study on the fundamentals of atomic energy

62
KAERI/RR-2165/2001 emg 7iy a? Study on the Fundamentals of Atomic Energy 3Ik||4!|±E1|0|*|S 7Hgf $ yv Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties KAERT

Upload: others

Post on 24-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Study on the Fundamentals of Atomic Energy

KAERI/RR-2165/2001

emg 7iy a?

Study on the Fundamentals of Atomic Energy

3Ik||4!|±E1|0|*|S 7Hgf

$ yv

Development of the plastic solid-dye cell for tunable

solid-state dye lasers and study on its optical properties

KAERT

Page 2: Study on the Fundamentals of Atomic Energy

4 HJi## 2001 ## 7i 43144# '4^M 71444 4#‘ 4 4 (#444 "447}# 3144^4444 #4#4 4^# ;11# # 44

4 #4”)4 4#H3i4& 4#444.

2002# 1# 28#

44 4 #7} : 31 # 4

4 4 4 : 7} 4 4

4 4 4

# 4 4

4 4 ~r4 4

Page 3: Study on the Fundamentals of Atomic Energy

o

1.4 4

14-7}2 24M21144# #E}24 #2# 7lj# ^ 2#4 41

n. ^

21#24#, #424 #4, 4424 24 ^ 24#4 #4# 14-7}

2 #422 4#4 21441- 1# #224 HI #4## 4#1 4^4

144-44# 14-244 7}Hs 1214 244 #44 4242 2#l2

41. 44 7}4" 24 A}^l2 4# 14"7}4 #44# #2 #44& ^#

14"7}4 441 #2 2##4 a 4-4 2S #4 2 21. 3.#! #S #44

# ##1 1# ### #44 ##4-##4 #144 1##2S4 #1 #4

2 414-4 #4 1#1# 14 #4- #44 4 2# 4 #411# 244 21.

si #2# 2 l#4#s #44 2#4 ### 414# 7}4z 24 4414

### 7}#4l #711 #4 224 4-## 44-.

444 444- 444-24 44442^ 42# 44# 4 42 14-7}1

24] 414 4 44 ## 7H#e}4 H. s #4 Ti:sappliire, Cr:LISAF,

Alexandrite# #S# 241 444 1424 424424. 441 241 444

422 2414 141 124-2. 14 4 241444 44 4 4244 241

111# 7}#l# #141 141. 242 #711 ?ii#2 2##44 14# ##

1 442 4444 2214 7}414 441 14-71-2 122S# 41 1#

4 #7l-H4 2si #2211 244-47} 2214 27}# 1444-4-47}

22141 14# #4111 2# 4#4 2211.

124 41, 41, #2, 2 #!##4# 2##44 14# ?H2!# 44

- 3 -

Page 4: Study on the Fundamentals of Atomic Energy

7] H 4S# sol-gel, silica, polymer#! #!s! 27]] 4 4S# 1 7#]-! 2

44 s# 4 si# #9-7} #1! 4412 $14. 244 s# 7]e°l 4S7} 7\ 7]a. 4# 147}14 4 (#7}! 11! 1114411)# /Mia. $%24 i 41 !#2S 41o] 7}#H 44 4S# 24441 114 7}l2 #!## 2# 411 4 $14 1#!! #411 ^ #4:4! lei44 42441# 44l 4 $14. #1 447] 441 441 44444 4 444714 414 241224 /]]s# 144 #H 7}#H. si 411 4 4 4# 244s# 444 47]4 #224 417144 44 7} 11! 114 22 4111 4 $14 44 sil, 22#!, 1444 4] 41 !!#s 11# 1# 1 $1# 144.

2422 44 !!!#4!s 14! Hi# 4444 4#4## 1^

z $1## 2442, 44] o]4 7]#4 441 11 ^ 4] 41# 441 14 1

14 14 44# 1114 1444 $1# 41# 4411, #44!s 444

7} 114 4# # 27]] 424 41 41 7]]n ill 27]] 12 4 417]] 14

#214 4# 21.

m. 7H#^ 41-g- 11

1 11411 244s 441 41 7]]## 44 42 144 111 #1 sl 1 #-! 12# 14H24 2 14- #1#11 PMMA4 #1#11sol-gel #1# host materials 1# 27]] 42# 4 41 $124 2 4 47]##

44111. 1#! 4!##s 444 1## 4#14 111 14! 2.44

244s## 411224 2 ##14 #4# 4111.

22]2 441 244s## 4#14 11#22 441, self-seeding 4,

dual-wave 4, #&4!1 441 111# 4414 2 #!#!# sim.

1#1 34244s 441 14 4 #41S4# 4414 14 7}l 444

14 4 441 4 #7}#!# SA}e]-^l. 4^4 441 244s 441# 2

# #141/]- 4144 441 414 sil# 111 # $}$!!. si 41 1 244s## 111 # $14 14 147}! 441 44 4 4S 247} # 414 !%!. !#! 441 !ls! 41# 4414 Ills 2 ### 441 # $ls# 411224 441 !#4! !#!!! 44 4 1#!#

- 4 -

Page 5: Study on the Fundamentals of Atomic Energy

4##4.

