01
0.01
0.01
Licensed to 4324324234 3424343
Date: 6/2/2020 File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition B\Sta. 119+00 H=19.25ft (Geofoam) (Strength Limit).lp8
Wall Height, H= 19.25 Load Depth, D= 11
Load Factor of Surcharge Loading = 1.5
Flexible Wall Condition -- Movement or deflection are allowed.
Max. Pressure = 0.011 at depth = 11.55
X Width Strip Load
UNITS: LENGTH/DEPTH: ft, Qpoint: kip, Qline: kip/ft, Qstrip/Qarea/PRESSURE: ksf
Sta. 119+00.00 Permanent Condtion B H=19.25ft Select Backfill Surcharge Strength LimitSelect Backfill Surcharge Strength Limit
<Surcharge> CIVILTECH SOFTWARE USA www.civiltech.com
Pressure (ksf)0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200Depth(ft) 0
5
10
15
20
25
30
35
40
45
Z
0.17
0.15
0.12
0.11
0.08
0.06
Licensed to 4324324234 3424343
Date: 6/2/2020 File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition B\Sta. 119+00 H=19.25ft (Select Backfill) (Strength Limit).lp8
Wall Height, H= 19.25 Load Depth, D= 2
Load Factor of Surcharge Loading = 1.5
Flexible Wall Condition -- Movement or deflection are allowed.
Max. Pressure = 0.176 at depth = 2.89
X Width Strip Load
UNITS: LENGTH/DEPTH: ft, Qpoint: kip, Qline: kip/ft, Qstrip/Qarea/PRESSURE: ksf
Sta. 119+00.00 Permanent Condtion B H=19.25ft Traffic Surcharge Strength LimitTraffic Surcharge Strength Limit
<Surcharge> CIVILTECH SOFTWARE USA www.civiltech.com
Pressure (ksf)0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200Depth(ft) 0
5
10
15
20
25
30
35
40
45
Z
0.18
0.17
0.15
0.13
0.09
0.06
Licensed to 4324324234 3424343
Date: 6/2/2020 File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition B\Sta. 119+00 H=19.25ft (Traffic Surcharge) (Strength Limit).lp8
Wall Height, H= 19.25 Load Depth, D= 0
Load Factor of Surcharge Loading = 1.75
Flexible Wall Condition -- Movement or deflection are allowed.
Max. Pressure = 0.179 at depth = 5.78
X Width Strip Load
Xp=0,Xa=0
Sta. 119+00.00 Permanent Condtion B H=19.25ft Strength Limit
<EarthPres> CIVILTECH SOFTWARE www.civiltech.com * Licensed to 4324324234 3424343 UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf
Date: 6/2/2020 File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition B\Sta. 119+00 H=19.25ft (Strength Limit).ep8
* INPUT DATA * Wall Height=19.3 Total Soil Types= 2
Soil No. Weight Saturate Phi Cohesion Nspt Type Description
1 118.0 123.0 22 .05 0 2 Clay
2 140.0 145.0 30 100 0 4 Limestone
Ground Surface at Active Side:
Line Z1 Xa1 Z2 Xa2 Soil No. Description
1 11.0 0.0 11.0 800.0 1 Clay
2 26.8 0.0 26.8 800.0 2 Limestone
Ground Surface at Passive Side:
Line Z1 Xp1 Z2 Xp2 Soil No. Description
1 19.3 0.0 19.3 800.0 1 Clay
2 26.8 0.0 26.8 800.0 2 Limestone
Wall Friction Options: 1.* No wall friction
Wall Batter Angle = 0
Water Density = 62.4
Water Pressure: 6. No Water Table
* OUTPUT RESULTS * Total Force above Base= 1.97 per one linear foot (or meter) width along wall height
Total Static Force above Base= 1.97
Driving Pressure above Base - Output to Shoring - Multiplier of Pressure = 1.5
Z1 Pa1 Z2 Pa2 Slope Coef.
12.26 0.00 19.25 0.56 0.0805 0.6824
Driving Pressure below Base - Output to Shoring - Multiplier of Pressure = 1.5
Z1 Pa1 Z2 Pa2 Slope Ka or Ko
19.25 0.56 26.75 1.17 0.0805 0.6824
26.75 -172.29 44.00 -171.06 0.0713 0.5093
Passive Pressure below Base - Output to Shoring - Multiplier of Pressure = 0.75
Z1 Pp1 Z2 Pp2 Slope Kp
19.25 0.11 26.75 1.57 0.195 1.6485
26.75 261.72 44.00 267.26 0.321 2.2921
UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf
Date: 6/2/2020 File Name: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition B\Sta. 119+00 H=19.25ft (Strength Limit).ep8
Sta. 119+00.00 Permanent Condtion B H=19.25ft Service Limit
<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com
Force Equilibrium Moment Equilibrium
Licensed to 4324324234 3424343 Date: 6/2/2020
File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition B\Sta. 119+00 H=19.25ft (Service Limit).sh8
Wall Height=19.3 Pile Diameter=2.0 Pile Spacing=6.0 Wall Type: 2. Soldier Pile, Drilled PILE LENGTH: Min. Embedment=10.14 Min. Pile Length=29.39 MOMENT IN PILE: Max. Moment=397.61 per Pile Spacing=6.0 at Depth=26.78
