subject index978-3-642-2768… ·  · 2017-08-29iron ores, 717 sedimentary deposit, 9–10 ......

21
SUBJECT INDEX A AAR. See Alkali–aggregate reaction Abu Tartur plateau Cenomanian glauconites, 46 Cretaceous glauconites, 47 glauconite deposits, 41–42 Acanthite, 121–123 Acid-neutralising capacity (ANC), 514 Acid rock drainage index (ARDI) application, 516 evaluation, 515–516 mesotextural and microtextural, 515, 517 ADE. See Archaeological dark earth Agricultural lime product, 330 Airborne hyperspectral imaging, 573 Albitite/chlorite–talc mineralisation BSE image, 178 central Sardinia, Italy, 171–176, 178 chemical analysis, 177 crush–leach analysis, 174 EPMA analysis, 173 geology, 172–173 hydrothermal activity, 171 inclusion fluid–rocks interaction, 172 industrial minerals, 171 late Hercynian fracture system, 171–172 map/units, geology, 178 metasomatism, 171 Mg–rich minerals, 172 mineral economics, 171 Na–feldspar/talc–chloride deposits, 171 ore forming fluid, 174 paleofluids chemical analysis, 172 petrography, 172–173 physicochemical condition, fluid phase, 171 REE–bearing minerals, 171, 173 retrograde metasomatism, 172 seawater evapoconcentration, 174–175 XRD analysis, 173 Aldrich, 180 Alghero Au–Ag mineralisations, Italy, 208 Aligudarz granite ACF discrimination, 31, 37–38 barren/mineralization granite study, 32, 35 economic evaluation, 33 geological map, 31, 36 geotectonic classification, 31, 38 intrusion of, 31, 36 K/Rb and Mg/Li ratio, 33, 35 mineralization, 32 Pb distribution, 32, 35 plutonic body distribution, 31, 37 Rb/Sr–C.I. diagram, 34, 37 Sanandaj–Sirjan zone, 31 Alkali–activated aluminosilicate 27 Al MAS NMR spectra, 709 NMR measurement, 709 preparation, 708–709 REAPDOR experiment, 709–710, 714 29 Si MAS NMR spectra, 709 sulfate–activated hybrid binders, 710–712 Alkali–aggregate reaction (AAR), 103 Alkali feldespar, 32 Alkali–silica reaction (ASR), 49, 95 Allanite, 608, 612 27 Al MAS NMR spectra, 709 Aluminium phosphates and sulphates (APS) minerals, 137 Aluminum, 378 Amandelbult UG2 economics, 617 extraction, PGM, 618 mineralogy, 617 PGM–base metal sulfides, 617–618 Amazonian dark earth soils amorphous cryptocrystalline matrix, 137 APS group minerals, 138 ceramic fragments, 137 crandallite-series, 137 A horizons, 137 Jabuti–ADE site sampling, 138 optical property, 143 XRD, 137 Ammonium lactate (AL), 328–329 AMS radiocarbon dating, 650 ANC. See Acid-neutralising capacity Analytical Center of the Institute of Geology and Mineralogy, 488 Anatase, 289 Andalousite, 32 Andesite–basalt to bentonite chemical methods, 362 chondrite–normalized REE, 361, 367 components, 361 geochemical variation, 362–363 geology, 362, 365 hydrothermal clay, 368 major elements, 362–363, 367 Maarten A. T. M. Broekmans (ed.), Proceedings of the 10th International Congress for Applied Mineralogy (ICAM), DOI: 10.1007/978-3-642-27682-8, Ó Springer-Verlag Berlin Heidelberg 2012 803

Upload: buituyen

Post on 18-Mar-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

SUBJECT INDEX

A AAR. See Alkali–aggregate reaction Abu Tartur plateau

Cenomanian glauconites, 46 Cretaceous glauconites, 47 glauconite deposits, 41–42

Acanthite, 121–123 Acid-neutralising capacity (ANC), 514 Acid rock drainage index (ARDI)

application, 516 evaluation, 515–516 mesotextural and microtextural, 515, 517

ADE. See Archaeological dark earth Agricultural lime product, 330 Airborne hyperspectral imaging, 573 Albitite/chlorite–talc mineralisation

BSE image, 178 central Sardinia, Italy, 171–176, 178 chemical analysis, 177 crush–leach analysis, 174 EPMA analysis, 173 geology, 172–173 hydrothermal activity, 171 inclusion fluid–rocks interaction, 172 industrial minerals, 171 late Hercynian fracture system, 171–172 map/units, geology, 178 metasomatism, 171 Mg–rich minerals, 172 mineral economics, 171 Na–feldspar/talc–chloride deposits, 171 ore forming fluid, 174 paleofluids chemical analysis, 172 petrography, 172–173 physicochemical condition, fluid phase, 171 REE–bearing minerals, 171, 173 retrograde metasomatism, 172 seawater evapoconcentration, 174–175 XRD analysis, 173

Aldrich, 180 Alghero Au–Ag mineralisations, Italy, 208 Aligudarz granite

ACF discrimination, 31, 37–38 barren/mineralization granite study, 32, 35 economic evaluation, 33 geological map, 31, 36 geotectonic classification, 31, 38 intrusion of, 31, 36 K/Rb and Mg/Li ratio, 33, 35

mineralization, 32 Pb distribution, 32, 35 plutonic body distribution, 31, 37 Rb/Sr–C.I. diagram, 34, 37 Sanandaj–Sirjan zone, 31

Alkali–activated aluminosilicate 27Al MAS NMR spectra, 709 NMR measurement, 709 preparation, 708–709 REAPDOR experiment, 709–710, 714 29Si MAS NMR spectra, 709 sulfate–activated hybrid binders, 710–712

Alkali–aggregate reaction (AAR), 103 Alkali feldespar, 32 Alkali–silica reaction (ASR), 49, 95 Allanite, 608, 612 27Al MAS NMR spectra, 709 Aluminium phosphates and sulphates (APS)

minerals, 137 Aluminum, 378 Amandelbult UG2

economics, 617 extraction, PGM, 618 mineralogy, 617 PGM–base metal sulfides, 617–618

Amazonian dark earth soils amorphous cryptocrystalline matrix, 137 APS group minerals, 138 ceramic fragments, 137 crandallite-series, 137 A horizons, 137 Jabuti–ADE site sampling, 138 optical property, 143 XRD, 137

Ammonium lactate (AL), 328–329 AMS radiocarbon dating, 650 ANC. See Acid-neutralising capacity Analytical Center of the Institute of Geology and

Mineralogy, 488 Anatase, 289 Andalousite, 32 Andesite–basalt to bentonite

chemical methods, 362 chondrite–normalized REE, 361, 367 components, 361 geochemical variation, 362–363 geology, 362, 365 hydrothermal clay, 368 major elements, 362–363, 367

Maarten A. T. M. Broekmans (ed.), Proceedings of the 10th International Congressfor Applied Mineralogy (ICAM), DOI: 10.1007/978-3-642-27682-8,� Springer-Verlag Berlin Heidelberg 2012

803

mineralogy and mineral–chemistry, 362 petrographic characteristics, 361–362 REE, 363 smectite, 367 stable isotopes, 363 Tashtab Mt, Iran, 361 texture, 365 trace elements, 363 volcanic glass alteration, 361 XRD pattern, 366

Anglo platinum Amandelbult (see Amandelbult UG2) benchmarking programme, 614 characterisation, PGM, 614 design scale–up issues, 616 gangue minerals, 617, 619 grade/recovery relationship, 615 metallurgical PGM extraction potential, 615 mineral characterisation, 613–614 PGM recovery opitmisation, 615 phased approach, 615–616 programme, onsite test–work, 615 UFG application, 616 UG2 and Platreef ore, 615

Ankerite, 785 Anorthite–fayalite join, 653, 656 Antonovsk cluster, 403 Apatite, 32, 481, 483, 486 Apatite–biotite-carbonatite (ABC) rock–fertilizer

agromineralogy and chemistry, 328, 332–333 barium and strontium, 328–329 biotite/hornblende and calcite, 328 carbonatite, 327 crushed minerals/rocks/mineral

concentrates, 327 fieldwork, 329, 333–334 mineral separation, 330 multiple linear regression, 329 nepheline–syenite/ceramics usage, 327 plant availability, 330 rock distribution, 327, 333 sample treatment and analysis, 329 soil and vegetation, 329 StjernØy, N–Norway, 327

Apatite–phlogopite veins, 165, 169 Aphthitalite, 642, 645 Archaeological dark earth (ADE) soils

amorphous cryptocrystalline matrix, 137 APS group minerals, 138 ceramic fragments, 137 crandallite-series, 137 A horizons, 137 Jabuti–ADE site sampling, 138

optical property, 143 XRD, 137

ARDI. See Acid rock drainage index Arsenic, sulfide oxidation/mobilization

acid–generating and neutralization potentials, 505

analytical techniques, 504 backscattered electron photomicrographs,

505, 509 EXAFS spectra, 505 Fe(III) oxyhydroxides, 503 jarosite, As–bearing, 505 least–squares fitting simulation, 505, 508, 510 Micro–XAFS spectra, 506 pyrite/arsenopyrite grains, 506, 511 tailing samples, chemical compositions, 504,