IV. ^V7flt44

# 4#4 4 # Poly methylmetacylate (PMMA) ^ TMOS# 4 ## sol-gel

#4 H- host materials, 4# 314 4 dh xl] 5 7]## ##44.4.

s# # 4444# 4## ay]4 ^44 31.4 4^# 4^# 4 ## 4^1

s. ###4#4 4 z44## 44-0- ## 4 #4 #4.

sll*14 #4 444 444 444 4144 z44### 4#4#s

44 ###2.^^ a.44# 444 444# 4#4##4 4444 4#

500MHz 44 4# 44 444.

s4 444444 44444 444# 4444 4444444 4444

#4 #44 444# 444#4. s# 244 #444 #&4M #44# 41

444 zi #4#4# ^44##4 44 3444 #444 ##4s. 444#

34 3t44# 51144 4#^9# 41444 344 #44 4#44# 444#4.

s# 44^4^ z44# 51144# 4##4 444s. 44##s_4 #4# 4

^s. ^###4 44##4 #44 4#4 4 4 #^# 44# z###s.4

^^#4 ##4_os. it|.# #^44# #44z 4

44 #44 4#4^# 4##4 44/1# ##44# 4444 44/1## 4

#4 444. ZL2\H 4 4444# z44##4 4444 44# 444 2

44## 4^44 44## #4 444# 4#4# 444##. ^ #4

PMMA4 4# 4 34, sol-gel 4&4 4# 4 544 ##4^ ### 444.

# 44# #44 z44#4#4# 4 44# #44 /!## 24

4^444 ^-#4 7} 7i]#oi 444 4^4 ^^4, 4 447} 7}#4

44 5iM4 4#^4 4#4 #4444. 4# #4444 #44&#44 #

##s. A}^.oi 7^444 44 401# 4^^oi# 44#44 #44 #4#

4 4P-44 4444. s# 4H4 4##44# 4# 5l4|7> #45.# 444

- 5 -

Page 6: Study on the Fundamentals of Atomic Energy

- 9 -

'jp. jkk-k IT-|a-klf jlr [o jo- k -ji Ik [b [o k"k-k-k ^-zkjo •)?-§- k sr

k j5t-jfi [filT k"k"S 1$ jo k k lx [k jx k "4: k kk Its Lotxk"k k’kk'k [o-{It k 64 -x W k jo jk k [x-jz -5- -ji jo ttt-k k k jo H±~Q -§- [fl-zk jo -jk pa k jxH"

In -kk-k k ir-js javlo # jo irk 1? k Ik kk kk j5t ki&k -k [h? jji k 54

'P[y ktxk- k kkkk kkk k-kk-k k-kk kkk ^v-kk k-kk kk

k-kw-k ##k-klk #k^k kkk k#{o '-kk-kk kWxT Ik [n-jx"B k k 1° Ik "ki? k -{4 k 1° k k’S-'k k-kk k klk'kklk^- kkilr #-kk “pr kkTo nr k Efe jx kzkk kto kk'k# ikVir'sk #k jo kkkkto iHx-tx to'?kk’2- kj% k k-IkH" #?k kkk "irkk kT tvjk 7

Page 7: Study on the Fundamentals of Atomic Energy

SUMMARY

I . Project Title

Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

II. Objective and Importance of the Project

It is essential to use tunable lasers in atomic spectroscopy, environmental analysis and the atmospheric remote sensing. And it is required to use a compact and rugged tunable lasers for the portable measurement system. The most widely used tunable lasers are dye lasers based on liquid solutions which can offer wide tuning range and high efficiency. However, because of dye degradation, heating, and triplet-state formation, dye laser solutions have to be flowed through the laser cavity to maintain constant gain and beam quality. This requires bulky dye-flow systems and reservoirs, which requires large quantities of often flammable and toxic solvent to dissolve dye.

Many efforts have been done worldwide, to develop novel tunable solid-state laser materials which can substitute dyes in liquid and several solid-state laser materials, such as, Ti:sapphire, CrTiSAF, Alexandrite, and fosterite have developed. The lasers with these materials can be compact, robust, and versatile. But these material are expensive and the lasing wavelengths of these lasers are generally near infrared region, which means that frequency conversion process is needed to get visible wavelength.

Recently there have been many studies all over the world to

- 7 -

Page 8: Study on the Fundamentals of Atomic Energy

fabricate solid-state dyes by doping dyes in sol-gel, silica, and polymers. It's because that solid-state dyes can be produced in an extremely low unit cost and have the same tunability as liquid-dyes and therefore can solve the problems which both solid-state laser materials and liquid-dyes have respectively. Dye doped solids maybe refreshed within the laser cavity by either movement or replacement and also tunability over the entire visible range range is possible with several automatically interchangeable gain elements doped with different dyes. So solid-state dye lasers have potential to become small, efficient and cheap tuning extentions to pulse pump lasers.

By considering that the advanced countries are eager to develop these solid-state dyes and the laser market is governed by these countries, it is very important to develop solid-state dyes and compact tunable solid-state dye lasers system by ourselves. And it is the very object of the project.

in. Scope and Contents of Project

In this year, we have fabricated solid-state dyes with PMMA and investigated fabracation methods with sol-gel glass and ORMOSIL. We have designed the various kinds of solid dyes with different sizes and shapes to broaden the application area. And we studied the photostability of the solid-state dyes by adding various kinds of additives during the systhesis process.

We also designed and constructed various kinds of solid-state dye laser oscillators, such as self-seeded type, dualwave type, distributed feedback type, and investigated the operating characteristics of them.We have developed a 3-color solid-state oscillator/amplifier system

which might be useful in display industires. And we modified and improved the laser oscillator by adding the motorized frequency tuning system.

- 8 -

Page 9: Study on the Fundamentals of Atomic Energy

IV. Result of Project

In this year, we have fabricated solid-state dyes with PMMA in which there are free radical initiation process, free radical propagation process, and termination of chain reaction. And we studied the sol-gel process with sol-gel glasses and ORMOSIL. We designed and fabricated the water bath with constant temperature and moulds for different sizes and shapes of solid-dyes.And we studied the photostability of the solid-state dyes by adding

various kinds of additives during the systhesis process. Through the experiment, tinuvin 770 was the most stabilizing agent for the pyrromethene 567 doped PMMA sample and we achieved 3 times increase in photo stability. And the 1,4-daizobicyclo [2,2,2] octane(DABCO) gives 5 times increase in the photostability of post-doped sol-gel samples.