PILE SELECTION: Request Min. Section Modulus = 95.4 in3/pile=1563.76 cm3/pile, Fy= 50 ksi = 345 MPa, Fb/Fy=1 HP14X117 has Section Modulus = 172.0 in3/pile=2818.56 cm3/pile. It is greater than Min. Requirements! Top Deflection = 1.63(in) based on E (ksi)=29000.00 and I (in4)/pile=1220.0 DRIVING PRESSURES (ACTIVE, WATER, & SURCHARGE):
Z1 P1 Z2 P2 Slope * Above Base
12.256 0.000 19.250 0.375 0.053685 * Below Base
19.250 0.375 26.750 0.778 0.053685 26.750 -114.852 176.000 -107.885 0.046678
* Sur- charge 10.587 0.000 11.550 0.007 0.007601 11.550 0.007 12.512 0.007 -0.000191 12.512 0.007 13.475 0.007 -0.000190 13.475 0.007 14.437 0.007 -0.000189 14.437 0.007 15.400 0.007 -0.000188 15.400 0.007 16.362 0.006 -0.000187 16.362 0.006 17.325 0.006 -0.000185 17.325 0.006 18.287 0.006 -0.000183 18.287 0.006 19.250 0.006 -0.000181 19.250 0.006 21.175 0.006 -0.000089 21.175 0.006 23.100 0.006 -0.000088 23.100 0.006 25.025 0.005 -0.000087
25.025 0.005 26.950 0.005 -0.000085 26.950 0.005 28.875 0.005 -0.000084 28.875 0.005 30.800 0.005 -0.000082
* Sur- charge 1.925 0.000 2.888 0.117 0.121620 2.888 0.117 3.850 0.114 -0.003050 3.850 0.114 4.813 0.111 -0.003041 4.813 0.111 5.775 0.108 -0.003028 5.775 0.108 6.738 0.105 -0.003010 6.738 0.105 7.700 0.103 -0.002988 7.700 0.103 8.663 0.100 -0.002962 8.663 0.100 9.625 0.097 -0.002932 9.625 0.097 10.587 0.094 -0.002898
10.587 0.094 11.550 0.091 -0.002861 11.550 0.091 12.512 0.089 -0.002820 12.512 0.089 13.475 0.086 -0.002777 13.475 0.086 14.437 0.083 -0.002730 14.437 0.083 15.400 0.081 -0.002681 15.400 0.081 16.362 0.078 -0.002630 16.362 0.078 17.325 0.076 -0.002577 17.325 0.076 18.287 0.073 -0.002521 18.287 0.073 19.250 0.071 -0.002465 19.250 0.071 21.175 0.069 -0.001203 21.175 0.069 23.100 0.066 -0.001174 23.100 0.066 25.025 0.062 -0.002258 25.025 0.062 26.950 0.058 -0.002136 26.950 0.058 28.875 0.054 -0.002015 28.875 0.054 30.800 0.050 -0.001894
* Sur- charge 0.000 0.000 0.962 0.045 0.046716 0.962 0.045 1.925 0.076 0.032030 1.925 0.076 2.888 0.092 0.016927 2.888 0.092 3.850 0.099 0.007585 3.850 0.099 4.813 0.102 0.002709 4.813 0.102 5.775 0.102 0.000238 5.775 0.102 6.738 0.101 -0.001043 6.738 0.101 7.700 0.100 -0.001732 7.700 0.100 8.663 0.098 -0.002113 8.663 0.098 9.625 0.095 -0.002327 9.625 0.095 10.587 0.093 -0.002446
10.587 0.093 11.550 0.091 -0.002507 11.550 0.091 12.512 0.088 -0.002533 12.512 0.088 13.475 0.086 -0.002536 13.475 0.086 14.437 0.083 -0.002522 14.437 0.083 15.400 0.081 -0.002498 15.400 0.081 16.362 0.078 -0.002465 16.362 0.078 17.325 0.076 -0.002427 17.325 0.076 18.287 0.074 -0.002384 18.287 0.074 19.250 0.072 -0.002338 19.250 0.072 21.175 0.067 -0.002264 21.175 0.067 23.100 0.063 -0.002160 23.100 0.063 25.025 0.059 -0.002052 25.025 0.059 26.950 0.055 -0.001943 26.950 0.055 28.875 0.052 -0.001834 28.875 0.052 30.800 0.048 -0.001726
PASSIVE PRESSURES:
19.250 0.148 26.750 2.093 0.259362 26.750 349.053 176.000 411.754 0.420106
ACTIVE SPACING:
No. Z depth Spacing 1 0.00 6.00 2 19.25 2.00
PASSIVE SPACING:
UNITS: Width,Spacing,Diameter,Length,and Depth - ft; Force - kip; Moment - kip-ft Friction,Bearing,and Pressure - ksf; Pres. Slope - kip/ft3; Deflection - in
Sta. 119+00.00 Permanent Condtion B H=19.25ft Service Limit
File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition B\Sta. 119+00 H=19.25ft (Service Limit).sh8
Licensed to 4324324234 3424343
<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com
PRESSURE, SHEAR, MOMENT, AND DEFLECTION DIAGRAMS Based on pile spacing: 6.0 foot or meter
User Input Pile, hp14x117: E (ksi)=29000.0, I (in4)/pile=1220.0
Force Equilibrium Moment Equilibrium
834.55 kip 0
1.634(in) 0
Deflection Diagram
Sta. 119+00.00 Permanent Condtion B H=19.25ft Geofoam Surcharge Service LimitGeofoam Surcharge Service Limit
<Surcharge> CIVILTECH SOFTWARE USA www.civiltech.com
Pressure (ksf)0.000 0.001 0.002 0.002 0.003 0.004 0.005 0.006 0.006 0.007 0.008Depth(ft) 0
5
10
15
20
25
30
35
40
45
Z
0.00
0.00
0.01
0.01
0.01
0.00
Licensed to 4324324234 3424343
Date: 6/2/2020 File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition B\Sta. 119+00 H=19.25ft (Geofoam) (Service Limit).lp8
Wall Height, H= 19.25 Load Depth, D= 11
Load Factor of Surcharge Loading = 1
Flexible Wall Condition -- Movement or deflection are allowed.