507 tailings impoundment, 504, 508 underwater tailings, 504 water–covered tailings, 503–504 XANES, 505–506, 509

Arsenopyrite, 785 ASEM. See Automated scanning electron

microscopy Aspergillus

A. niger, 145, 213, 216 A. ustus, 214 A. versicolor, 214 organic acid concentration, 219

ASR–aggregate particles assessment alkali–reactive quartz, 95 chemical composition, siliceous limestone,

101 climate exposure, 95 EPMA, 98, 101 ICP–AES, modal composition, 101 petrographic analysis, 96–97 plasma atomic emission spectroscopy, 97 quartz properties, 95 siliceous limestone, mineral composition, 101 XRD analysis, 95, 97 XRF analysis, 97–98

Australia, iron ore mines, 495, 575 Automated image analysis, 717–718, 720 Automated mineralogy, 758 Automated scanning electron microscopy

(ASEM), 319–320, 324 B Bahariya formation, 40, 44 Bahariya Oasis

Cenomanian glauconites, 40 Eocene glauconites, 40–41

804

Bahia kyanite, 454 Bamble and Kongsberg–Modum sectors, 168 Banded iron formation (BIF), 574, 717 Barite, 289 Barium ecotoxicity, 330 Base metal sulphide (BMS), 63 Bassanite, 437 Bastnäsite, 289 Bauxite

Bayer process, 378 Brazil, 378, 454 BXMG-3, 379, 381 CETEM–certified reference, 380 chemical analysis, 379, 383 composition variability, Brazilian sedimentary

deposit, 9–10 data analysis, 378–379 dendrogram, 14 drill core sampling, 9 3D spatial distribution, PCA analysis, 14 exploration/operation, mineral, 9 geometallurgical tool, 9–10, 12 grades, 11, 15 grain size analysis/mineral separation, 12 lithology classification, 10 mineralogy, 10–12 Porto Trombetas, Brazil, 9 QPA, 377–378 quantitative phase analysis, Rietveld, 379, 382 Rietveld and chemical composition, 379, 384 rock-/ore–forming minerals, 378, 381 samples, 378, 381 sketch, laboratory procedure, 12 TOPAS graphical user interface, 379 Vegard’s law, 378 XRD cluster analysis, 10–11, 16, 378

Bayer process, 378 Beer's equation, 287 Benavi iron–rich sediments (BIRS)

arsenopyrite and ankerite, 785 carbonates, 783–784 diagnostic process, 783 energy dispersed spectrometry, 782–783 iron oxides/hydroxides, 784 ore petrography, 783 phosphates, 785 regional structure, 781–782 SEM, 782 silicates, 784–785 thermal gravimetric analysis, 785–786 XRPD, 782

‘Beola,’ 89 Berkovich tip, 674

Bianco Carrara La Facciata marble, 641–642 BIF. See Banded iron formation Bingham Canyon mine, 419–420, 423 Bingham Canyon porphyry copper deposit, 73 Biogenic phosphogenesis, 683 Biotite, 32 BIRS. See Benavi iron–rich sediments Black Mountain Mine Limited, 427 "Blagodatny" mine, 488 BMS. See Base metal sulphide Boehmite, 744 Bornite ores mining, Southeast Missouri

chalcopyrite content, 317 content, mineral, 308 fluid flow, 308 hand specimens, 314 mineralogy, 311 Mississippi Valley–type ores, 307 ore/gangue minerals, 307 photomicrographs, textures, 315 southeast Missouri Pb–Zn district, 307 spheroids and coalesced spheroids, 316 Sweetwater bornite ores, beneficiations, 307 textures/mineralogy, 307–308

Borosilicate glass, 395 Bosano Au–Ag mineralisations, Italy, 209 Bragg's angles, 182 Brannerite, 154 Brazil

iron ores, 717 sedimentary deposit, 9–10

Brazilian sedimentary deposit, 9–10 Brent and Leman deposits, 525, 529 Broken hill sulfide deposit, South Africa

Agar Turbo Carbon Coater device, 429 Co–rich pentlandite, 430 early metasomatic (T2) sulfides, 430–431 Gams formation, 429 late metasomatic (T3) sulfides, 430 late open–space–fill (T4)sulfides, 430 lead/zinc mining operation, 427 mineral chemistry data, 429 Northern Cape Province, 427 paragenetic sequence, 431, 434 populations, mineral species, 429, 433–434 primary (T1) sulfides, 430–431 regional geology, 428 SEM and electron microprobe analyses, 429 sillimanite-quartz schist, 429 "skarn–type" minerals, 429 sulfide mineral/mineral abundance samples,

429, 433 sulfosalts, 429, 433

805

XRD, 429 Brownmillerites

cement phases formation, 557 chemistry, crystal, 557 crystal size, 559, 562 heat flow calorimetry, 559, 564 hydration, 559–560 phase formation, 557 physical characteristics, 562 polymer precursor process, 557–558 refined lattice parameter, 562–563 SEM, 558–559 sintering temperature, 562–563 size/porosity blaine, 562 solid state reaction, 558 temperature of formation, 557, 559 XRD, 558, 564

Bruker D4 ENDEAVOR diffractometer, 378 Brumado greenstone belt, 454 Brushite, 689 BSE–EDX phase classification, 199–200, 202 Bushveld Complex, South Africa, 758–759 C Calcic–augite, 650, 656 Calcic–fayalite, 650, 655 Calcite, 88, 92, 288 Calcium oxalates

crystallization, 347–348 kidney stone composition, 346–347 XRD, 346

Calcium phosphate mineralization albumin, 695 bone tissue minerals, 689 calcification, 693 crystallization, 693–694 extracellular mineralization mechanism, 694 Gatan DigitalMicrograph, 690–691 HAP, 689–690 heart valves/blood plasma, 691–692 intraoperative material, 690 ion concentration, human blood plasma, 694–

695 nanocrystal, HAP, 693 pathological calcification, 689 physicochemical model, 690 synthesized hydroxyapatite, 692–693

Calcium silicate hydrate (CSH), 396, 765 Caledonian Kalak Nappe Complex, 327 Caledonian Köli Nappe Complex, 454 Caloplaca, 216 Cameca SX100 microprobe, 154 Cape Granite suite, 606

Carbonate rock/atmospheric CO2 source/sink ATX620 and absorbing alkali method, 112 carbon reservoir, 111 China, 112, 117 CO2 consumption, 114, 117 control profile (CP), 113 CO2 pool, 114 dissolution, 114 dolomite weathering, 112 farmyard manure, 112, 114 greenhouse gases, 111 karst process, 111, 113 karst water, 114 limestone/dolomite tablets, 113, 116 manurial profile, 113–114 mineral tablets, 112 organic material, soil, 114 plantation, 112 soil/ground CO2 flux, 114, 116 soil pH, 112 soil profiles, 112, 116 weathering/fertilization, 112–113, 116

Carbonate rocks biofilm sampling, 214 biogenic calcium oxalate crystallization, 213 Chersonesian limestone, 213 crustose lichens, biofilm samples, 217 crystal habits, 213 GC–MS analysis, 215 lithobiotic microbial community, 213 metasomatic crystallization, 213 microfungi analysis, 217 micromycete acid production/experiments,

213–215 morphology, 220 OM, 215 oxalate patina formation, 213 SED analysis, 215 SEM, 213 whewellite crystals, Ukraine, 213, 215, 219 XRD analysis, 215 XRPD, 213

Carbonates, 783–784 Carbonatite deposits

alkaline igneous rocks, 666–667 barite, SEM BSE image, 672 bastnäsite and parisite rim, SEM BSE image,

672 crossed polars, silicification, 671 description, 298 exotic REE minerals, 665 gangue mineralogy, 668 geology, 665

806

metallurgical implications, 667–668 mineral assessment/processing, 665–666 OM, 665 physical up–grading, 669 plane polarized light, silicification, 671 receipt/preparation, sample, 668 REE minerals and minerlization, 666–669 replacement ore, 300–301 sample preparation, mineral, 668 SEM, 665 texture/structure, mineral, 665 TREOs, 665 XRD, 665

Carbon Leader reef, 130 Carbon nanostructuring materials

CVD, 623 flow passages, 627–628, 630 graphene–like material, 625–626, 628–629 graphite–palagonit globular leukogabbro, 624 MBS-10 and LEO1430VP equipped, 625 microtubes/nanotubes, 626, 628 morphological features, 624–625 multilayer graphite globules, 624 multiwalled nanotube, 624 sample, 625 sheet, graphene, 625 silicate carbon, 625, 628 single–walled nanotube, 624 Verhnetalnahskaya stratified trap intrusions,

624, 628 Carbon nanotubes (CNTs), 351, 623

AFM, 766 composition, 769 CSH influence, 765 DCA measurement, 766 hydration, 765–766, 768 materials/mix designs, 766 MWCNTs crystallinity, 765 29Si MAS NMR experiments, 765, 767 tricalcium silicate, 765, 772 XRD, 766–767, 770