We have constructed a very compact Pittman-type cavity and observed the single longitudinal mode opearation with the linewidth of less than 500MHz. And a self-seeded solid-state dye laser oscillator was constructed and we observed the increase of the output power. The operating charateristics of the dualwave oscillator and distributed feedback oscillator was investigated. And we have developed a 3-color solid-state oscillator/amplifier system which might be useful in display industries. And by installin the motorized frequency tuning system in the laser oscillator, we achieved automatic frequency control.

V. Proposal for Applications

We could make a solid-state dye laser system which is very compact, handy and versatile when we develop the technologies of the fabrication of the solid-state dyes through this project. This means that this laser system can be applied to atmospheric and underwater sensing, monitoring of the environmental pollutions, local area communication networks, and spectroscopy.

- 9 -

Page 10: Study on the Fundamentals of Atomic Energy

And as a solid-state dye laser can be compact, inexpensive, short in maintenance time, and non toxic and the solid-state dyes are disposable, the advanced countries, such as the United States, recognized the merits of them and are eager to apply it to medicine.

Therefore it will be possible to apply the solid-state dye laser system to the apparatus of medical treatments.

And almost all of the tunable lasers, including dye lasers, in our country have been imported from other countries. So we could expect this laser system might be a substitute of some of them when we finish the development.

- 10 -

Page 11: Study on the Fundamentals of Atomic Energy

4

O-u- i yrSummary4 1 # 4 # -----------------------------------------------------------------12

4 2# 4#4# 7H#----------------------------------- -16

4 1 # Polymer# °1 ## 314 4# 42:7]#-----------------16

4 2 # Sol-gel glass# °l~o-# 3%4 4# 43: 7]#---------30

4 3# 3%4 4^# ### ^4---------------------------------38

4 3# ##7}# 3.44^ 444 4# -------------------------- 45

4 1# 4#=# ##7}# 31442: 44# 4#7] 4#

# ## #4----- 45

4 2# ##7}# 4### 4#---------------------------------- 54

4 4 # # # ---------------------------------------------------------------- 57

4 5 # #### ------------------------------------------------------------- 58

- 11

Page 12: Study on the Fundamentals of Atomic Energy

*tl 1 & M 5

196044 7%#^ 444# 4044 4 4# 4 4!S 444 444 4444 4

7H4 #44 444 4#-8- 44, 444, 44, 4 44 4 4&, 44 4# 4

4 4&-8- 44, 444 4#, 44, 4#, 444, 44, ^#, 4##44, 44

4 #4, 4#4 #4 444, 444 4#a, CD, DVD# #4## 444 44

44:44 4-0-44 ^# 4:44 44 4# #^& 44 #44 44"3# 44

44 #44 4-8-4 z 44.

44##^ 444# 444 444 44# 44 44#4 4# 4#41(galn

medium)0] -fr#4#(stimulated emission)4 4#4# 4444(electronic level)

4 444 444#- 4444 44 4#44 4 44#444 4#4 4444

4 44 444##- 4#44 #44 4444 #4# 4#4 4 44. zz.44

4#4444 7]]#fr 4 #4 e]]444 44444# 4# # 444 44# 4

444 4444## 4#4 444#4 4# #44 444 4# 44# 44

4. 4#(dye)# 44#4#4#-4 44 44#4 44#44 #444 44 ^

#4# 4#4, 4 4#44 44 4 #44 4#444 44 44444 44

444 4# 4# # 44. 44 #444 44444 #4#4 4# 44

44#4# #444 ^44 44 ##444 44# 4#4# # 4#4 4 4

444#4# ^#44 4#### 44# 4444 # 44. 444 4444

44##4 4#4 44 4# 4444 4444-z ##4 4##4 4444 4

4 44 4#(dye) 44 4 44. 444 4# 44 4# 4#4# 4444 44 4

# 4444444 #4444444 ##44 4444 4# 44444 44

#444# #4#4 444, 4# 44#4 4 4444-8-##. 4-8-4#

LIDAR 4#^9, 44& #4 4&# 44# 4&4 #4^ 4-8-4##, 44 4

4# 4#^# #44 ### 44#4 4# 4 444 4444 -8-444.

444#& 444 4#4# 4# 4 4# 4#"4444# 4 ## nm #^

44. 44# o] 444 4# #44 4^-# 4 4#4# zz.4 #

44 a#44 4-8-4444. %7i]44 A^sjyi 44#4#

# 4#4 4# -8-44 4^# #4z 4# #44# 4-8-44 4#-8-4# 4#

#4 #^4 44 4-8-4Z 44. 44 4# ##-8-4 #444 4# 4## a#

4 ##4 ##-8-4, 44, ####, ##4 4## ## #1444 4-8-444

4^.#. 4# #4# 44 4 4z, 444 ####- 4#4 4 4# 4# 4 #4]

12

Page 13: Study on the Fundamentals of Atomic Energy

5^14 3#5 111! #11 #!# 4#2_37} # # 14. 54 #o]

1 #3#5 414 4 ##4*-# 144 #35# 547] 13#! 5441!

433 #3# 4 314# 4## 7}x]2 1#-.