Max. Pressure = 0.007 at depth = 11.55
X Width Strip Load
UNITS: LENGTH/DEPTH: ft, Qpoint: kip, Qline: kip/ft, Qstrip/Qarea/PRESSURE: ksf
Sta. 119+00.00 Permanent Condtion B H=19.25ft Select Backfill Surcharge Service LimitSelect Backfill Surcharge Service Limit
<Surcharge> CIVILTECH SOFTWARE USA www.civiltech.com
Pressure (ksf)0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200Depth(ft) 0
5
10
15
20
25
30
35
40
45
Z
0.11
0.10
0.08
0.07
0.05
0.04
Licensed to 4324324234 3424343
Date: 6/2/2020 File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition B\Sta. 119+00 H=19.25ft (Select Backfill) (Service Limit).lp8
Wall Height, H= 19.25 Load Depth, D= 2
Load Factor of Surcharge Loading = 1
Flexible Wall Condition -- Movement or deflection are allowed.
Max. Pressure = 0.117 at depth = 2.89
X Width Strip Load
UNITS: LENGTH/DEPTH: ft, Qpoint: kip, Qline: kip/ft, Qstrip/Qarea/PRESSURE: ksf
Sta. 119+00.00 Permanent Condition B H=19.25ft Traffic Surcharge Service LimitTraffic Surcharge Service Limit
<Surcharge> CIVILTECH SOFTWARE USA www.civiltech.com
Pressure (ksf)0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200Depth(ft) 0
5
10
15
20
25
30
35
40
45
Z
0.10
0.10
0.08
0.07
0.05
0.04
Licensed to 4324324234 3424343
Date: 6/2/2020 File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition B\Sta. 119+00 H=19.25ft (Traffic Surcharge) (Service Limit).lp8
Wall Height, H= 19.25 Load Depth, D= 0
Load Factor of Surcharge Loading = 1
Flexible Wall Condition -- Movement or deflection are allowed.
Max. Pressure = 0.102 at depth = 5.78
X Width Strip Load
Xp=0,Xa=0
Sta. 119+00.00 Permanent Condtion B H=19.25ft Service Limit
<EarthPres> CIVILTECH SOFTWARE www.civiltech.com * Licensed to 4324324234 3424343 UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf
Date: 6/2/2020 File: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition B\Sta. 119+00 H=19.25ft (Service Limit).ep8
* INPUT DATA * Wall Height=19.3 Total Soil Types= 2
Soil No. Weight Saturate Phi Cohesion Nspt Type Description
1 118.0 123.0 22 .05 0 2 Clay
2 140.0 145.0 30 100 0 4 Limestone
Ground Surface at Active Side:
Line Z1 Xa1 Z2 Xa2 Soil No. Description
1 11.0 0.0 11.0 800.0 1 Clay
2 26.8 0.0 26.8 800.0 2 Limestone
Ground Surface at Passive Side:
Line Z1 Xp1 Z2 Xp2 Soil No. Description
1 19.3 0.0 19.3 800.0 1 Clay
2 26.8 0.0 26.8 800.0 2 Limestone
Wall Friction Options: 1.* No wall friction
Wall Batter Angle = 0
Water Density = 62.4
Water Pressure: 6. No Water Table
* OUTPUT RESULTS * Total Force above Base= 1.31 per one linear foot (or meter) width along wall height
Total Static Force above Base= 1.31
Driving Pressure above Base - Output to Shoring - Multiplier of Pressure = 1
Z1 Pa1 Z2 Pa2 Slope Coef.
12.26 0.00 19.25 0.38 0.0537 0.4550
Driving Pressure below Base - Output to Shoring - Multiplier of Pressure = 1
Z1 Pa1 Z2 Pa2 Slope Ka or Ko
19.25 0.38 26.75 0.78 0.0537 0.4550
26.75 -114.86 44.00 -114.04 0.0475 0.3395
Passive Pressure below Base - Output to Shoring - Multiplier of Pressure = 1
Z1 Pp1 Z2 Pp2 Slope Kp
19.25 0.15 26.75 2.09 0.259 2.1980
26.75 348.96 44.00 356.34 0.428 3.0562
UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf
Date: 6/2/2020 File Name: G:\2020\Knoxville\20C55009 TDOT Wall 6\03-SE Products\02-Calcs\Shoring Suite\Permanent Condition B\Sta. 119+00 H=19.25ft (Service Limit).ep8
Project No. 20C55009.00 / June 4, 2020 Schnabel Engineering, LLC
APPENDIX III
Microsoft Excel 2016
The purpose of this calculation package is to determine an appropriate grade EPS for use as lighweight backfill behind retaining wall 6. The procedure used generally follows the design guidelines published by the National Cooperative Highway Research Program (NCHRP). The analysis provided herein analyzes the internal load bearing capacity of the EPS.
EPS 22 was selected as an appropriate grade based on internal load bearing calculations. The maximum strain in the EPS fill is estimated to be less than 1 percent.
The EPS grade is subject to change during detailed design when more failure modes are analyzed and additional project details become available.
Brendan Stepek, EIT May 26, 2020
Gary Brill, PE Jun 4, 2020
CALCULATION MEMORANDUM PROJECT: Design of Wall 6 – TDOT PERFORMED BY: Brendan Stepek, EIT
PROJECT NO 20C55009 DATE: 5/26/20
LOCATION: Knoxville, Tennessee CHECKED BY: Gary Brill, PE
SUBJECT: Preliminary Design – EPS Geofoam DATE: 6/4/2020
INTRODUCTION
The Tennessee Department of Transportation (TDOT) is currently planning various improvements along Alcoa Highway (U.S. 129) between Hall Road (State Route 35) and Cherokee Trail. Part of the improvements is a grade separation between Alcoa Highway and Cherokee Trail. Retaining wall 6 (Wall 6) will support the westbound lanes of Cherokee Trail as it approaches the Alcoa Highway. Expanded Polystyrene (EPS) or “Geofoam”, an ultra-lightweight fill material, has been proposed for use as backfill along select segments of Wall 6 in order to reduce the need for tie-back anchors and large piles, and to possibly reduce the amount of settlement in the clayey soils beneath the wall.