Carl Zeiss Axiovision software, 256 Carrara marble

aphthitalite/sulfur crystals, 642, 645 calcite marble matrix, 642, 646 EDS spectrum, 643, 647 floor construction, 641–642 hydrogen peroxide treatment, 643 mineralogy, 642 natural sulfur analysis, 642, 645 pore fluid, 642–643 SEM–EDS, 642 spectral analysis, 642, 646

surface staining, 641, 644 Cataclasite, 104 Cathodoluminescence (CL) analysis

central filtering wavelength (CFW), 25 CITL COS8200 optical spectrometer, 24 CITL Mk5 cold–cathode, 24 growth and sectoral zoning/healed

microfractures, 25, 29 imaging, spectral, 25 spectral analysis, 25, 29 Universal–R Zeiss optical microscope, 24

CDW. See Construction and demolition waste Cenomanian glauconites, 40–41

Bahariya formation, 40, 44 Qusseir formation, 41, 46

Cenozoic volcanic rocks, 240 Chalcocite, 675–676 Chalcopyrite, 422

batch flotation test procedure, 74 Bingham Canyon porphyry copper deposit,

73 copper/molybdenum concentrates, 73 flotation tests, 75 Kennecott Utah Copper Concentrator

processes, 73 laboratory/mineral evaluation, 74 lithology process, 73 LSN, 73 magnesium mineral distribution, 78 mineral characterisation, 74–75 particle size contribution, 80 photomicrographs, 78 plant surveys, 74 SEM images, 80 size by size recovery, 79 size fraction, 78 theoretical grade vs. recovery curve, 79

Chamosite, 744 Charcoal 14C age dating, 651, 653 Chemical vapor deposition (CVD), 624 Chernobyl atomic power station, 471 Chersonesian limestone

biofilm analysis, 215–216 biological analysis, 216 carbonate rock substrates, 216 composition, 215 microorganisms, 218 porous rock, 215 Tauric Chersonesos ruins, 218 whewellite crystals, Ukraine, 219

Chetlasskaya anticline, 741–742 Chlorapatite, 166 Chloritized rocks, 171

807

Chondrite, 23 Chromite, 652, 656 Chromitite, 760 Circular ore zone, 154 Cladosporium sphaerospermum, 214 Clay soils

assessment, engineering property, 369 atterberg limits, 371 bricks, building construction, 369 fine–grained minerals, 369 geology, 370, 375 geotechnical properties, 374 Hamedan province, 369, 374–375 mechanical/mineral characteristics, 369–370,

374 mineral groups, 369 water absorption property, 376 XRD, 370–371 XRF, 371, 373

Climate effects, 637–638 CO2CRC Otway Project, 276 µ-Computed tomography (µ-CT), 585

density distribution pattern, 582 hardpan internal structure, 580 hardpan samples, 580, 582 porosity, 582

Concrete deterioration aqueous solution analysis, 437 BSE image, 437, 441 calcite formation, 437 calcium carbonate sinters, 436, 440 evaporation trend, 438, 442 groundwater composition/isotopic

signatures, 437–438, 443 groundwater-concrete interaction, 436 interstitial solutions, 438 multiproxy approach, 436, 438 portlandite, 437 potential sulfate phases, 437 secondary electron image (SEI), 437, 441 solid analysis, 436 stable isotopes, 436 structures, 435 sulfate attack, 427–438 thaumasite formation, 436–437, 442 total dissolved solids (TDS), 438 trace element measurement, 436 water–rock interaction, 435 XRD pattern, 437, 440

Concrete edge beam, 55 Concrete, physical and mechanical property

civil construction industry, 399 compressive strength, 398, 402

mix compositions, 398 pozzolan, 395–396 recycled glass powder, 397–398, 401

Construction and demolition waste (CDW), 255 Copperton Concentrator, 420, 422–423 Cordierite–rich restite. See Paralavas CO2 sequestration

carbonate–bearing rock, 548 carbonate minerals, 547 Fe–Mg silicates/Fe–Ti oxides, 550 fluid infiltration, 548 hydrocarbon reservoir formation, 550 hydrothermal fluid/meta–igneous rocks, 548 intrusive rock altered samples, 549, 553 Kvalshausen, 548, 552 mafic/intermediate rock, 548, 552 metasomatic rock alteration, 549–550, 554–

555 mineral contents, 548–549, 552 oil/gas sandstone formation, 547 rock/trace element analysis, 549 Ti–Zr discrimination, 549, 554

Cracking, 49 Crandallite-bearing ceramic fragment

alunite supergroup, 137 chemical composition, 143 crandallite-series comprises, 137 definition, 137 DTA/TGA analysis, 139 FT–IR spectroscopy, 139 Jabuti–ADE site sampling, 138 micrometric aggregates, 144 microbe chemical composition, 142 mineral composition, 137 OM analysis, 138 origin/formation, 140 rock analysis, 139 SEM/EDS imaging, 139 spheroid aggregates, 144 spot analysis, 139

CRC-1 gamma–ray log, 279, 283 Cretaceous alkaline igneous-carbonatite complex,

297 Cretaceous bioclastic limestones, 240 Cretaceous glauconites, 39, 42 Crush–leach analysis, 174 CSH. See Calcium silicate hydrate CSIRO–developed HyLogging Systems, 573 CVD. See Chemical vapor deposition D Davidschacht tailings, 588 3D computed tomography (3DCT), 129–130

808

DCPD. See Dicalcium phosphate dihydrate Debye–Scherrer geometry, 642 Decimoputzu–Siliqua Au–Ag mineralisations,

Italy, 209–210 Deep fluid channels, 525–526 Dehbid iron deposit, South Iran

geochemistry, 569 geology, 568 metamorphism/magma intrusion, 570 mineralogy, 568–569 NW–SE–trending fault, 569 ore deposition mechanism, 570 ore fabrics, 569–570 petrographic characteristics, 570

Delayed ettringite formation (DEF), 49, 52–53 Dharwar Craton, India, 658 Dicalcium phosphate dihydrate (DCPD), 689 Differential calorimetric analysis (DCA)

measurement, 766 Digital optical microscopy (DOM), 319 Dilwyn aquifer, 278 Diopside, 191 Direct reduced iron (DRI), 385 Dolomite, 112–114, 288 Dragon mine, Utah, 352–353 Dreierketten chains, 703 DRI. See Direct reduced iron DRON-3 diffractometer, 464 Dunite See Olivine Dunite massifs, 638, 640 E Eastern Dharwar Craton (EDC), 658 EDS. See Energy–dispersive X–ray spectroscopy EDXRFH. See Energy dispersive X–ray

fluorescence handheld EDXRFM. See Energy dispersive X–ray

fluorescence microscopy Electron backscatter diffraction (EBSD) analysis,

57–58 Electron probe microanalysis/microanalyzer

(EPMA), 173 ASR, 98–99, 101–102 freshwater fish bone tissues, 472 granitic pegmatite, 337–338 högbomite group minerals, 6, 658 pyrrhotites, 489, 493 pyrrhotite-szomolnokite weathering, 464 uraninite, 154–155

Elemental Analyser EA 1112 and GasBench II, 625

Energy dispersive X–ray fluorescence handheld (EDXRFH), 598–599

CIPW norm, 599 element ratios distribution, 600, 604 ESEM SE image, gold grains, 599–600, 602 field sampling, 601 Galadima Kogo, Nigeria, 598 geology map, 600, 604 gold, 599–600 grain size fractions, 599 HMC, 598 mineral exploration, 598 SiO2/oxides samples, 60, 599 Ti, Mn, Fe, and Zr, 600, 603 Zr grain size, 600, 603

Energy dispersive X–ray fluorescence microscopy (EDXRFM)

elemental mapping samples, 599 microhardpan texture, 582–583 mine tailings, 589

Energy–dispersive X–ray spectroscopy (EDS), 276, 279

Environmental scanning electron microscope (ESEM)

grains analysis, 599 microhardpan texture, 583

Eocene glauconites, 40–41 EPMA. See Electron probe

microanalysis/microanalyzer ESEM. See Environmental scanning electron

microscope Ettringite formation, 49 Eucla basin hallocysite, South Australia, 351–355 Extended X–ray absorption fine structure

(EXAFS) spectroscopy, 1, 3 F Farmyard manure, 112, 114 Fault system, 229 Fayalite, 650, 655–656 Ferrian bauxite, 746 Ferri Doki, 598 FET Philips 30 electron microscope, 222 Field emission mineral liberation analyzer, 758 Field–emission scanning electron microscope

(FEG SEM), 674 Flourspar

apatite/fluorite/calcite tailing, 301, 305 beneficiation problems vs. host rocks

character, 301–302 carbonatite/biotite schist, 301 carbonatites-replacement ores, 300–301 cathodoluminescence micrograph, 305 characteristics, 299 concentration, 297

