sub-project 3 : soils vs climate change · 25 30 35 40 45 0 200 400 600 800 1000 1200 r (w m-2)...

29
Sub-project 3: Soils vs Climate Change Soils vs Climate Change Paul Nelson (JCU) Paul Nelson (JCU) Soil pit was installed in mid 2007 3 Depths 0.1m, 0.75m, 1.5m Sensors: Temperature (thermocouple) Water content (TDR probes) Water potential (Gypsum blocks) Vacuum system Used to collect water infiltrating through the profile for measuring DOC movement

Upload: others

Post on 28-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

Sub-project 3: Soils vs Climate ChangeSoils vs Climate ChangePaul Nelson (JCU)Paul Nelson (JCU)

� Soil pit was installed in mid 2007� 3 Depths 0.1m, 0.75m, 1.5m� Sensors:

Temperature (thermocouple)Water content (TDR probes)Water potential (Gypsum blocks)

� Vacuum systemUsed to collect water infiltrating throughthe profile for measuring DOC movement

Page 2: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

SOIL CHARACTERISTICSSOIL CHARACTERISTICS� Cape Tribulation: water availability is likely then to be the key driver of productivity in these seasonally dry rainforests. A sensor pit was dug, initially by hand!� Rock : Soil ratio : around 40%

Data Logger

0.1m

0.75m

1.5m

1.5m

0.1m

1m

1m

Water samplerGB Heavy TDR probe

Page 3: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

SUBSUB--SURFACE STORAGESURFACE STORAGEWater storage

0.15

0.20

0.25

0.30

0.35

0.40

0.45

20/9

/07

27/9

/07

4/10

/07

11/1

0/07

18/1

0/07

25/1

0/07

1/11

/07

8/11

/07

15/1

1/07

22/1

1/07

29/1

1/07

6/12

/07

13/1

2/07

17/1

2/07

24/1

2/07

Soi

l wat

er c

onte

nt (

m3/

m3)

0

10

20

30

40

50

60

Rai

nfal

l (m

m/h

our)

0.1 m (mean)

0.75 m (mean)

1.5 m (mean)

Rain

Page 4: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

SUBSUB--SURFACE FLUXESSURFACE FLUXESWater uptake

-20

-18-16

-14

-12-10

-8

-6

-4-2

0

20/9

/07

27/9

/07

4/10

/07

11/1

0/07

18/1

0/07

25/1

0/07

1/11

/07

8/11

/07

15/1

1/07

22/1

1/07

29/1

1/07

6/12

/07

13/1

2/07

17/1

2/07

24/1

2/07

Dai

ly c

hang

e in

wat

er c

onte

nt (

mm

)

0

10

20

30

40

50

60

Rai

nfal

l (m

m/h

our)

Daily change

Rain

Page 5: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

WATER UPTAKE VS DEPTHWATER UPTAKE VS DEPTH

300

400

500

600

700

800

900

-0.05

-0.04

-0.03

-0.02

-0.01

0.008/

04/2

008

22/0

4/20

08 …

6/05

/200

8 …

20/0

5/20

08 …

3/06

/200

8 …

17/0

6/20

08 …

1/07

/200

8 …

15/0

7/20

08 …

29/0

7/20

08 …

12/0

8/20

08 …

26/0

8/20

08 …

9/09

/200

8 …

23/0

9/20

08 …

7/10

/200

8 …

21/1

0/20

08 …

4/11

/200

8 …

Soi

l pro

file

wat

er c

onte

nt (

mm

)

Dai

ly c

hang

e in

wat

er c

onte

nt

(m3/

m3)

0.1 m0.75 m1.5 mSoil profile

Wet soil:Greatest water extraction from topsoil(most negative change in water content)

Dry soil:Least water extraction from topsoil

Page 6: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

WATER UPTAKE GROUNDWATERWATER UPTAKE GROUNDWATER

� Installed 3 bores to measure uptake from groundwater

�Bedrock at 12-33 m depth

�Watertable at 10-13 m depth (July 2008- April 2008)

�Marc Le Blanc (JCU) is in chargeof this part of the sub-project.

Page 7: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

PHENOLOGY CRANEPHENOLOGY CRANE

�Phenological events are recorded monthly using the crane which began in Jan 2009

�Budding, flowering and fruiting events are recorded as presenceor absence.

� Phenocam is being installed in 2 months time.

Page 8: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

PHENOCAMPHENOCAM (T23(T23--24)24)

Jan 09 Feb 09

Mar 09 Apr 09Sony DSLR α-700 tried Sony video

Page 9: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

FOREST PRODUCTIVITYFOREST PRODUCTIVITYCape Tribulation above ground productivity

� Dendrometry: 171 trees have been banded.� Litter: 25 traps have been monitored fortnightly.