OBJECTIVE
The objective of this analysis is to select an appropriate EPS grade for application as backfill material behind Wall 6.
DESIGN
Geometry and Materials
The critical section used for design is located at station 50+50 beneath a proposed bridge abutment as seen on sheet 103 of TDOT’s conceptual retaining wall drawings (TDOT 2020). At this location Wall 6 has a retained backfill height of about 41 feet. We assumed 39 feet of this retained backfill will be EPS. The remaining portion will be composed of the pavement system. The pavement system is composed of the wearing surface (asphalt or concrete), the base, and subbase. Per NCHRP conventions, the pavement system was given a unit weight of 130 pounds per cubic foot and a thickness of at least 2 feet. We anticipate including a concrete load transfer platform (LTP) above the top row of EPS. Conservatively, the LTP was not considered during this analysis. Details of the LTP and refinement of the pavement system will be evaluated during the detailed design phase.
Loading
EPS design typically considers live loads (LL), dead loads (DL), and centrifugal loads (CF). We were provided a live load of 250 psf per an email from TDOT dated May 5th, 2020. The dead loads consist of the self weight of the pavement system, the EPS, and traffic barriers. The self weight of the EPS was calculated assuming a 4 percent water content which allows for long term water absorption due to periodic exposure to groundwater. Centrifugal loads are the forces imposed by traffic on a turn. We do not believe centrifugal loading will be critical to the EPS selection and thus was not considered in this analysis. The applicability of centrifugal loads will be reevaluated in the detailed design phase.
3502 Overlook Circle Knoxville, TN 37909
T/ 865-584-0344 F/ 865-584-0778
Project 20C55009 / 5/26/20 Page 2 Schnabel Engineering LLC
Procedure
Typical EPS geofoam block design applications for highway use include modeling the long-term routine loading of blocks beneath traffic lane areas and an allowable strain limit of 1%. The EPS geofoam blocks are designed in general accordance with the National Cooperative Highway Research Program (NCHRP) guidelines for the design of geofoam highway embankments. For the purpose of selecting an appropriate EPS grade, we performed an internal load bearing design. The procedure is as follows.
1. Estimate dead loads of pavement system 2. Estimate live loads 3. Estimate total stress at the top of the EPS blocks 4. Estimate the minimum required elastic stress due to predicted loading of the top layer of EPS blocks 5. Select appropriate EPS block density for the top layer 6. Estimate total stress at various levels in the EPS mass 7. Estimate the minimum elastic stress at various depths 8. Select appropriate EPS block densities to satisfy the EPS elastic limit at various depths 9. Calculate approximate vertical deformation
Results
Based on the results of our analyses we selected EPS 22 geofoam. Under these conditions, the estimated strains are below 1 percent. Stress and strain calculations can be found in table 1. Graphs of stress and strain in the EPS mass are included. Properties of EPS are shown on table 2.
Additional analyses will be performed during the detailed design phase which may impact the final material selection. Additionally, the potential for material optimization will be evaluated during the detailed design phase.
REFERENCES
Arellano, D., Stark, T. D., Horvath, J. S., and Leshchinsky, D. (2011) “NCHRP Project 24-11(02), Guidelines for Geofoam Applications in Slope Stability Projects”. Transportation Research Board, Washington D.C.
Arellano, D., Stark, T. D., Horvath, J. S., and Leshchinsky, D. (2013) “Research Results Digest 308, Guidelines for Geofoam Applications in Slope Stability Projects”. Transportation Research Board, Washington D.C.
Stark, T. D, Arellano, D., Horvath, J. S., and Leshchinsky, D. (2004) “NCHRP Report 529, Guideline and Recommended Standard for Geofoam Applications in Highway Embankments”. Transportation Research Board, Washington D.C.
Stark, T. D, Arellano, D., Horvath, J. S., and Leshchinsky, D. (2004) “NCHRP Web Document 65 (Project 24-11), Geofoam Applications in the Design and Construction of Highway Embankments”. Transportation Research Board, Washington D.C.
TDOT (2020). “Preliminary Plans – Retaining Wall Conceptual Drawings”. State of Tennessee Department of Transportation.