114 415 4-442.4 44 4] 4 4-5. 44# i| 4f 3 $15 41"7]-4 3. ##!1 #4 55 #44# 44. 3 #4 Thsapphire, Cr:LiSAF,

Alexandrite# 4 35 3# 4 4 4 H#o] yflf^^c}. 4 44 341 41 *15|

414 3414 414 I343 31! 413111 #11 #3#! 315

154# 71-5441 #54. 34 #5# 3## 47} 7}##! 2 #4 4411

5 4411 71-2 1# 4153 #11# 111-433 5-0_^-3g.*j 43414

#11 13# #41 71-54# 114.

3e1 4 4# #44 341 #11 144 #55 11111 111 1133

71-141 114 447}4 44335 14 14-1 #7}541, 7M14H5 3

7}41114 445 433 4 1515 454 #2344 41444 444 #5# 441# 1541 444 44111 44. 54 114 3# #11 1 1# #341 4#!5 371-4 41144471- 13414 415 414 15

#5 g}5 451 5# 44. 114 415 4543x1- 44# 44, 14, 5 4, 4 44 511# 7}14 114 3##H 41# #445 #4, 114 4533 #41 71-543 #37} 7}! 2 15 ^5 447}411(5xl-4454

1441141)5 3#3 514 3# #3# #355 147} #44 !#42

14.434 3##3 #11 155 3014133 154 547} 19674 B.

H. Softer! B. B. McFarland# 4# 15414. 355

Polymethylmethacrylate (PMMA)# rhodamine 6G #3# l7}4 3# #3#

1541134 ## 4#4 #3 #!!#x-i4 5x}4# 55554 45 11

43 33414.[1] 1551 19684# O. G. Peterson! B. B. Snavelys5

PMMA# Rhodamine #3# 17} 4# # 11 5(laser rod)l#33 453 #

#1 #33 1141 #11 44114. 155 ## 4##7i4 #H 54

#1# 441 3# 4#4 #11 14# 45 154 45# #3 5x}4 45

4 5# (triplet state)# 14 44 4# (stimulated emission)! 3444

(quenching)! #15155 3341412] 114 #4## 154 3# #3

#45 4#415 ^1 x}5#2 14. 314 51 23x} #5345 #11

54 14 (laser damage resistance), #34 45# 14(photobleaching

13

Page 14: Study on the Fundamentals of Atomic Energy

resistance), 5)] °1 4 44 3.&(conversion efficiency)0] 44# 41 #°] 91914.

5%44 4 #4# #7]# #4 ^#°]4 35]it #1 #4 4 #4 4 #4 &

# 2]]°] 7] ## ### 4# 2#7]- ###°] #444 24] #4 4^ 4444 3]-§-5] Z 914.

-fr7]##(organic material)4 4 #7]### 4#4# 4 #4# 444 44 4

#4### 4-0-491# 4#4 #44# 45] 7M #4## -3.4# 4 914.

# 4#4# #7]##4 #44 4# 40)4 #^# 4^4 ## 4^#g#4, #44 #4^ ## 7M2 ##. 3.44 ^#4# #4 43: #^# °]-0-44# 344# 4^7]- 7] 4 #7}#44. 4444 #4# 44# 1# ##

4# z#g. ##4 4 7)] 5) #4 °]# 4 44 #344# 44 #47> 4444

442.4 44 4 444 4## ^7> 914 47] 4^-44. 2e]zs 344#

4^44# #4:44 -0-0-4 444 ###344 34# 4# # ## sol-gel

4# 4-0-441 #4. Sol-gel## #4##4 ##4 #7]##, 3# 44##

4 #7]### #W7]4, #7]### #444 34 4## 43# # 91# 4

4# 7Mz #4-.

4&4 344# 444 44# #443 4## 44 44 1967# #3 4#

4 #4-4:4-. E. J. A. Pope## silica gel-PMMA #### 444 ##4 #

###4] 4# ## #4# 33###.[3] 3. 4 #4 3 ##44] 4 #4

##7]- 4444 #4. 19904 Edward T. Knobbe# Solgel #4 33

Rhodamine# Coumarin 4 ## 4 7]-4 ORMOSIL(organically modified silicate)

# 4] 444 4 4 4(optical gain), 4] 4 4 44 (laser oscillation)# 4444

(photostability)# #!#91#4, 4444 z#4 44# 4-0-4 44 444 #

4444 ## 433 33###.[4]

34437} 7}# 3 4# 7]-# e 44# 44] #44 4### 44 4 #4

#44 44 ^7] 4#4 !3#4 1#133 3## 4# 4###7} ###

4 4444 #4 4 4444# 4 44. 4 44 44# 4444 4# 4 #7}

##4 #444 #4# PMMA4 #7]-## ## MPMMA(modified PMMA),

sol-gel glass# 44 91# 44# #7]#3 44 ## polycom glass #4 #5.

# 2414# 414 71)4-5]3. #4. 4 44] 4##4 4 4 4 #44 44 4 44

## 44 444(laser damage threshold energy)# 47}47) 4 914# #4

14#4 4z#914.[5-8] #4, #44 3## ##4# #1# ##4& A}#

4# 4 #[9-11]# #515] 44-.