Page 10: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

LEAF LITTERLEAF LITTER --FALLFALL25 permanent litter traps on one hectare grid

Page 11: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

Leaf Litter FallLeaf Litter Fall

Leaf Litter Fall

0

5

10

15

20

25

0 4 8 12 16 20 24 28 32 36 40 44 48 52

Weeks of the Year

Rat

e as

2 w

eek

Ave

rage

Ton

nes/

Ha/

Yr

2007

2008

Average for 20076.1 t/ha/yr

Average for 2008

6.5 t/ha/yr

Page 12: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

Total Litter FallTotal Litter Fall

Total Litter Fall 2007

12.35 tonne/ha/yr

Total Litter Fall 2008

10.97 tonne/ha/yr

Woody material 35% 2007 21% 2008

Page 13: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

SPATIAL SAMPLING OF C SPATIAL SAMPLING OF C POOLSPOOLS

� Spatial samplingdesign at Tumb. Ensured measurementsare comparable withthe source area of theflux tower.� Stratified, randomdistance weighted fromtower with 30 permanentplots.

Page 14: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

BUDGET OF C POOLSBUDGET OF C POOLS

� Total C budget for this forest ecosystem is quite high at nearly 500 tC/ha.� But nothing likethe forest of Jason’s!

1

363

soil

aboveground biomass

understoreylitter

woody debrisfine roots

coarse roots

Total 483 tC / ha

Page 15: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

BIOMASS C BUDGETBIOMASS C BUDGET

� Proportion of roots is small which follows for aforest on deep fertile soils and high rainfall.

stemwood

bark

branches

twigs leaves

roots

root bole

< 2 mm

2-5 mm

5-20 mm 20-50 mm

> 50 mm

RootsTotal biomass

understorey

Page 16: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

ALLOMETRYALLOMETRY� Allometric equations are used to expand from readily measureable quantities (dbh, height, density) to the above ground biomass for the plot. Hypsometersseem to be the best for height.� This can then be converted to tC/Ha.� The difficulty in developing allometric equations is that it requires harvesting of whole trees – or a canopy crane.

Page 17: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

THE CRANETHE CRANE� Measurements were made ofeach component of the AGB,these were then summed to provide an estimate for the treeand then replicated to provide dataused to develop a species equation.

Species (kg)Stem biomass (%) Crown biomass (%) Tree biomass (σσσσ)

Alstonia scholaris 90 10 246 (215)

Cleistanthus

myrianthus

69 31 244 (118)

Myristica insipida 80 20 226 (138)

Acmena graveolens 83 17 1161 (1168)

Endiandra microneura 64 36 791 (708)

Normanbya normanbyi 96 4 145 (46)

Page 18: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

ALLOMETRY IIALLOMETRY II� Species specific allometric equationsalong with general species equations allowed calculation of site AGB = 270 t ha-1

y = 2.5636x - 2.7428

R2 = 0.9791

y = 2.4937x - 2.3191

R2 = 0.9874

0

2

4

6

8

10

2 3 4 5

LN b

iom

ass

(kg)

LN DBH (cm)

Brindabella

Tumbarumba

Aboveground biomass

Eucalyptus delegatensis

Page 19: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

� Dendrometer bands were placed on 171 trees with DBH >25cm in March 2007

� DBH = at 1.30m above forest floor.

� Growth rates in year 2007/8 ranged from 0 to 8cm increase in circumference.

� Census intervalon dbh plot isevery 5 years.

DENDROMETRYDENDROMETRY

Page 20: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

Highly variable crown cover and LAI over one hectare plo t

(Three of the 25 canopy fish-eye images taken at litter trap sites in April 2008)

LAI HIGHLY VARIABLELAI HIGHLY VARIABLE

Page 21: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

AFTER CYCLONE RONASignificant damage occurred to the canopy structure.

�in particular the vinestowers were knocked to the ground.

�large amounts of debristrees were carried to the forestfloor.

�Light penetration changedconsiderably.

Page 22: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

GRANIER: SAP FLOW SYSTEMGRANIER: SAP FLOW SYSTEM(THERMAL DISSIPATION)(THERMAL DISSIPATION)

UP GmbH System Germany•• The The constant currentconstant current power supply power supply heats the top needle electrode.heats the top needle electrode.1212--14 V DC supply. 14 V DC supply. •• ∆∆∆∆∆∆∆∆T measured between top and bottom T measured between top and bottom electrodes. electrodes. •• Sap velocitySap velocity inversely proportional to inversely proportional to ∆∆∆∆∆∆∆∆TT⇒⇒⇒⇒⇒⇒⇒⇒ calculate the calculate the sap flux densitysap flux density UUvv•• ∆∆∆∆∆∆∆∆TToo measured when no sap flux.measured when no sap flux.