Project: Schnabel Project: Title: Preliminary Design - EPS Geofoam Performed By: Date: Analysis:
Schematic Cross Section
Dead Load Calculation Pavement System (surface, base, and subbase)
tpavement = 2.00 ft (Minimum pavement system thickness) [NCHRP Web Doc. 65 p.3-9] γpavement = 130.00 pcf (Equivalent pavement system unit weight) [NCHRP Web Doc. 65 p.3-9]
σDL = Σ(t*γ) σDL = 260.0 psf
Live Load Calculation σLL 250.00 psf (Live load stress due to traffic)
Total Stress at the Top Layer of EPS Blocks σTotal = σDL+σLL
σTotal = 510 psf at d = 2.00 ft σTotal = 4 psi σTotal = 24 kPa
Design of Wall 6 - TDOT 20C55009
Brendan Stepek, EIT 5/22/2020 Internal Stability - Load Bearing
(Dead load stress at the top of the EPS blocks due to pavement system)
Minimum Elastic Limit Stress of EPS Blocks σReq = 1.2 * σTotal
σReq = 4.3 psi σReq = 29.3 kPa
EPS Grade Selection and Properties
Use EPS 22 σ1% = 7.3 psi > 4.3 psi
ρ = 21.6 kg/m3
γEPS 1.3 pcf (dry unit weight of EPS) Groundwater Exposure: Design Water Content: 4% [NCHRP Proj. 24-11(02) p. 3-13 & 3-14]
γEPS, saturated = 3.79 pcf (EPS unit weight allowing for long term water absorption)
Eti = σ1%/ 1% = σ1%/0.01 (Initial Tangent Young's Modulus) Eti = 5033 kPa
Vertical Deformation of EPS Block: Yield (Plastic) Stress
σp1 = 6.41*ρ-35.2= 103.3 kPa [NCHRP Web Doc. 65 p.2-30 Eq.2.4] σp2 = 6.62*ρ-46.3= 96.7 kPa [NCHRP Web Doc. 65 p.2-30 Eq.2.5] σp3 = 6.83*ρ-48.4= 99.1 kPa [NCHRP Web Doc. 65 p.2-31 Eq.2.6]
σp = minimum{σp1,σp2,σp3} σp = 96.7 kPa
Vertical strain estimate at the top of the EPS section εallowable = 1.0% (strain limit for EPS)
(General Power Law)
σTotal = 24.4 kPa at z= 0 ft σTotal = 3.5 psi
t = 657000 hours = 75 years (75 years) ε = 0.52 % at z= 0 ft (estimated strain at the top of EPS section) ε < εallowable
ε = εo +εc
εo = σ/Eti (immediate strain upon loading) εo = 0.49 % εo < 1% εc = 0.03 % (time dependent strain)
ε =
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
z( ft)
Total Strain
Immediate Strain
z( ft)
Total Stress vs Depth (z) Live Loads (250 psf surcharge)
EPS Comp. Strength @1% Strain
Total Stress
1.2 * Total Stress
z d Immediate, ε0 Time Dependent2, εc Total, ε Comp. strength5 Unit Weight6 Young's
Modulus, Eti
Yield Stress, σp
(ft) (ft) (psf) (psi) (kPa) (psf) (psi) (kPa) (psf) (psi) (kPa) (psi) (kPa) (%) (%) (%) (in) (psi) (lb/ft3) (kPa) (kPa) -2.0 0.0 250 1.7 12.0 0 0.0 0.0 250 1.7 12.0 2.1 14.4 -1.5 0.5 250 1.7 12.0 65 0.5 3.1 315 2.2 15.1 2.6 18.1 -1.0 1.0 250 1.7 12.0 130 0.9 6.2 380 2.6 18.2 3.2 21.8 -0.5 1.5 250 1.7 12.0 195 1.4 9.3 445 3.1 21.3 3.7 25.6 0.0 2.0 250 1.7 12.0 260 1.8 12.4 510 3.5 24.4 4.3 29.3 0.49 0.03 0.52 0.031 EPS 22 7.3 3.79 5033 96.7 0.5 2.5 250 1.7 12.0 262 1.8 12.5 512 3.6 24.5 4.3 29.4 0.49 0.03 0.52 0.031 EPS 22 7.3 3.79 5033 96.7 1.0 3.0 250 1.7 12.0 264 1.8 12.6 514 3.6 24.6 4.3 29.5 0.49 0.03 0.52 0.031 EPS 22 7.3 3.79 5033 96.7 1.5 3.5 250 1.7 12.0 266 1.8 12.7 516 3.6 24.7 4.3 29.6 0.49 0.03 0.52 0.031 EPS 22 7.3 3.79 5033 96.7 2.0 4.0 250 1.7 12.0 268 1.9 12.8 518 3.6 24.8 4.3 29.7 0.49 0.03 0.53 0.032 EPS 22 7.3 3.79 5033 96.7 2.5 4.5 250 1.7 12.0 269 1.9 12.9 519 3.6 24.9 4.3 29.8 0.49 0.03 0.53 0.032 EPS 22 7.3 3.79 5033 96.7 3.0 5.0 250 1.7 12.0 271 1.9 13.0 521 3.6 25.0 4.3 30.0 0.50 0.04 0.53 0.032 EPS 22 7.3 3.79 5033 96.7 3.5 5.5 250 1.7 12.0 273 1.9 13.1 523 3.6 25.1 4.4 30.1 0.50 0.04 0.53 0.032 EPS 22 7.3 3.79 5033 96.7 4.0 6.0 250 1.7 12.0 275 1.9 13.2 525 3.6 25.1 4.4 30.2 0.50 0.04 0.54 0.032 EPS 22 7.3 3.79 5033 96.7 5.0 7.0 250 1.7 12.0 279 1.9 13.4 529 3.7 25.3 4.4 30.4 0.50 0.04 0.54 0.065 EPS 22 