14

Page 15: Study on the Fundamentals of Atomic Energy

444 Eastman KodakF. J. Duarte 3## 1994# 4 E] 3 4 4# hj

3 5^1 4 x-] o]] yj-fj- #T# 4 444 4 #4 4 37] ## A### 44% #

444 444 ## 3^# #44# 4M^z ^-o] yi ^^.4

4443 43 444 #443 4 #4##. [12-16]

4 4s] Manchester 4 4s! T. A. King 3#4 PMMA#- Solgel4 414

4## 4^43 #4 44#44 44 44, 34] 44 43# 444 4# 4

44 4# 4444 44 34] #3# ##&## #7]-# 4# 4# # 434

44 34] 4 3 m44 444 44 4## 4^443 ##.[17-20]

tt4#2# Otago 444 I. T. McKinnie 3 #4 PMMA4 444 4

2-hydroxyethyl methacrylate4 methyl methacrylate4 4 44 44 444 44

44 444 44 44 4444 ot 4 44121,22]

444 Akihiro Tag ay a 3#4 44 tt 444 4 #3# 4444 3#

4, 3.3:44 4444# iL344#4[9-11] 4-44 D. Lo 3#4 Coumarin 4

3# 44% sol-gel 4444 44 ###4 ^44 #44 4#4#34, #3

4# 444# 4444 3 44# ^44#34[23-25] 4444# % 4444

444 344# 44 4 44#3 #44 4#4#3, #34# #44 4 #4

#44444 444#4 4 4444 4% 4#4 ##4 441 #4#.[26] 3

% Watanabe #4 344## #44 #47]-# 4 4#4 # #444# 44%

4# ## ## #3% #7} ##.[27]

4 4#44# #7]# ^ #7]## 444 34143# 44# 444#3#

444 44# 344### 4#4# 3^]-?]-^#-. ### o]^4 4#-^ 3.4

4### 44% #4% 444 4#4# 4444 3 #4 44# 3^1-433

Page 16: Study on the Fundamentals of Atomic Energy

n\ 2 g x-iig ?ie

7I| 1 7] Polymer# °]-S-# j7 4 -! 7. 7I| .7 7| -t-

4##4 14 #1>|] e-(synthetic polymers)# 4# 441# 444# 11

##4 14 (addition)! # 44# #44 4#444. 444 4# 44444

#4# 4-# 444 44# 4#3 44 ^# 44# 44^ 4 M] 44 443

4# 444 #444# 444. 444 4444# 4# 444 #4 4444

(free radical polymerization process)4 42. 44. 4 4444 # #44 444

44 3.4445- 4444. 4# 44 4 #ll#(free radical polymerization)4

4 44 3 4 5. 444# 44# polystylene, poly (methyl methacrylate),

poly (vinylacetate) 4 polyehtylene# °1 44. 3 4 2-1# methylmethacrylate

(MMA)4 44 #3444.

#444 !#44# #11#44# 44 Ml(initiator)43 4# #45.

#4 4444. 4# 444 #!!#4 4#!# 44 4# 44 #44 444

3 #44 Azo 44#4 14 AIBN(2-2'-Azo-bis-isobutyronitrile)4 #4#4

peroxide)4# hydroperoxide)# #44# 444 Benzoyl Peroxide(BZ2O2)4 4

1435. 4#! 3 44. 44 44 4#4 44 #34# 3^ 2-24 3^ 2-34 44. AIBN# 351 2-44 44 3 c 40c d] ti3 7 ]- 4 # 4

isobutyronitrile##4 $1# 4#4 #4444 #4414 4## 44 4 4 MM #M1, 4 ufl 344 44 AIBN4 # a44 444# 4444. 4 44 AIBN4

441#4 444PM MMA 534#4 444 #44#4 4 444. Benzoyl

Peroxide 44 34 2-54 44 1# 4!#! #4 #344 #44 4# 4# 4 ##144 #4444 44# 44## 441443 4# 44 4434 #34 414 134 4#1444 14 44## 444 14 ##14# 4 #4. 4 4 # MM #4 C02# 44 4444 411 34#34 #44 4# 441# 1414. 44 14 M] 4 Ml (initiator)4 #4 (dissociation)# # 4Ml # 4# 441 Ml 4 (free radical initiation) ## 44 4 4 (chain initiation)4Ml 43 14. 4 41 MM Ml5 444 144 44114 #41## 1#4# 53

4 #4 ### 14 4#1 Stylene, Ethylene, Vinyl Chroride, Methyl

Methacrylate, Vinyl Esters #4 14. 4## 4514144 #4 !!##

(unsaturated organic compounds)54 #14 441 33# #4 !#44 4 5

16

Page 17: Study on the Fundamentals of Atomic Energy

# 4-412 ##14-. 441 ##1#4 4! 24## 4# 4 4 /># 14#

1# 14 # 11 (free radical propagation) -44- 441 11 (chain propagation)4

414-2 44. 24 2-64- 21 44 414 4 44 44# 2R'#2 4442, 44

4 444 444 R'4 444 n-mma 224 244 444 424 44 444 Ri, R2, R3, ........ , Rn-1, Rn## ^444 44444 444 42422#444 44. MMA #144 ##### 4 #2 44 CH24 !#!l(u

-carbon atoms)4 444 4444 444 424 44444 444 44. °1

4 CH24 444 442 44 44 424444 4444 4442 44444

#4444 44# 4# 424 4444 44. 4 44 4# 44 4 44422

n 7114 MMA 4444 44444 444 444 4#(growing radical chain)

Rn4 44. 444 # 7H4 444 444 4444 ##### #44# 44# 44444 #4(termination of chain reaction) 4 42 44. 24 2-74

MMA 2244 #444# 442 #44 Pn+m4 4# 44# 2424.

4# 444 # # 1 # (Free-Radical Polymerization)4 4### 444

44 4444 #442 4444. 44 4#4 #4444 244444 224

# 2 4424 #4(solvent)4 44# 44 4#4 44 #4 1#4# 424

4# #44 424(Polymer casting) 44# l### 444. 44 #44 2

24# 7H2El4 #2 ##244 4-4-4 ##44 24 #44 #444- 44

-4#. 2El4", #4 ####4 4# 4#4 #H#(exthothemic reaction)0!