809

Cretaceous alkaline igneous-carbonatite complex, 297

disseminated goethite pseudomorphs, 300 geology, 297–298 hand specimen, pyroxene carbonatite, 304 host rock replacement, 300 hydrothermal event, 298–299 late Paleozoic metamorphic metasedimentary

rocks, 297 lens–shaped fluorite deposit, 300 marble-replacement, 297 mining/exploration activity, 299–300 Okorusu, Namibia, 297–298 ore bands, 301 Precambrian Damara Series, 297 pyroxene, hand specimen, 304 replacement, carbonatite, 301 types, replacement, 302 Wishbone deposit, 301

Fluorite ore. See Flourspar Fluorite, rare earth elements

analytical method, 24–25 cathodoluminescence, 24–25 LA–ICP–MS analysis, 26–27 laser ablation systems, 23 samples and preparation, 24 South Belgium, 24, 27 trace–element geochemistry, 23

Forties/Troll deposits, 525, 528 Forties trough, 524, 528 Fourier transform infrared (FTIR) spectroscopy,

797 Fourier transform, K–edge spectra, 7 Freshwater fish bone tissues, radioactive elements

bone fabric, 471 BSE micrograph, 473, 477 chemical analysis, 472–474, 478 EPMA, 472 FTIR-spectroscopy, 472–473, 476 ICP–MS and EPMA cluster analysis data, 473 living organisms tissues, 471 optical microscopy, 472 pollution, 474 reservoirs pollution, 471 samples, 471, 475 SEM, 472–473 -spectrometry and - radiometry, 474, 476 statistical assessment, 474, 478 TEM, 472–473, 478 XRD, 473, 475–476

Froland and Evje–Iveland fields, S.Norway, 445, 1448

Fusarium oxysporum, 214

G Gams formation, 428 Gangue minerals, 717 Garnet, 32, 534–535 Gas-chromatography mass spectrometry

(GC–MS), 215 Gatan DigitalMicrograph, 690–691 Gehlenite, 191 Geochemistry-mineralogy–texture (GMT)

approach, 514 classification, 516

Geological Survey of Finland (GTK), 119 Geological Survey of Norway, 549 Geopolymer, 707–708 GHG. See Greenhouse gas Gibbsite, 379 Glamsland pegmatite field, 336 Glass, 650, 652, 655

aggregates, 396 amorphous material, 397 particle size, 396 powder particles, 398, 401 waste glass, 397

Glauconite deposits Abu Tartur plateau, 41–42 Bahariya Oasis, 40–41 Western Desert of Egypt, 39

Glazed tiles absorption and dry test, 190 characterisation, 191 cladding defects, 188–189 construction system, 188 durability, 188 environment, 189 façade pathology, 188, 195 hybrid structure, 188, 195 intervention criteria, 191 raw materials and production techniques,

190–191 time lapse, 189 XRD, 189 XRF, 190

Global warming, 111 GMT. See Geochemistry-mineralogy–texture Gneiss, 104, 172 Goethite, 379–380, 466, 717 Gold, 422, 424, 599–600

absorption–scattering interaction, 129 cone beam technology, 130, 134 conventional mineralogy, 131 cut/polished sample, 131, 136 3DCT, 129–130 false color maps, 132, 136

810

frontal, sagittal and axial projections, 131, 134 gold industry, 130 grey level spectrum, 131, 135 quartered drill core, 130 SANRAD facility, 130 SEM, 130 µXCT, 131–132 X–ray attenuation coefficients, 131, 133

Gold mineralization, Culampajá district, Argentina, 17, 21

Grain–based X–ray mapping, 199 Granite, 104 Granitic pegmatite

biotite samples, 339, 343 chemistry, 338 content and composition, mineral, 335 EPMA, 337–338 feldspar, mica and quartz, 335–336 Lillesand, South Norway, 339 mineral sheet crystals, 337 normative calculation, 339 quantification method, mineral, 338 Rietveld refinement, 338 semiquantitative combination method, 339 XRD, 336 XRF, 337

Granodiorites, 171 Granulated nickel converter matte

ball–mill breakage characteristics, 677 constituents, 673 copper–sulfide phase map, 675, 679 2D surface map, 676, 680 3D surface response, 676, 680 3D topographic image, 674 FEG SEM, 674 indentation breakage characteristics, 676–677 load vs. penetration depth, 674 Mohs–scale hardness, 675, 678 nano-indentation hardness and technique,

674–675, 678 nickel–sulfide phase map, 675, 678 NiCu–alloy phase map, 675, 679 Ni–Cu–Fe–S system, 673 phase–boundary/specific plots, 675, 679 physical property, 674 spacing/matrix arrangement, 675, 678

Graphene, 623–624 Graphite, 290, 624 Greenhouse gas (GHG), 637 GTK. See Geological Survey of Finland Guizhou province, 112 Gypsum

building materials, 539

calcium sulfate hydration product, 539 crystal morphology, 541 heat flow calorimetry, 544 hemihydrate/anhydrite, 539 materials/mix designs, 540 OM assessment, 540–541 porosity, hemihydrates, 544 reaction process, calcium sulfate

hemihydrates, 542 SEM, 539, 542 water/gypsum ratio, 540 XRD, 539–540

H Halloysite

acid groundwater-sediment interaction, 351, 355

associated minerals, 352 BJH pore–size distribution curves, 355, 359 commercial sources, 352 composition, 351 Dragon Mine, Utah, 352–353 Eucla Basin, 353 geology, 352–353, 358 groundwater/surface water flow lines, 358 hydrothermal deposits, 355–356 materials, 353–354 microstructural characteristics, 354, 357 mineral habit, 351 nanotechnology applications, 352, 355 occurrences, 351 physical property, 352 surface area/pore size analysis, 354 TEM, 351

Halloysite nanotubes (HNTs), 351 Hamedan clay province, Iran, 369, 374–375 HAP. See Hydroxyapatite Hard X–ray photoemission spectroscopy

(HX–PES), 180, 182, 186 Heat flow calorimetry, 541 Heavy mineral concentrates (HMC)

fine–grained sample, 598 riverbed samples, 598 sample splitter, 598 silicates, 601 XRF standard analysis, 599

Heavy mineral deposits. See Rare–earth element/thorium potential

Heazlewoodite, 675–676 Hematite, 568–569, 650, 656, 744 Hematite/magnetite mineralogy

association mineral, 200 BSE, 199, 203–204

811

discrimination, 200 iron oxide, 197 liberation analysis, mineral, 198 measurement modes, 199 mineral locking, 200 MLA, 198 modal mineralogy, 200 OM, 202 ore extraction, 197 parameters, measurement, 201 QEMSCAN® tool, 197 reproducibility, 204 sample content, 198 SEM–EDS, 198 world producers, 197

Hemihydrate reacted with water/citric acid, 20ºC, 546 reacted with water, 20oC, 545 reacted with water, 60oC, 545 reacted with water/potassium sulfate, 20ºC ,

545 reacted with water/sulfuric acid, 20ºC , 545 in water, 545

Hercynian granitoid rocks, Central Sardinia, Italy, 172–173

High–quality bauxite, 746 High–resolution electron microscopy (HREM),

684, 690 HMC. See Heavy mineral concentrates HNTs. See Halloysite nanotubes Högbomite group minerals

Dharwar Craton, 658 EPMA, 6, 658 genesis, 659 petrography, 659

Hötting breccia archaeology evidence, 734 calcite dissolution, 736–737 critical frost parameter, 736 geology, 734 petrography/physical property, 735 ratio clasts/matrix, 736 rock type material property, 736, 738 Silver city, 735 technical property, 736, 738 weathering impacts, 733

HREM. See High–resolution electron microscopy Hume–Rothery phases, 179 Hybrid alkali–activated materials. See Alkali–

activated aluminosilicate Hydrothermal Fe–oxide deposits, 567 Hydroxyapatite (HAP), 684–685, 689–690 HyMapT System, 573

Hyperspectral imaging, iron ores BIF, 574 drill chips, 575, 578 Hamersley Province of Western Australia,

576 mine face, 575, 577 processing methodology, 574 pushbroom scanning mode, 574 reflectance spectroscopy, 573 RGB color camera, 574 rocks, 575, 578

HySpex hyperspectral cameras, 574, 577 I iDiscover™ software package, 277 Image acquisition, 320 Image fusion, 319, 322–324, 326 Image manipulation technique, 319, 321, 324 Image registration, 321–322 iMeasure™ software, 277 INCA software FEATURE, 120–122 India, western Dharwar Craton, 658 Inductively coupled plasma–mass spectrometry

(ICP–MS), 230–231, 233 Industrial minerals

anatase, 289 barite, 289 bastnäsite, 289 Beer's equation, 287 calcite, 288 coal macerals, 286–287 crystal habit, 286 dolomite, 288 fluorite, 288–289 graphite, 290 metallic ore minerals, 285 Mohs hardness scale, 288–290 monazite, 289 optical property, 286 petrography, 285 photomicrographs, 288, 295 Portland cement clinker phase, 286 quartz, 288 rare earth–bearing minerals, 289 reflected light microscopy, 285–287 refractive index/reflectance graph, 287 titanium dioxide, 289 uncrossed nicols, identification, 285

Infrared spectroscopy, 403 Intermetallic nickel aluminide nanoparticles

AlEtCl2 and aluminum trichloride, 181 annealed samples, 182–183 chemical state reaction, 180