7.3 3.79 5033 96.7 5.5 7.5 250 1.7 12.0 281 2.0 13.4 531 3.7 25.4 4.4 30.5 0.50 0.04 0.54 0.033 EPS 22 7.3 3.79 5033 96.7 6.0 8.0 250 1.7 12.0 283 2.0 13.5 533 3.7 25.5 4.4 30.6 0.51 0.04 0.55 0.033 EPS 22 7.3 3.79 5033 96.7 6.5 8.5 250 1.7 12.0 285 2.0 13.6 535 3.7 25.6 4.5 30.7 0.51 0.04 0.55 0.033 EPS 22 7.3 3.79 5033 96.7 7.0 9.0 250 1.7 12.0 287 2.0 13.7 537 3.7 25.7 4.5 30.8 0.51 0.04 0.55 0.033 EPS 22 7.3 3.79 5033 96.7 7.5 9.5 250 1.7 12.0 288 2.0 13.8 538 3.7 25.8 4.5 30.9 0.51 0.04 0.55 0.033 EPS 22 7.3 3.79 5033 96.7 8.0 10.0 250 1.7 12.0 290 2.0 13.9 540 3.8 25.9 4.5 31.0 0.51 0.04 0.56 0.033 EPS 22 7.3 3.79 5033 96.7 8.5 10.5 250 1.7 12.0 292 2.0 14.0 542 3.8 26.0 4.5 31.2 0.52 0.04 0.56 0.033 EPS 22 7.3 3.79 5033 96.7 9.0 11.0 250 1.7 12.0 294 2.0 14.1 544 3.8 26.1 4.5 31.3 0.52 0.04 0.56 0.034 EPS 22 7.3 3.79 5033 96.7 9.5 11.5 250 1.7 12.0 296 2.1 14.2 546 3.8 26.1 4.6 31.4 0.52 0.04 0.56 0.034 EPS 22 7.3 3.79 5033 96.7 10.0 12.0 250 1.7 12.0 298 2.1 14.3 548 3.8 26.2 4.6 31.5 0.52 0.04 0.56 0.034 EPS 22 7.3 3.79 5033 96.7 10.5 12.5 250 1.7 12.0 300 2.1 14.4 550 3.8 26.3 4.6 31.6 0.52 0.04 0.57 0.034 EPS 22 7.3 3.79 5033 96.7 11.0 13.0 250 1.7 12.0 302 2.1 14.4 552 3.8 26.4 4.6 31.7 0.52 0.05 0.57 0.034 EPS 22 7.3 3.79 5033 96.7 11.5 13.5 250 1.7 12.0 304 2.1 14.5 554 3.8 26.5 4.6 31.8 0.53 0.05 0.57 0.034 EPS 22 7.3 3.79 5033 96.7 12.0 14.0 250 1.7 12.0 305 2.1 14.6 555 3.9 26.6 4.6 31.9 0.53 0.05 0.57 0.034 EPS 22 7.3 3.79 5033 96.7 12.5 14.5 250 1.7 12.0 307 2.1 14.7 557 3.9 26.7 4.6 32.0 0.53 0.05 0.58 0.035 EPS 22 7.3 3.79 5033 96.7 13.0 15.0 250 1.7 12.0 309 2.1 14.8 559 3.9 26.8 4.7 32.1 0.53 0.05 0.58 0.035 EPS 22 7.3 3.79 5033 96.7 13.5 15.5 250 1.7 12.0 311 2.2 14.9 561 3.9 26.9 4.7 32.2 0.53 0.05 0.58 0.035 EPS 22 7.3 3.79 5033 96.7 14.0 16.0 250 1.7 12.0 313 2.2 15.0 563 3.9 27.0 4.7 32.4 0.54 0.05 0.58 0.035 EPS 22 7.3 3.79 5033 96.7 14.5 16.5 250 1.7 12.0 315 2.2 15.1 565 3.9 27.1 4.7 32.5 0.54 0.05 0.59 0.035 EPS 22 7.3 3.79 5033 96.7 15.0 17.0 250 1.7 12.0 317 2.2 15.2 567 3.9 27.1 4.7 32.6 0.54 0.05 0.59 0.035 EPS 22 7.3 3.79 5033 96.7 15.5 17.5 250 1.7 12.0 319 2.2 15.3 569 3.9 27.2 4.7 32.7 0.54 0.05 0.59 0.036 EPS 22 7.3 3.79 5033 96.7 16.0 18.0 250 1.7 12.0 321 2.2 15.4 571 4.0 27.3 4.8 32.8 0.54 0.05 0.60 0.036 EPS 22 7.3 3.79 5033 96.7 16.5 18.5 250 1.7 12.0 323 2.2 15.4 573 4.0 27.4 4.8 32.9 0.54 0.05 0.60 0.036 EPS 22 7.3 3.79 5033 96.7 17.0 19.0 250 1.7 12.0 324 2.3 15.5 574 4.0 27.5 4.8 33.0 0.55 0.05 0.60 0.036 EPS 22 7.3 3.79 5033 96.7 17.5 19.5 250 1.7 12.0 326 2.3 15.6 576 4.0 27.6 4.8 33.1 0.55 0.05 0.60 0.036 EPS 22 7.3 3.79 5033 96.7 18.0 20.0 250 1.7 12.0 328 2.3 15.7 578 4.0 27.7 4.8 33.2 0.55 0.06 0.61 0.036 EPS 22 7.3 3.79 5033 96.7 18.5 20.5 250 1.7 12.0 330 2.3 15.8 580 4.0 27.8 4.8 33.3 0.55 0.06 0.61 0.037 EPS 22 7.3 3.79 5033 96.7 19.0 21.0 250 1.7 12.0 332 2.3 15.9 582 4.0 27.9 4.9 33.4 0.55 0.06 0.61 0.037 EPS 22 7.3 3.79 5033 96.7 19.5 21.5 250 1.7 12.0 334 2.3 16.0 584 4.1 28.0 4.9 33.5 0.56 0.06 0.61 0.037 EPS 22 7.3 3.79 5033 96.7 20.0 22.0 250 1.7 12.0 336 2.3 16.1 586 4.1 28.0 4.9 33.7 0.56 0.06 0.62 0.037 EPS 22 7.3 3.79 5033 96.7 20.5 22.5 250 1.7 12.0 338 2.3 16.2 588 4.1 28.1 4.9 33.8 0.56 0.06 0.62 0.037 EPS 22 7.3 3.79 5033 96.7 21.0 23.0 250 1.7 12.0 340 2.4 16.3 590 4.1 28.2 4.9 33.9 0.56 0.06 0.62 0.037 EPS 22 7.3 3.79 5033 96.7 21.5 23.5 250 1.7 12.0 341 2.4 16.4 591 4.1 28.3 4.9 34.0 0.56 0.06 0.62 0.037 EPS 22 7.3 3.79 5033 96.7 22.0 24.0 250 1.7 12.0 343 2.4 16.4 593 4.1 28.4 4.9 34.1 0.56 0.06 0.63 0.038 EPS 22 7.3 3.79 5033 96.7 22.5 