44, 4#4 4# 414-4444- 224 #444 4#(bubbles)#4 14#

#2 424, 224 444 ##422 14##4 4444 #44 444#

##2 ##. 44# #44# 4# ##4442 #444 4## #4444

4#4 MMA 224.4- 44 424# # #4 422 #4 #2# 2### #

#444 424#4 ##422 1#11. mma 224# #44 aibn! #

#4 4 #4, 4 4 2## 224 4 7)1 a) xil4 4#4 4 200 : 1 (weight ratio)

4241. 1# 144 ####4# 4 4 40°c 4241 1 ll 42

#4444 #44 #4 #44 4# 24-#!4 4444-. ####4 4-#4#

424# W(mold)# #441# 1#1#4, #44 24-#4# 14^42

4^42%!- # 44# #4## ###4-. # #4 #4444 2#414 ?H2

4(rubber gasket)2 #444 #14 22# 44# #4# # 4# W4 4

##4-.

711444- ## #2 211# Xi2 #114/1- 44-. 44 44 1# #1

17

Page 18: Study on the Fundamentals of Atomic Energy

444 4# 4 454 444- 4# 4 4 M4Ml 455 #/M4r 4### 4

44#4 444 #5# #4 #444## 44 #4. 444 7^44# 44 \#

*.4 4-5- #57} ^4 4 444 #5# #4445 44. 5#, 4 444 4#

4 444 4445 44 44 4##5 44544 4# 5444. 4, 2-544

4-444 454 44444- 444 4444 444- 4445 44444 44-

# 44444 4# 444 45# 4444## 44 #445 45^# 54-

54# 45# 4444. 4 44 54] 444 #44 54-54 4 4#5#4 4

4#45# 44 444 4^4#4 Stearic Acid (CWCHoheCOOH)# 5^ 4

444. 4 44# #44 444 5 4444 PMMA4 #### 1.4954 44]

444 MMA4 44#54 # 4 #444.

18

Page 19: Study on the Fundamentals of Atomic Energy

H

H

zch3

\/)\

C=

CH

O

Methyl Methacrylate(MMA)2-1. MMA(methyl methacrlylate)S]

CH, CH,| 3 |

HoC— C— N—N— C—CHoI I

CN CN

2-2,-azo-bis-isobutyronitrile(AIBN)

2-2. AIBN(2-2'- Azo-bis-isobutyronitrile) -£] A'SA],

Benzoyl Peroxide2-3. Benzoyl Peroxide5] S|-^j- A'SAj.

19

Page 20: Study on the Fundamentals of Atomic Energy

CH,I

CH,I

H3C — C— N = N — C—CH3| •••... |

CN CN2-2'-azo-bis-isobutyronitrile

(AIBN)I Heat

Electron CH,I

#■ oc—CH$ I

CNInitiation fragment(free radical)

at

I /H3C — 09 + N — N

ICN

CH,I

H3C — 08I

CN

IJ2

free radical2-4. AIBN4 44 4^4 ^43 4^.

20

Page 21: Study on the Fundamentals of Atomic Energy

o o3-c-o-o-c-0Benzoyl Peroxide

HeatIrs-L-QQ + ®0 — C—^ ^

Initiation fragment(free radical)1j

free radical11— — " o "

o° +o

IIcII

- - 2 ofree radical2-5. Benzoyl Peroxide5] xj-fj- ^ .

- 21 -

Page 22: Study on the Fundamentals of Atomic Energy

N-Radical group InitiationCH3 CH3

I IHjC — c — N = N — C— CH3I ICN CN

CH,I

H3C-CICN

2-2'-azo-bis-isobutyronitrile (AIBN) Inintiator

2FT®Radical'

Propagation

H3C-C* + / \I H /CN O

.CH3 CH= HI I /—► HjC — C—c—CQ

:C-° CN AQ

CH3 NCH3R'O + M —► Ri®

Radical' Monomer(MMA) Radical 1

HjC — C—C— COcij H >-°

V

"\+. vc c\H

/°\

;c=o

CH3

CH3H ca hIII \ /'HjC — C—C—C---C—C&ill I c=oCN H C=0 H /

I °xo XCHj(tHs

R1® + M —► R2®

Radical 1 Monomer(MMA) Radical 2

,CHjCH H CR HIII I z

HjC — C—C—C------C—COIII 1 )c=o

CN H C=0 H /I Q oCH3

*">-<CH3

Hz

\CH3/

°\:c=o

CHj H ca H CH3 III IIHjC —C—C—C--- C— C —III II

HI /c-ce I xCN H C=0 H C=0 H /:c=o

CH3 Io

CH3

Io

CH3

°\CH3

RgO + M —► R36

Radical 2 Monomer(MMA) Radical 3

CH;IHjC-C—ICN

H CH;I I -c—c I IH C=0

Io

CH3

THjC— C—

ICN

n-1

H CH3I I-C—CI IH C=0

Io

CH3Rn-1® + M —► Rn®

Radical (n-1) Monomer(MMA) Radical n

3.^ 2-6. MMA N-group4 4^#

22

Page 23: Study on the Fundamentals of Atomic Energy

Termination

CH,I

HjC-C-I

CN

H CH,| | 9 CH3 H CH,| |-C-C1 1 3 + H3C — C— -c-c1 11 1H C=01 CN

1 1H C=01l0 10k _ n CHj _ m

Rn®Rad cal n

RJPRadical m

CHsI

HjC-c-I

CN

H CH3I I

-C-C---I IH C=0

Io

at,

Poylmern

HI I

— C-OI I0=C HIo

CH3

PmPoylmer m

CH■C—CH3

ICN

Pn+mPoylmer n+ m

2-7. MMA

23

Page 24: Study on the Fundamentals of Atomic Energy

2)) 4 4 #5)4 3L##4 PMMA4 4)4"44#

714 2-84 44 #4###4# 7>44. 4# 444 44# 4— 4# 4#4

$1# 4444# 4444# 44#4 mma 2.^444 #44 44#4 4#

4 444 44. 4444 #4444 #4444# 4444 44 44#44

4# #5)3.4 (Oligomer)# 444 MMA4 444(AIBN), 444) 4 4##

44-44 44. 4 4 4## mma4 #4#44 4 #444 4### 4#

444 4 #44# 4#4 #4 4#44# #444. 4#4 2.344 444

#4 444 4# 4444 ##4 44# #4.