Uv = 0.000119*Z1.231 [m3 m-2 s-1]

Z = ( )

T

TTo

∆∆−∆

Q = ρs*uv*Asw [kg s-1]

Page 23: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

GRANIER: SAP FLOW SYSTEMGRANIER: SAP FLOW SYSTEMDATADATA

fig.3: sap flow density 15.01.03

0

0.05

0.1

0.15

0.2

0.25

0.3

14 14.16666667 14.33333333 14.5 14.66666667 14.83333333 15

hrs

ml/c

m²/

min

E. microneura (3008) W. laevis (4003) M. insipida (4014) M. insipida (4008)

S. sayeri (3009) C. australe (4006) A. scholaris (4012) D. papuanum (4022)

fig.5: sap flow density 22.08.03

0.00

0.05

0.10

0.15

0.20

0.25

42 42.16666667 42.33333333 42.5 42.66666667 42.83333333 43

hrs

ml/c

m²/m

in

E. microneura (3008) W. laevis (4003) M. insipida (4014) M. insipida (4008)

S. sayeri (3009) C. australe (4006) A. scholaris (4012)

Page 24: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

TRUNK HEAT BALANCE: TRUNK HEAT BALANCE: SAP FLOW SYSTEMSAP FLOW SYSTEM

•• The power supply The power supply currentcurrent is is proportional to the sap flowproportional to the sap flow( 40 ( 40 -- 200 mA)200 mA)••1212--14 V DC supply is converted 14 V DC supply is converted to to 1kHz1kHz AC which is supplied at AC which is supplied at constant powerconstant power (0.6W) by (0.6W) by top 3 electrodes. top 3 electrodes. •• T on 3 electrodes measured T on 3 electrodes measured relative to T on bottom electrode.relative to T on bottom electrode.

EMS-51 System, Czech Republic

Qcm =ww c

z

dTdc

P −**

[kg s-1 cm-1]

= 0.000125*Usig[mV]- Qidle [kg h-1 cm-1] Qtree = Qcm*(A - 6.28*B) [kg/hr]

Page 25: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

TRUNK HEAT BALANCE: TRUNK HEAT BALANCE: DATADATA

DOY 2008

160 162 164 166 168 170 172

Sap

flow

(g

cm-1

h-1

)

0

25

50

75

Argyrodendron peralatumSyzygium sayeriAechmena graveolensCastanospermum australe

Eva

pora

tion

(mm

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R (

W m

-2)

0

200

400

600

800

DOY 2008

312 314 316 318 320 322 324 3260

10

20

30

40

50

60 Ae graveolens Sy sayeri Ca australe My insipida Ca australe Cr grandis

DOY 2009

190 191 192 193 194 195 196 197 198 199 200

0

10

20

30

40

50

60

70

80 C australis M insipida S sayeri C grandis

Page 26: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

PHOTOSYNTHETIC PARAMETERSPHOTOSYNTHETIC PARAMETERS

Peter FranksPlant, Cell and Environment(2006) 29, 584–592

Page 27: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

TRUNK HEAT BALANCE: TRUNK HEAT BALANCE: DATA IIDATA II

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000 1200

R (W m-2)

Sa

pflo

w (

g c

m-1

h-1

)

0

5

10

15

20

25

30

35

40

45

0 50 100 150

rh (%)

Sa

pflo

w (

g cm

-1 h

-1)

0

0.5

1

1.5

2

2.5

3

M J J A S O N D J F M A M J J A S

2008 2009

Tra

nspi

ratio

n (m

m d

-1)

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40

T (°C)

Sa

pflo

w (

g cm

-1 h

-1)

•• Scaled from tree to stand.Scaled from tree to stand.

Sapflow can be analysed in terms of environmental drivers.

Page 28: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

TRUNK HEAT BALANCE: TRUNK HEAT BALANCE: DATA IIIDATA III

•• D. McJannet et al. D. McJannet et al. Hydrol. Process. 21 (2007) 3473.• Trunk Heat Balance : Annualtranspiration around 540mm• Eddy flux LE Eddy flux LE 4.8mm d4.8mm d --11. . evapotransp. evapotransp. 1752mm y1752mm y --11

•• Extended dry period from July Extended dry period from July through to October precipitation through to October precipitation input < 4mm day.input < 4mm day.•• Mean water uptake from theMean water uptake from thesoil was between soil was between 2 2 -- 4 mm 4 mm dd --11..

Page 29: Sub-project 3 : Soils vs Climate Change · 25 30 35 40 45 0 200 400 600 800 1000 1200 R (W m-2) Sapflow (g cm-1 h-1) 0 5 10 15 20 25 30 35 40 45 0 50 100 150 rh (%) Sapflow (g cm-1

HEAT PULSE:HEAT PULSE:SAP FLOW SYSTEMSAP FLOW SYSTEM

D. McJannet & P. FitchCSIRO Land and Water Technical Report No. 39/04• sap flow is measured by determining the velocity of a short pulse of heat carried by the moving sap stream.

• Sap flow velocities are calculated and converted tovolumetric sap flow.• A commercial example is Greenspan Technology (Qld) : Lindsay Hutley, Derek Eamus