24.5 250 1.7 12.0 345 2.4 16.5 595 4.1 28.5 5.0 34.2 0.57 0.06 0.63 0.038 EPS 22 7.3 3.79 5033 96.7 23.0 25.0 250 1.7 12.0 347 2.4 16.6 597 4.1 28.6 5.0 34.3 0.57 0.06 0.63 0.038 EPS 22 7.3 3.79 5033 96.7 23.5 25.5 250 1.7 12.0 349 2.4 16.7 599 4.2 28.7 5.0 34.4 0.57 0.07 0.64 0.038 EPS 22 7.3 3.79 5033 96.7 24.0 26.0 250 1.7 12.0 351 2.4 16.8 601 4.2 28.8 5.0 34.5 0.57 0.07 0.64 0.038 EPS 22 7.3 3.79 5033 96.7 24.5 26.5 250 1.7 12.0 353 2.5 16.9 603 4.2 28.9 5.0 34.6 0.57 0.07 0.64 0.038 EPS 22 7.3 3.79 5033 96.7 25.0 27.0 250 1.7 12.0 355 2.5 17.0 605 4.2 29.0 5.0 34.7 0.58 0.07 0.64 0.039 EPS 22 7.3 3.79 5033 96.7 25.5 27.5 250 1.7 12.0 357 2.5 17.1 607 4.2 29.0 5.1 34.9 0.58 0.07 0.65 0.039 EPS 22 7.3 3.79 5033 96.7
Table 1: Stress and Strain Distribution with Depth
EPS Grade
σLL+σDLσDLσLL
Dead Load Stress Total StressLive Load Stress1
z d Immediate, ε0 Time Dependent2, εc Total, ε Comp. strength5 Unit Weight6 Young's
Modulus, Eti
Yield Stress, σp
(ft) (ft) (psf) (psi) (kPa) (psf) (psi) (kPa) (psf) (psi) (kPa) (psi) (kPa) (%) (%) (%) (in) (psi) (lb/ft3) (kPa) (kPa) EPS Grade
Strain in EPS Vertical
Deformation of EPS, Δh
σLL+σDLσDLσLL
Dead Load Stress Total StressLive Load Stress1
26.0 28.0 250 1.7 12.0 359 2.5 17.2 609 4.2 29.1 5.1 35.0 0.58 0.07 0.65 0.039 EPS 22 7.3 3.79 5033 96.7 26.5 28.5 250 1.7 12.0 360 2.5 17.3 610 4.2 29.2 5.1 35.1 0.58 0.07 0.65 0.039 EPS 22 7.3 3.79 5033 96.7 27.0 29.0 250 1.7 12.0 362 2.5 17.3 612 4.3 29.3 5.1 35.2 0.58 0.07 0.66 0.039 EPS 22 7.3 3.79 5033 96.7 27.5 29.5 250 1.7 12.0 364 2.5 17.4 614 4.3 29.4 5.1 35.3 0.58 0.07 0.66 0.039 EPS 22 7.3 3.79 5033 96.7 28.0 30.0 250 1.7 12.0 366 2.5 17.5 616 4.3 29.5 5.1 35.4 0.59 0.07 0.66 0.040 EPS 22 7.3 3.79 5033 96.7 28.5 30.5 250 1.7 12.0 368 2.6 17.6 618 4.3 29.6 5.2 35.5 0.59 0.08 0.66 0.040 EPS 22 7.3 3.79 5033 96.7 29.0 31.0 250 1.7 12.0 370 2.6 17.7 620 4.3 29.7 5.2 35.6 0.59 0.08 0.67 0.040 EPS 22 7.3 3.79 5033 96.7 29.5 31.5 250 1.7 12.0 372 2.6 17.8 622 4.3 29.8 5.2 35.7 0.59 0.08 0.67 0.040 EPS 22 7.3 3.79 5033 96.7 30.0 32.0 250 1.7 12.0 374 2.6 17.9 624 4.3 29.9 5.2 35.8 0.59 0.08 0.67 0.040 EPS 22 7.3 3.79 5033 96.7 30.5 32.5 250 1.7 12.0 376 2.6 18.0 626 4.3 30.0 5.2 35.9 0.60 0.08 0.68 0.041 EPS 22 7.3 3.79 5033 96.7 31.0 33.0 250 1.7 12.0 378 2.6 18.1 628 4.4 30.0 5.2 36.1 0.60 0.08 0.68 0.041 EPS 22 7.3 3.79 5033 96.7 31.5 33.5 250 1.7 12.0 379 2.6 18.2 629 4.4 30.1 5.2 36.2 0.60 0.08 0.68 0.041 EPS 22 7.3 3.79 5033 96.7 32.0 34.0 250 1.7 12.0 381 2.6 18.3 631 4.4 30.2 5.3 36.3 0.60 0.08 0.68 0.041 EPS 22 7.3 3.79 5033 96.7 32.5 34.5 250 1.7 12.0 383 2.7 18.3 633 4.4 30.3 5.3 36.4 0.60 0.09 0.69 0.041 EPS 22 7.3 3.79 5033 96.7 33.0 35.0 250 1.7 12.0 385 2.7 18.4 635 4.4 30.4 5.3 36.5 0.60 0.09 0.69 0.041 EPS 22 7.3 3.79 5033 96.7 33.5 35.5 250 1.7 12.0 387 2.7 18.5 637 4.4 30.5 5.3 36.6 0.61 0.09 0.69 0.042 EPS 22 7.3 3.79 5033 96.7 34.0 36.0 250 1.7 12.0 389 2.7 18.6 639 4.4 30.6 5.3 36.7 0.61 0.09 0.70 0.042 EPS 22 7.3 3.79 5033 96.7 34.5 36.5 250 1.7 12.0 391 2.7 18.7 641 4.4 30.7 5.3 36.8 0.61 0.09 0.70 0.042 EPS 22 7.3 3.79 5033 96.7 35.0 37.0 250 1.7 12.0 393 2.7 18.8 643 4.5 30.8 5.4 36.9 0.61 0.09 0.70 0.042 EPS 22 7.3 3.79 5033 96.7 35.5 37.5 250 1.7 12.0 395 2.7 18.9 645 4.5 30.9 5.4 37.0 0.61 0.09 0.71 0.042 EPS 22 7.3 3.79 5033 96.7 36.0 38.0 250 1.7 12.0 396 2.8 19.0 646 4.5 31.0 5.4 37.1 0.61 0.09 0.71 0.043 EPS 22 7.3 3.79 5033 96.7 36.5 38.5 250 1.7 12.0 398 2.8 19.1 648 4.5 31.0 5.4 37.3 0.62 0.10 0.71 0.043 EPS 22 7.3 3.79 5033 96.7 37.0 39.0 250 1.7 12.0 400 2.8 19.2 650 4.5 31.1 5.4 37.4 0.62 0.10 0.72 0.043 EPS 22 7.3 3.79 5033 96.7 37.5 39.5 250 1.7 12.0 402 2.8 19.3 652 4.5 31.2 5.4 37.5 0.62 0.10 0.72 0.043 EPS 22 7.3 3.79 5033 96.7 38.0 40.0 250 1.7 12.0 404 2.8 19.3 654 4.5 31.3 5.5 37.6 0.62 0.10 0.72 0.043 EPS 22 7.3 3.79 5033 96.7 38.5 40.5 250 1.7 12.0 406 2.8 19.4 656 4.6 31.4 5.5 37.7 0.62 0.10 0.73 0.044 EPS 22 7.3 3.79 5033 96.7 39.0 41.0 250 1.7 12.0 408 2.8 19.5 658 4.6 31.5 5.5 37.8 0.63 0.10 0.73 0.044 EPS 22 7.3 3.79 5033 96.7