4#4 444 MMA #5)2.4 #44# 44 2-1, 44 2-24 44 444 4

#4 #444. 4## 44 2-34 4# ## 4##444(Circulation Water

Bath)4 # 44 #3.3. ##4 4 45 - 50 4444 4## #444#4. #44

4414 444# ##44 44# #4, 4# 2-344 4## #44#4 a#)

4444 ^### #5)244 ##/} # #4444 4444# #4 444 4

#44. 444 444# ## 4#44 4444 #4444. #4# 44 4

444 4## #444 744 4 #(44 4 ##44)44 44 4# 4# 44

44## ##4 #44 4# ##44. 4 4 ### 4 48°c4#4 4444

4 #44 #44 444 4 #4^x)-4 4^## 4#44. 4 10444 444

7)4 z4)#4# 4444. 4#4444# #44#€4 4## #4# 44#

4 PMMA# 95444 244#4 #444###4 444 a.4#4# 444

4. 444## W# 4444 24)#44#(solid-state dye)#4 4444. #

4# 4# ## 444 4 44# 4#44 444 4 4 7>## #7)) 44.

24

Page 25: Study on the Fundamentals of Atomic Energy

Solid-state PMMA nm

Removing the mold

21^ 2-8. 4444

25

Page 26: Study on the Fundamentals of Atomic Energy

4# 2-2. 2^4^ # 44# 44 ^#4 2-^.

44 2-34 24 4^ #4 44471 44 442.4 444 44 44 4444 (Ciculation Water Bath)4 442-444. °1 44 4 24] 4 4 #4 4

44^44 4-0-44 442.4 PMMA# 442. 4-0-# 444 44] 444444 4^44 44 #4 4^# 4444 444^4 4^ 4444. fr ^44 44^ 4 ±0.5°c 4444.

26

Page 27: Study on the Fundamentals of Atomic Energy

a 2-1 #4 4444444 44.

Specification

BathDimension

Inside : W450XD300XH450 mmOutside : W700XD400XH530 mm

MaterialInterior : STS304 1.2t Plate

Exterior : SPCC #1 1.2t Plate

PowerSource AC 220 V, 60 Hz

Consumption Heater 2.8 kW

Temperature

Range Room Temp. ~ 95 °CAccuracy ± 0.5 °C at 50 °CControlle PID control-Digital Setting Display Type

Sensor Pt 100 fi TTD Type

Water ControlWater

Circulation

- Magnetic pump & Solenoid ValveControl

-20 liter/minDrain Valve - Inlet & Outlet 3/8 inch STS pipe

44 444 44 2.44 44 2-44 44 444 # 44 44

4 4 #2# 4444 #2, 44 ### 44# 4444# #444 #2.4 #4 #2# #44 42# 44 #44 444 ## #444# 427} 444

4 #4. 24 44# 4442.4 444# ## ^4442# 4444 ^4#

4 ##424 #42#IE 1H7> 444# #4. #2# 4 #4 42# #44

(thermocouple K-type)# #44# 4442 44 4 #2#4# 444 PID 4

44 ###47} ## 4#44 4# #4. 44 2-5# #44 444 2442

#4 444 2_#42 #4.

27

Page 28: Study on the Fundamentals of Atomic Energy

4# 2-3. 44 4444444 44&4.

4# 2-4. 44 4444444 44&4.

- 28 -

Page 29: Study on the Fundamentals of Atomic Energy

4# 2-5. 44W

29

Page 30: Study on the Fundamentals of Atomic Energy

H 2 ^ Sol-gel glass# 4## riill#]#: 7]#

a# #3:# # 44# #4 4# 3-S.# # 7] # 1 (inorganic material)#

host materials. 41-4# 1 #44. -r-7]iilS-# #H# 144# 444 1

## #14# 4^14 #1# #l(glass)4# #1# #-#&# #3:(Si02)4

# 414 #14 4# 441 #14 ## #4# 4 #44 141 4441&

4 4-0-44 44 #444 #44 #4# 44# 44 4 #4.

#4 41# 44##4 44 4# 44 44 4# #### #-444

444 4 4#4 #4#44 #144# 4444 44# 4 #4. 44#44

#44 4# 444## 4444 (hydrolysis)# 44444#(polycondensation

reaction) 4 S. 444 4 $14. °1 4 precursor#. 4# 4 4 #4#. 4

Tetramethoxysilane [Si(OCH3)4;TMOS]4 Tetraethoxysilane [Si(OC2H5)4; TEOS ]