812

FCC–type structures, 183 HX–PES emissions analysis, 183 intermetallic Pt3Ti, 180 molar ratio, 181, 185 NAC and NCP, 182 Ni3C carbide, 185 NiO structure, 182, 185 organometallic precursors, 184 p–XRD, 180–182 samples, NA1, NA3, and NA5, 182 sodium naphthalide, 180 THF, 179–180 transition alloys, 179 wet chemistry synthesis, 184

Iodine–bearing AFm-(Cl2, CO3, SO4) AFm-I2, 3 AFm-(I2, Cl2), 4 AFm-(I2, CO3), 4 AFm-(I2, SO4), 4 anionic content, chemical analysis, 3 chemical composition, 1–2 coprecipitated AFm-(I2, CO3), 4 coprecipitated/exchanged AFm-(I2, Cl2) and

AFm-(I2, CO3), 4 coprecipitated or exchanged AFm-(I2, SO4), 5 EXAFS spectroscopy, 1, 3 Fourier transform, 7 hydrated cement, 2 iodine immobilization, 1 K–edge spectra, 7 mineral synthesis, 2–3 radioactive waste, 1 XANES, 2 XRD, 1, 3

Iron ore, 465 apatite, 481, 483, 486 Australian iron ore mines, 495 BIF, 496 definition, 497 flowsheets, 480 gangue minerals, 481 geology logging, 495 gibbsite, 495–496 grade control, 495–497 grain–size fraction, 480 Hamersley Province, Western Australia, 496,

499 kaolinite, 495–496 LKAB concentrator, 480 magnetite, 480 mineral association/liberation, 480 mineral composition, 496 Mount Tom Price, 495

PTA, 480–484 QEMSCAN, 480–481, 483–484 software package, 496 spatial distribution, 496–498, 500 texture/particle characteristics, mineral, 479 theoretical grade blocks, 497–499, 501 XRD analysis, 496

Iron ore sinter analysis, 387–388 IsaMill™ technology, 615–616 Italian National Council of Researchers (CNR), 207 J Jedwab theory, 32 Jeol JMS 5900LV SEM–EDS instrument, 120 Joint Committee on Powder Diffraction

Standards (JCPDS), 189 K Kaolinite, 744, 790–791 Karnataka, western Dharwar Craton, 658 Kennecott Utah Copper Corporation (KUC)

chalcopyrite/bornite grain size, 421, 426 copper mine, 419 copperton concentrator, 420 feed/loss, copper, 421, 426 gold, 422, 424 MLA analysis method, 421 Oquirrh Mountain, 420 recovery circuit, 420 sample preparation, 420 size by size recovery, 421, 424 smelter, 420 SOM, 423

Ketza River mine, 503 Khlopin Radium Institute, 471 Khur mineral alteration, Iran Komi republic, Russia, Timan bauxite, 741–748 Kouboom Subgroup, 428 KUC. See Kennecott Utah Copper Corporation Kuyumbinskoye, East Siberia oil deposits, 524,

527 Kyanite

Al–rich metamorphic rocks, 453 Bahia kyanite, 454 Halsjoberg, 454 Kola, 454 LA–ICP–MS, 455–456, 459–461 megacrystic, 454 metasediments, 456 minor/trace element content, 453–454 Nasafjell, 454 Naxos, 454 optical CL, 454–455, 460

813

red cathodoluminescence, 456 refractory industry, 453 Selbu sample, 454 V, Ti, Fe/Cr concentration, 457

L LAC. See Lillebukt alkaline complex Laser ablation-inductively coupled plasma–mass

spectrometer (LA–ICP–MS), 446–447 chondrite–normalized patterns, 26–27 kyanite, 455–456, 459–461 Mat sample, 26 NIST SRM 614 and 612, 25 Tb/La–Tb/Ca diagram, 26, 30

Late Cretaceous Skull Creek Fm, 276 Late Hercynian fracture system, 171–172 Late Paleozoic metamorphic metasedimentary

rocks, 297 Laterites, 567 Late Variscan age, 588 Lazy grain boundary (LGB) method, 105 Lecanora, 216 Leica DC 300+LAS version 2.8.1 software, 121 Leica DFC camer, 589 Leucoxene, 534 Lichens, 637–638 Lillebukt alkaline complex (LAC), 327, 333 Limestone, 113 Limestone skarn ore (LSN), 73 Lithotype classification system, 281 Little Namaqualand suite, 428 Logudoro Au–Ag mineralisations, Italy, 208–209 Lower Paaratte formation, 276 Low–grade iron ores

automated image analysis, 717 elemental distribution, 3 goethite, 717 hematite–magnetite interfere, 86 iron grade vs. iron oxyhydroxides distribution,

86 liberation degree/mineral association, 719–720 method/materials, 718 mineral composition, 718 ore types, 717 particle size analysis, 718–719 separation, mineral, 720

Low–quality bauxite, 746 LSN. See Limestone skarn ore M Magic angle spinning (MAS), 708 Magmatic segregation deposits, 567

Magnetite, 568 Magnetite–hematite transformation

crystal habits and phase, 58–59 crystallographic planes, 57, 59 3D characterization, 57 EBSD analysis, 57–58 iron formations, 58 Iron Quadrangle, Brazil, 57–58 lattice correlation, phase map, 8–62 mineral conversion, 57 octahedral crystals, crystallographic axes, 58,

60 petrological tool, 57 pole figures, (111), (110) and (0001), 61

Malachite, 295 Marcel Coal Mine, 222, 226 March–Dollase algorithm, 379 Marikana mines, 757–761 MAS. See Magic angle spinning Masonry analysis

arches, 243 ashlars, sandstone, 243 calculation/instructions, 30–238 Cenozoic volcanic rocks, 240 chronological survey, 239 Cimas project, 238 Cretaceous bioclastic limestones, 240 geologic/geochemical investigations, 237 materials colors, 239 medieval archaeology, 239 metric and photographic surveys, 239 “minor” architecture, 239 mortars types, 240, 244 philosophy, 238 Pontimannu, 238 rhyolite, 240 sandstone, 239 Sant’Antioco, Italy, bridge, 237, 242 south façade, 243 stone types, 240 stratigraphy, 239 structural aspects/modalities execution, 238–

239 trachite auctorum, 240 vitruvian firmitas, 240 weathering, 240

Masonry techniques/characterization Cagliari, Sardinia, 245 "cantiere" technique, 248–249, 252 chemicophysical methodology, 246 chronology, 246 chrono-typological analysis, 246 grain morphology, 249

814

historical-archaeometric methodology, 245 metrology/morphology, 246 Mezzaspiaggia tower, 245, 247–248, 250–251 Miocene carbonatic formation, 248 Oligocene–Miocene–Holocene sequence

rocks, 247 petrographic mapping, 249, 252 photomicrographs, 253 Pietra Forte, 253 references, historical, 246–247 stratigraphy, 245–246 XRD analysis, 249

`Mayak' reservoirs, 471, 473 McCrone Micronizer mill, 378 Measurement while drilling (MWD), 276 Medieval kirschsteinite-bearing iron slags

age, 651, 654, 656 charcoal, 650 composition, 651–653 Develi–Yahyali, Turkey, 649, 651 slag mineralogy, 650–651

Megacrystic kyanite, 454 Merensky Reef, 2–3 Merensky reef Platreef, 613 Mesoarchaean rocks, 658 Metakaolin (MK), 708, 713–714 Metalimestones, 172 Metallogeny

Culampajá district, gold mineralization, 5, 17 geography, 17 geology, 17–18, 21 granitic/metasedimentary rocks, 17 mineralisation and alteration, 19 ore minerals, 17 quartz vein mineralization, 17 vein mineral assemblages/characteristics, 17–

318 Metasomatism, 171 Mezzaspiaggia tower, Cagliari, Sardinia, 245, 247–

248, 250–251 Micashists, 172 Microhardpan texture

chemical mapping, 581 2D/3D geoelectrical resistivity monitoring,

580 density distribution, 582, 586 EDXRF microscope, 581, 584–585 Fe–hydroxide, 581, 584 hardpan samples, 580 mining residues, 579 MLA–based distribution, 582, 585 Peña del Hierro, Spain, 580 rainfall/watering experiment, 582

SEM observation, 580, 584 water infiltration, 579

Mineral characterization acquisition, image, 320 analysis, X–ray, 319 ASEM, 319 automated mineral mapping, 319 data analysis, 319 data integration, 322–323, 325 DOM/ASEM mineralogy system, 319–320,

324 gangue minerals, 319 image fusion, 319, 322–324, 326 image manipulation technique, 319, 321, 324 image registration, 321–322 MLA/DOM microscopy, 320–321 non–linear image registration, 325 petrographic microscope, 320 QEMSCAN, 319 sphalerite, Iblue:Ibright, 325 texture mapping, 319

Mineral liberation analyzer/analysis (MLA) barite and Fe–hydroxides distribution, 582 chemical identification, 581 hardpan samples, 580–581 software package, 589