= 2.77 Notes:
1 Live load modeled as 250 psf surcharge 2 Live load duration: t= 657000 hours = 75 years 3 Top of pavement: z= -2.00 ft and d= 0 ft 4 Top of EPS Blocks: z= 0 ft and d= 2.00 ft 5 Compressive Strength at a 1% strain 6 Unit weight of EPS assumes periodic exposure to groundwater and long term absorption resulting in 4% water content
Young's Modulus, Eti
Yield Stress, σp
(kg/m3) (slug/ft3) 0%
(lb/ft3) (kPa) (kPa)
EPS 12 11.2 0.02 2.2 0.70 1.32 3.17 6.87 1516.8 27.84 EPS 15 14.4 0.03 3.6 0.90 1.51 3.36 7.05 2482.1 49.03 EPS 19 18.4 0.04 5.8 1.15 1.76 3.60 7.27 3999.0 75.51 EPS 22 21.6 0.04 7.3 1.35 1.96 3.79 7.45 5033.2 96.69 EPS 29 28.8 0.06 10.9 1.80 2.40 4.22 7.86 7515.3 144.36 EPS 39 38.4 0.07 15.0 2.40 3.00 4.80 8.40 10342.1 207.91 EPS 46 45.7 0.09 18.6 2.85 3.45 5.23 8.81 12824.2 256.23
Notes: 1 Density and compressive resistance values are minimunm values as per ASTM D6817 2 Unit weight with water content is based on NCHRP "Guidelines for Geofoam Applications in slope Stability Projects" p. 3-13 3 Young's Modulus is based on the ASTM minimum compressive strength and 1 percent strain 4 Yield stress is estimated from equation 2.5 found on page 2-30 in NCHRP Web Doc. 65
Table 2: EPS Properties
Grade Density Comp. Resistance @

EPS Geofoam - Volume Estimate
Microsoft Excel 2016
Purpose and Objective
The purpose of this calculation package is to estimate an approximate volume of EPS Geofoam backfill behind retaining wall 6. The procedure uses the average end area method and section view drawings from Appendix I - Preliminary Drawings.
The approximate volume of EPS Geofoam backfill behind retaining wall 6 shown in Appendix I - Preliminary Drawings is 11,781 cubic yards.
Brendan Stepek, EIT Jun 3, 2020
Gary Brill, PE Jun 4, 2020
Project: Design of Wall 6 - TDOT Project No.: 20C55009 Subject: EPS Volume Date 6/3/2020
By BFS Checked GTB Data Source: Appendix I - Preliminary Drawings - "Retaining Wall 6" dated 5-29-2020
Wall Station Distance Area Incremental
Volume Cumulative
Volume Ft. Sq. Ft. Cu. Yds. Cu. Yds.
9+35.2 0 128.0 0 0 9+81 45.80 128.0 217 217
10+26.65 45.65 177.0 258 475 10+72.14 45.49 247.5 358 833 11+19.91 47.77 386.8 561 1,394 11+74.7 54.79 519.2 919 2,313 12+29.65 54.95 600.8 1,140 3,453
12+70 40.35 528.0 843 4,296 12+84.74 14.74 582.1 303 4,599 13+40.92 56.18 528.0 1,155 5,754 15+26.15 185.23 1,229.0 6,027 11,781
0
2,000
4,000
6,000
8,000
10,000
12,000
14,000
V O
L U
M E
Project No. 20C55009.00 / June 4, 2020 Schnabel Engineering, LLC
APPENDIX IV
19 20
2122 23
Color Name Model Unit Weight (pcf)
Cohesion' (psf)
Phi' (°) Phi-B (°)
Select Backfill
06/01/2020
250 surcharge 250 psf Cohesion In Clay
1:310
Cohesion' (psf)
Phi' (°) Phi-B (°)
Select Backfill
06/01/2020
1:310
1
2122 23
Color Name Model Unit Weight (pcf)
Cohesion' (psf)
EPS 22 High Strength 1.4
Select Backfill
06/01/2020
250 surcharge 250psf Cohesion in Clay
1:312
Color Name Model Unit Weight (pcf)
Cohesion' (psf)
EPS 22 High Strength 1.4
Select Backfill
06/01/2020
250 surcharge 250psf Cohesion in Clay
1:312
Appendix I - Preliminary Drawings
Appendix IV - Global Slope Stability Analyses