Mine tailings altered pyrite crystal, 7, 14 artificial dam, 588 EDXRF microscope, 589 Freiberg, Germany, 590 gel zoning, 591 grain sizes, 590 gypsum, 591 hardpan/cemented layers, 588 hardpan samples, 588–589, 591, 594 image analysis software packages, 589 lamina packages, 590 metamorphic predepositional phases, 590 microenvironments, 588 micrometre–millimetre scale, 591 mineral residues, 587 mineral treatment processes, 588 porosity, 590 scorodite, 591 secondary phases, 590 sedimentary system, 588 slide scanner, 591 software packages, 589 thin sections, 589, 593 weathering process, 588

Miocene carbonatic formation, 248

815

Microfocus X–ray computed tomography (µXCT), 131–132

Mohs–hardness scale, 4–6, 288–290, 675, 678 Monazite, 289, 534 Monte Rosa Nappe, 89 Monti Ferru Au–Ag mineralisations, Italy, 209 Mortars monomineralic aggregation

application, 85 binder composition, 5 building material, 85 calcite aggregates, 87, 91 clastic sediments, 86 crushed calcite and marble, 87–88 fluvial/glacial deposits, 85 geology, 85 gypsum/lime/Portland cement, 85 Lombardy, Northern Italy, 85 OM, 86 polycrystalline/monocrystalline grains, 89 quartz aggregates, 87, 92 stucco samples, 86 surface coat composition, 86 white lime, 88 XRD, 86

Moutonshoek valley, 605 Mucor heterosporum, 214 Mullite, 453 Multiwalled carbon nanotubes (MWCNTs), 765 Muscovite, 32 MWD. See Measurement while drilling Mykhaylivka-Olhivka ore zone, 154 Mylonite, 104–105 N Namakwa sands, 531–533, 535 Namaqualand Metamorphic Complex (NMC),

428 Nano-indentation hardness technique, 674 Narigun polymetallic deposit, Central Iran, 229 National Geophysical Research Institute,

Hyderabad, 658 Natural/artificial sands

CDW, 255 image acquisition, 256 image analysis, 256–257, 260 sample selection/preparation, 256 SEM, 255 shape characterization, 257 shape/texture parameters, 256 texture characterization, 257–258, 260–263

Naxos kyanite, 454 Neoproterozoic Riviera tungsten–molybdenum

deposit

argillic alteration, 607 diamond drilling, 605 endoskarn core samples/distribution, 608 geological setting, 606, 611–612 greisen–type ore, 607 LREE, 609 magmatic greisen–skarn association, 609 mineralogy, 608, 610, 612 ore, endoskarn–type, 607 REE concentrations, 606–607, 610 Riviera borehole core library, 606 rock geochemistry, 607 samples, 606 textural features, 609 vein–type ore, 607 wall rock relationships, 607 yttrium deposit, 608

Network structures, 707–715 NMC. See Namaqualand Metamorphic Complex Norsk Elektro Optikk A/S (NEO), 574 North and Norwegian Seas' basin, 523 Norwegian bedrock, 328 Nuclear magnetic resonance (NMR)

alkali–activated aluminosilicate, 709 alkali–activated hybrid materials, 709 CNTs, 766–767, 771

Nuggihalli schist belt (NSB), 658 Nulvi Au–Ag mineralisations, Italy, 207 O Oceanic phosphorites

albumin, 683 bacterial cell mineralization, 685–686 biogenic phosphogenesis, 683 calcium phosphate grain, 684, 687 diatomaceous ooze, 683 HREM methods, 684 hydroxyapatite formation, 684–685 INCA energy 300 software package, 684 microprobe analysis, 684 microstructure/chemical composition, 683 mineral–organic gel, 683, 685 mineral structure/morphology, 684 organic carbon, 685 phosphate material morphology, 684, 687 phosphorite formation, 685 sea lions, coprolites/non–lithified

phosphorite, 683–684 sediments, 685 SEM, 684 shelf zone, 683 synthesis, calcium phosphate, 684 X–ray photoelectron spectroscopy, 685

816

Octacalcium phosphate (OCP), 689 Octopus reconstruction software, 130 Ødegården verk apatite deposit

albitisation, 163 horizon, scapolitised, 164, 169 mass balance, 165 metagabbro, 164 metasomatism, 163, 166 mineralogical zoning/petrography, 164–165,

169 Norway, 163, 168 petrography and chemistry, 165, 168 phlogopite, 165, 169 Proterozoic Bamble sector, 164 scapolitisation, 163 Sveconorwegian orogeny, 164

Oil–and–gas basins, geomagnetic data Brent and Leman deposits, 525, 528 Central Trough, 524, 527 Earth's crust blocks, 523 Forties and Troll deposits, 525, 528 magnetization square distribution, 525, 528 nonmagnetic schooner Zarya, 523 SPAN, 523–524 Viking trough, 524, 527 West sole trough, 524, 527

Oil/oil products asphaltens significance, 791 clay minerals, anaerobic condition, 790 composition of, 791 kaolinite, 790 mechanical method, 789 montmorillonite-palygorskite genetic mixture,

790–791 palygorskite, 790–791 physical–chemical and biological method, 789 sorption of, 789–790 Tyurin method, 790

Oiva’s gold–quartz–dyke acanthite, 123 conventional comminution equipment, 120 gold/electrum composition, shape and grain

size distributions, 121–122 hard rock samples, 120 heavy mineral concentration, 121–122 high–voltage assisted/pulsed fragmentation,

120, 123 Laanila, Northern Finland, 120 Leica MZ APO stereomicroscope, 121 Leica petrographic microscope, 120 micrographs, 121 polished thin sections, 120–121 selective fragmentation, 119–120

SEM–EDS, 121 short–pulsed high–voltage (HV), 119 silver halide mineral iodargyrite, 123

Okorusu alkaline igneous-carbonatite complex, 297–298

Okorusu carbonatite, Namibia, 297–298 Okorusu flourspar ore mine, Namibia, 297–298 Oligocene–Miocene–Holocene sequence rocks,

247 Oligo–Miocene volcanic cycle, 205 Olivine, 652

aerosols, SO2, 637 biochar, 637 bleaching events, 638 climate effects, 637 CO2 input and removal, 638 dolomite, carbon storage, 638 dunite, 638 dunite massifs, 640 GHG, 637 lichens, 638–639 mining costs, 639 rock origin, 638 weathering reactions, 637

Olympus BX-51 microscope, 222 Optical cathodoluminescence, 454–455, 460 Optical microscope/microscopy (OM)

carbonate rocks, 215 carbonatite deposits, 665 crandallite-bearing ceramic fragment, 138 gypsum, 540–541 hematite/magnetite mineralogy, 202 hemihydrate, 540–541 mortars monomineralic aggregation, 86

Opitmisation/cost effectiveness bituminous limestone images, 51, 55 bridge series investigation, 7–49 chemical analysis, 50 concrete edge beam, 50, 55 cracking assessment, 49, 51 DEF, 49, 52–53 Ettringite formation, 49 long–term moisture ingress, 49 petrography, 50–51 residual expansion testing, 50 sampling, 50 SEM–EDS, 50–52 siliceous/limestone component, 49 structures assessment, 49 sulphate/alkali testing, 52 `sweaty patches'/gel–like deposits, 50–51

Ore petrography, 783 Ore, sinter, and slag XRD characterization

817

anthropogenic CO2 emission, 385 CaO/SiO2 data clustering vs. basicity, 392 cluster analysis, 385, 1386 CubiX 3 minerals, 386 DRI analysis, 388 ferrochrome slag analysis, 388–389 grade control, iron ores, 386–387 ICDD, 385 iron ore sinter analysis, 387–388 main phases vs. cluster number, 391 mineral composition/identification, 385 mining and steel industry, 385 PCA iron ore/sinter, 390–391 Rietveld analysis, 385 X’Celerator detector, 386

Organic montmorillonites application, 795 Ca rich, 796 -CH2 stretch band frequency, 798 -CH2 stretch vibration, 797 Fourier transform infrared spectroscopy, 797 interlayer organic surfactant, 796 interlayer spacing, 797–798 structural characteristics, 797 surfactant modified montmorillonites

syntheses, 796 XRPD, 796–797

Osilo Au–Ag mineralisations, Italy, 208 Oxford Inca software, 479, 482 P Palaeoproterozoic granulite belt, 120 Palaeozoic rocks, 205 Paleozoic metasedimentary rocks, 172 Palladio's building, 86 Palygorskite, 790–791 PANalycical Axios 4 kW X–ray spectrometer, 549 PANalytical's CubiX3 minerals instrument, 496 PANalytical X'Pert HighScore software, 86 PANalytical X'pert Plus X–Ray diffractometer,

429 PANalytical X'Pert PRO MPD instrument, 86 Parabutlerite, 463 Paralavas

chemical analysis, 223 chemical composition, 222 chemographic projection, 223, 227 coal combustion/types, 221 combustion pyrometamorphism, 221 cordierite–rich, 223, 226 crystallization, 223 Europe, 221 magnetite/pseudobrookite, 223

microscope observations and micro-photographs, 222

oxygen fugacity, 223 sedimentary rocks, 221

Particle texture analysis (PTA), 480–483 PCA. See Principal component analysis Pegmatitic quartz

abundances, trace element, 447 Al vs. Ti concentrations, 450 composition, 445 crystallization temperature, 448 erratic distribution, 448 Froland and Evje–Iveland fields, S.Norway,

445, 1448 geology, 446 geothermometer, Ti–in–quartz, 445, 447 LA–ICP–MS, 445 microbeam techniques, 445 PKFZ, 445 Sveconorwegian orogenesis, 445 Ti and Li concentration/distribution, 451 trace element, regional distribution, 4, 445–

446 Peltier–cooled charge coupled device camera, 24–

25 Penicillium

P. brevicompactum, 216 P. chrysogenum, 214 P. griseo–purpureum, 214 P. olivaceum Biourg, 214 P. olivino–viride, 214 P. oxalate, 214 P. raperi, 214 P. spinulosum, 214 P. vitale, 214, 216

Petrographic crystallography applied mineralogy, 81 energy-conservative technology, 81 mineral grains intergrowth/boundary, 81–82 quantity/quality determination, 82 quartz, 82–83 stereometric ontogenetic analysis, 81 thin section analysis, 82

PGEs. See Platinum–group elements PGM. See Platinum group minerals Philips SL-30 electron microscope, 154 Philips X'Pert software v1.2, 189 Photomicrographs

anatase, 295 azurite, 295 Bornite ores mining, Southeast Missouri,

textures, 315 industrial minerals, 288, 295

818

Pilanesburg platinum mines (PPM) alkaline igneous complex, 63 alteration and oxidation process, 64 alteration/weathering effects, 63 average density/lithology contribution, 67 BMS assemblage, 63 Bushveld Igneous Complex, 63 characterization, minerals, 65 density measurement/profile, 64–65 flotation recovery vs. lithology depth PGE,

66, 70–71 lithology density vs. depth, 69 locking, liberation and association

characteristics, PGM, 67 lucrative ore deposits, 63 mineralogy analysis, 64 PGE recovery profiles, 64–65 relative grouped PGM abundance, 67 selected recovery improvement strategies,

evaluation, 65 silicate reef ores, 63 stratigraphy, 63–64, 68 weathering assessment, 64

Pitchblende, 155–156 Plagioclase, 32, 650, 655–656 Platinum–group elements (PGEs), 758–759 Platinum group minerals (PGM), 63, 613–614 PKFZ. See Porsgrunn-Kristiansand Fault Zone Polycrystalline diamond compact (PDC) drill

cuttings carbonate cementation, 278 carbon dioxide, 276 data preparation, 277 equivalent sphere diameter (ESD), 278 lithotype/sampling interval, 277–278, 282 lithotype–specific classification, 278, 282 measurement/mineral identification, 277 motors/turbines, 276 mud loggers, 279 MWD and wireline logging, 276 Otway Basin, Australia, 276 sample preparation, 276–277 sandstone cutting, 278, 283 SEM–EDS, 276 texture–based characterisation, 278, 282

Polymetallic deposit argillic alteration, 232 Bafq Metallogenic province, 229 carbonatization, 231 fault system, 229 Fe, Cu, Mo, Zn, and Pb sulfides, 230–231 hydrothermal fluids, 229 ICP–MS method, 230–231

late Proterozoic to early Cambrian times, 229 mineral alteration, 229, 231 Narigun, Central Iran, 229 Ni and Co, arsenides, 231 polymetallic veins, 229 potassic alteration, 231 silicification, 231 sulfo–arsenides, 231 uraninite, 230 XRD method, 230 XRF method, 230

Porphyritic granite, 104 Porphyry–copper–type bodies, 207 Porsgrunn-Kristiansand Fault Zone (PKFZ), 445 Port Hedland Iron Ore, 573 Portland cement clinker, 286, 395, 707, 713 Powder X–ray diffraction (p–XRD), 182, 185–186 Pozzolans, 395–396 Pozzomaggiore Au–Ag mineralisations, Italy, 209 Precambrian Damara Series, 297 Principal component analysis (PCA), 390 PTA. See Particle texture analysis Pull–off tests, 751–752, 754 Pyrite, 642, 646 Pyrrhotites

"Blagodatny" mine, 488 cation vacancies, 487, 492, 494 chromium, 489 composition, 487 crystal structure, 487–489 EPMA, 489, 493 Gibbs potential, 492 gold–bearing ore, 488, 493 lattice points, 488, 493 magnetic measurements, 488 microprobe Camebax–Micro, 488 natural minerals analysis, 491 NiAs (B8)-type crystal structure, 489 nickel percentage, 489 nonstoichiometric minerals, 488, 490 percentage, 490, 494 physical/chemical property, 487 point defects, 488–489, 493 sulfur and iron contents, 489 vacant cation positions, 489, 493 XRD, 488

Pyrrhotite-szomolnokite weathering antiferromagnetic phase–troilite, 465 EPMA, 464 goethite, 466 iron sulfides phase relation, 465, 468 mineral formation/transition, 463–464 NiAs crystal structure, 463

819

OH hydroxyl group, 463, 466 percentage, 465, 469 phase composition, 465, 468 rozenite formation, 466 samples, 464 sulfur content, 465 X–ray spectra, 464 XRD, 464

Q QEMSCAN

FEI’s, 277 software tool, 197 Spectral Analysis Engine (SAE), 266–267

Quantitative phase analysis (QPA), 377–378 Quartz

ASR, 103 grain size analysis, 106, 108 image analysis, 105 image segmentation, LHB macro, 105–106 microstructural characteristics, 104 mylonite, 104–105 myrmekite occurrence, 104 petrographic analysis, 103–104 point counting, 105 porphyritic granite, 104

Quartzite crystallinity index Antonovsk cluster, 403 chalcedony, 404 diffractograms, X–ray, 405 electron microscope, 404 FT–IR absorption spectrograms, 405, 407 grain size, 405, 408 infrared spectrometry, 404 quartz–hydromica–sericite facies, 403

-quartz spectral pattern, 404 sample material, 404, 407 sedimentary metamorphic origin, 403 SEM micrograph, 405, 409 Western Siberia, Russian Federation, 403 X–ray pattern, 405

Qusseir formation, 41, 46 R RAB. See Rotary air blast Rare earth–bearing minerals, 289 Rare earth elements (REE), 361, 363, 665 Rare–earth element/thorium potential

cerium monazite, 536 garnet, 534–535 geology, 532, 538 geometallurgical study, 532 leucoxene, 534

mineralogy, 533, 538 mineral resources, 532–533, 537, 539 mineral sands industry, 531 minerals mining and distribution, 535 monazite, 534, 539 Namakwa Sands, 535 nuclear legislation, 536 sample analysis, 532 South Africa, 531 zircon, 533–534, 539

REAPDOR. See Rotational–echo adiabatic–passage double–resonance

Red paralava, 222 REE. See Rare earth elements Rhyolite, 104 Rietveld method, 336, 377 Rio Tinto iron ore (RTIO), 495 Rivers Farin Doki, 598 Romashkinskoye deposit, Tatarstan, 524, 526 Rotary air blast (RAB), 573 Rotational–echo adiabatic–passage double–

resonance (REAPDOR), 3–4, 714 Russian matreshka, 624 Russian oil–and–gas deposits, 523 S Salamanca sandstone, Spain, 749 Sanandaj–Sirjan metamorphic zone, 31, 568 Sandstone

application, ventilated façades, 749 building, 750 ingenious technique, 750 mortar, 750 nails, 751, 755 physical characteristics, 749 “Piedra Franca,” 749–750 precast concrete, 749, 756 pull–off tests, 751–752, 754 Salamanca, Spain, 749 stone, 750 wall façade, 753 wind suction assessment, 752–753

Sant’Antioco, Italian masonry bridge, 237, 242 Saponite, 632–633 Sapphirine, 165 Scandian phase, 327 Scanning electron microscope (SEM)

BIRS, 782 brownmillerites, 558–559 carbonate rocks, 213, 215 carbonatite deposits, 665, 672 chalcopyrite images, 80 freshwater fish bone tissues, 472–473

820

®

α

gold, 130 gypsum, 539, 541 hemihydrate, 539, 541 low–grade iron ores, 717–718 microhardpan texture, 580, 584 natural/artificial sands, 255 oiva's gold–quartz–dyke, 121 PDC drill cuttings, 276, 279 polished/thin sections, 130 tail–serpentine, photo analysis, 151 uraninite, 153–154

Scanning electron microscopy and energy dispersive analysis (SEM–EDS), 50–52, 642

drill cuttings, 265 hydrocarbons/geothermal electricity

generation, 265 mineral identification and classification

protocols, 266 multi–layer SMART approach, 269 QEMSCAN SAE, 269 spectral analysis and elemental identification,

266–267 Scanning electron microscopy mineral liberation

analysis (SEM–MLA) chemical and mineral modal composition, 726 elemental distribution, 728 fine fraction properties, 725 heavy liquid separation, 727 phase association, 725–726 potential density separation, 728 quantitative image analysis, 727–728 recycled aggregates, 725 recycled sand production, 726

Scapolitisation, 163, 166, 169 Scheelite, 605 Scopulariopsis brevicaulis, 214 SDBs. See State–of–the–art sorption databases Secondary ion mass-spectrometry (SIMS) analysis,

155 Sedimentary and volcano-sedimentary deposit,

567 Seiland Igneous Province (SIP), 327, 333 SelFrag Lab machine, 119–120 SEM-EDS. See Scanning electron microscopy and

energy dispersive analysis Serrenti–Furtei Au–Ag mineralisations, Italy,

209–210 Shake flasks experiment, 146 Shelf zone, 683 Siberian platform, 624 Silicates, 784–785 Siliceous limestone, 101–102

Silimanite, 32 Sillimanite-quartz schist, 429 29Si MAS NMR spectra, 709 SIP. See Seiland Igneous Province; Species

identification protocol Skullcreek Mudstone Formation, 278 SMART mineral classification

A–layer, 267 lithotype category, 269, 273 mineral distributions and associations, 268,

273 M–layer, 267 primary and secondary mineral lists, 268, 273 R–layer mineral, 268 S–layer mineral, 267 T–layer trap, 268

Smectite clay minerals characteristic property, 631 hydration/dehydration reaction and property,

631, 633 interlayer spaces, 631, 633 Na–type saponite, 632 Na–type stevensite, 632 o–Ps pick–off annihilation, 633, 635 positron annihilation spectroscopy, 632–633 positronium, 632 positron lifetime spectra, 633, 636 positrons, 631 TG–DTA, 631–632

Sosnowiec Coal Mine, 222, 226 Soutkloof formation, 428 Species identification protocol (SIP), 269, 277 Spectral–spatial analysis (SPAN), 523–524 State–of–the–art sorption databases (SDBs), 700 STATISTICA 6.0 program complex, 473 Stevensite, 633 Sulcis Au–Ag mineralisations, Italy, 209–210, 210 Sulfate–activated hybrid binders, 710–712 Sulfosalts, 429, 433 Svecofennian tectonothermal event, 548 Sveconorwegian orogeny, 164, 445 Sweetwater bornite ores, Southeast Missouri

beneficiations, 307 bornite benefication problems, 311–312 chalcopyrite content, 317 hand specimens, 314 mineral/texture, 310–311 photomicrographs, 315, 318 spheroids/coalesced spheroids, 316

Swiss selFrag AG, 120 Synchrotron X–ray fluorescence microanalysis

(SXRFMA), 23

821

®

T Tail–serpentine

Aspergillus niger, 145 bacteria–mineral compound observation, 148 bio-hydrometallurgical technique, 145 biological leaching, 147–149 environmental hazard, 145 fermented liquid concentration, 147–149 fungi inoculum preparation, 146 heavy hazardous metals, 145 leaching concentration, 146 metal bioleaching, 145 organic/inorganic acid production, 145–146 pH value analysis, 147 shake flasks experiment, 146

Tertiary Au–Ag mineralisations aerial view, Furtei mine, 212 Alghero, 208 Bosano, 209 Decimoputzu-Siliqua, 210 economic minerals, 205 epiclastic depositions, 205 epithermal mineralizations, 205 Logudoro, 208–209 metallogeny, 206–207 minerals hydrothermal alterations, 207 Monti Ferru, 209 Nulvi, 207 Oligo–Miocene volcanic cycle, 205 Osilo, 208 outcrops, 207 Palaeozoic rocks, 205 porphyry–copper–type bodies, 207 Pozzomaggiore, 209 regional geology, 206–207 Sardinia, geological sketch, 212 Serrenti–Furtei, 209–210 Sulcis, 210 sulfidation, 205 volcanics, 206

Tertiary volcanics, 206 Tetrahydrofuran (THF), 180–182 Texture mapping, 319 Thermal gravimetric analysis (TGA), 785–786 Thermogravimetry and differential thermal

analysis (TG–DTA), 631–632, 635 Timan bauxite, 8, 743

chemical/physical property, 744 controlling factors, ore, 742 crushing process, 744–745 deposits of, 741–742 magnetic separation, 7, 745 mineral content, 743–744

ores composition, 746 roasting process, 745 small–angle scattering, 8, 743

Titanium dioxide, 289 TOPAS PONKCS method, 378 Topas Rietveld XRD method, 338–339, 341–343 TOPAS software, 377 Total rare earth oxides (TREOs), 665 Tourmaline, 32 Transscandinavian igneous belt, 454 Trichoderma viride, 214 Tyurin method, 790 U Ukraine uranium deposit, Europe, 153–157 Ukrainian Shield, 153 Ulocladium chartarum, 214 UltraClaver, 329 Universal–R Zeiss optical microscope, 24 Upper Silesia Coal Basin, (USCB), 221 Upper Silesian Sandstone Unit, 221, 226 Ural's oil–and–gas province, 524 Uraninite

brannerite, 154 cation substitutions, 157 chemical composition and age, 156–157, 159–

161 Eastern ore zones, 154 EPMA and chemical age calculation, 154–155 isotopic age of pitchblende veinlet, 157 Kryvy Rig–Kremenchug synclinorium, 154 morphology/mineral association, 155 Na metasomatites, 153 optical microscope and SEM investigations,

154 Paleoproterozoic metasedimentary iron

formations, 154 regional–scale geological events, 157–158 SIMS analysis, data correction and processing,

155 UraniumVI

aqueous–solid solution thermodynamic model, 701

batch sorption test, 700–701 cementitious material property, 699 charge transfer excitation, 701 C–S–H phase, 700 CSH3T-U model, 703, 705 Dreierketten chains, 703 geological L/ILW repository, 699 luminescence emission data, 702, 706 modelled and experimental sorption

isotherms, 703–704

822

safety assessment study, 700 sorption isotherms, 702, 706 trial/error approach, 702–703 uranyl silicates/Ca uranate, 701–702, 705

USCB. See Upper Silesia Coal Basin Utsira Formation, 550 V Vegard’s law, 378 Verhnetalnahskaya stratified trap intrusions, 624,

628 Vezhayu-Vorykvinskoe deposit, 741–745 VGStudioMAX graphics visualization package, 131 Viburnum bromite trend, Southeast Missouri

chalcopyrite content, 317–318 hand specimens, 314 ore characterization, 309–310 photomicrographs, 315 spheroids/coalesced spheroids, 316 unusual ores formation, 308–309

Vicia cracca, leaf, 329–330 Vitruvian firmitas, 240 VNIR and SWIR NEO HySpex cameras, 576 W Wavelength–dispersive X–ray fluorescence

analysis (WDXRFA), 580 WDMAM 2007 data, 523, 525 Weathering reactions, 637 Weddellite, 345–348 Western Desert of Egypt, 39 Western Dharwar Craton (WDC), 658 West Troms Basement Complex, North

Norway, 548 Wet high magnetic intensity separation

(WHIMS), 10 Whewellite crystals, Ukraine, 213, 215, 219 Wind suction assessment, 752–753 Wishbone deposit, 301 Witwatersrand Basin, 130 Wollastonite, 191, 650, 652, 655–656 Word's method, 473 Wüstite, 650, 652, 655 X X'Celerator detector, 386, 496 X–ray absorption near edge spectra/structure

(XANES), 505–506, 509 X–ray diffraction (XRD)

Amazonian dark earth soils, 137–138 andesite–basalt to bentonite, 366 ASR, 97–98 bauxites ore, cluster analysis, 10–11, 16

bauxites ores, cluster analysis, 10–11, 16 Broken hill sulfide deposit, South Africa, 429 brownmillerites, 558, 564 calcium oxalates, 346 carbonate rocks, 215 carbonatite deposits, 665 clay soils, 370–371 crandallite-bearing ceramic fragment, 137–138 glazed tiles, 189 granitic pegmatite, 336 halloysite, 353 iodine–bearing AFm-(Cl2, CO3, SO4), 1, 3 low–grade iron ores, 718 masonry techniques/characterization, 249 mortars monomineralic aggregation, 86 polymetallic deposit, 230, 233

X–ray diffractometry, 742 X–ray fluorescence (XRF)

ASR, 97–99 clay soils, 371, 373 glazed tiles, 190 granitic pegmatite, 337 halloysite, 353 polymetallic deposit, 230, 233

X–ray powder diffraction (XRPD), 796–797 albitite/chlorite–talc mineralisation, 173 bauxite, 378 Benavi iron–rich sediments (BIRS), 782 BIRS, 782 brownmillerites, 558, 564 calcium oxalates, 346 carbonate rocks, 213–214 CNTs, 766–767 concrete deterioration, 437, 440 freshwater fish bone tissues, 473, 475–476 gypsum, 539–540 hemihydrate, 539–540 organic montmorillonites, 796–797 pyrrhotites, 488 pyrrhotite-szomolnokite weathering, 464 South African broken hill sulfide deposit, 429

XRD. See X–ray diffraction XRPD. See X–ray powder diffraction XRF. See X–ray fluorescence X–Tek microfocus system, 130 Z Zhovta Richka uranium deposit. See Uraninite Zircon, 32

823