44 4# tetraalkoxysilanel## #7}#44. TMOS4 TEOS4 #4#^!#

4 s.4 silicon 44444 44 447]4 447]4 1444514 4444. a

4 2-94 14 TMOS4 ## ^444 444#(Hydrolysis) 4## 1441

ICHsOH)# 1144. 44 4 44 Si(OH)4444 #44#(Condensation)#

a# 2-104 144 444 # 44# 4444. 44 1# 44444 44##

44444 #4 a# 2-114 14 4#4a 4## 4444 44. 44 444

4 4#(polycondensation reaction)# 4 #4 444 444#, chain 4#,

entangled 4#, cluster 4#, colloidal 4#### 4414. 14 414 14

4144 precursor# pH ## 4, #44# 4### 1 - ##(acid

# base catalyst)# #44 4, a# a ### 4# 4 4# 4 444 #1 4#

# #1# 1114.

#1# 4 4414# 1 #(drying)4 3:1 (sintering)41 4 $1 #4 14 4 4 44 host material0] Kgel)4# 4 # # 14 1444 #444. #1°] #4 14 7] 144 tflyfl ## 604 14## 41 #4 #14 44# 4# 1 4-4 $14. °1 H 4# 44 411 #14 xerogel°14a 444 4 nanometer 47]# ^# #4 (pore)# 7]-!a 4a am 4 100-200 nri/g 44. Xerogel1 a 444 #1 441 #4## 7># a# $ja 4 4# #441# 44. a

# as. 4# 1 4 1 # a7|] # #S. 4-0-47] # # 7^ ^ 14 (densification) 41

1 11# 41# 11# 44. Xerogel# #4# #S. silanol a#(Si-OH)4

#3:144 #s. #144 4#as. 441, 11 11# 44 #3:144 ##

30

Page 31: Study on the Fundamentals of Atomic Energy

###- uoVxl 44 t|

CHo CHi i

°\ z°o'\

I ICHo CH<

+ 4(H20)

OHI

HO — Si— OH + 4(CH3OH)

OH

3.^ 2-9. TM0S4

OH OH OH OHi i ii

HO—Si— OH +HO—Si— OH —►HO—Si— O—Si—I I II

OH OH OH OH

2-10. Si(OH)^

M.

OH +H20

31

Page 32: Study on the Fundamentals of Atomic Energy

OH OH

HO —Si—O —Si—OH +6Si(OH)4 --------- ►I I

OH OH

OH OHI I

HO —Si—OH HO—Si—OHI I

OH O O OHII II

OH — Si—O—Si------O-------Si—O—Si—OH +6(H20)ii ii

OH O O OHI I

HO —Si—OH HO—Si—OHI I

OH OH2-11. Si(OH)jS)

1E$1, ORMOSIUORganically Modified Silicate) ' €

organic-inorganic silica glassS, Ai sol-gel ^ °1] $14-

a 2-2^ ormosil# 4]# ^.4^4.

32

Page 33: Study on the Fundamentals of Atomic Energy

5. 1. ORMOSIL ##

ORMOSIL Molar DopantConc.(M)

gel host ratio dye

TMOS 1 C153 2.0x10-3

MMA 1

TMSPM 1

0.04N HCI 3.5

TMOS 1 R6G 5.0x10-4

EG 1

GPTMS 1

0.04N HCI 4.5

TMOS 3 R6G 5.0x10-4

MMA 1.5

EG 3

TMSPM 1.5

GPTMS 3

0.04N HCI 16

TMOS = tetramethoxysilane, ShOCHsL

MMA =methyl methacrylate, CH2CCH3COOCH3

EG = ethylene glycol, HOCH2CH2OH

TMSPM = 3-(trimethoxysilyl) propyl methacrylate, Si(OCH3)3! CH2)3OCOCCH2CH3

GPTMS = 3-glycidoxypropyl trimethoxysilane, ShOCHsLtC^LOCPPCHOCPD

4 4444# #4 44# 444 #4^# 4-8-% #42445# 4a4 °] 4 4 4444 44" TMOS, distilled water, methanol, HCL, GlycerolS-

44 #44 1 : 20 : 14 : 0.002 : 325 #44# 44 22 : 34 : 81 : x : 7.2 4

4. 4 44 x4 4 444- 4444. 45 444 5 4 2-124 #24 44 4

444 44Si.4 44 4# £45. 44 44.

44 TMOS 22ml# #44 # 4 -§-44 Metlianol 81ml 4444. 44

33

Page 34: Study on the Fundamentals of Atomic Energy

TEOS# 4 #4 ^f^]# Metanol 44 Ethanol# 4 #44 4 ### 4

## 4#4 #4. 444 #### 4#4 444 ### 360ml4 1M##4

HC1 0.3ml# 4 44 #4 7.2ml # 4 44 44. 4 71 4 distilled water 27ml 4

4444. 44# 4#4 444 44# 44 #44 4## #44# 44# 4

4!44. °1 #44 Glycerol 7.2ml # 444 #4 glycerol# #44 444 4

4 #4 44 44%4 4## 44 glycerol 4##4 444444 &#4

bath44 10-15##4 444 #4. Glycerol# formamide# 44 44# 4#

4 3.44 #4##4 4HF4 444 4# 444(scattering)# #4#4 3#4

4 #44# #4# # 4## ##4. 4# 444 TMOS (## TEOS)#4 344 ###4 4## 444. 44, pH# #444 4 84#44 4444. 343 ##& #4 44# #444 ##4 4 70# 4 #4 4## #4444. 4# 4## #4444 4444## ### 4#4 ##4#4 #44 44. 4444 #44 #4# #4444 4##4 magnetic stirrer# 4#44 44 #4. 44 #444# MeOH4 4# 4 40 #, EtOH4 4#4# 4 60 #44. 4 4444 414 #4 4444 4## 4 63mL4 44 44 50ml 4#44 44# #4# 44.

344 44 444 4# 4444 poly condensation4 4444 4## 304

#4 3# 44# s' #44 44. poly condensation4 4444 4444 4

4 magnetic stirrer# ##4 #4 4 #4 43 #4 44 44#44

condensation4 s'444 gelling4 4#44 44 4 44. 4# 4 44 4 44

44# 4#4 ## 4444.

44 4## 4# #4# ### #444 44 #444 ## 44 444

44.444 4## 44 #4#44 4444 4# viscous#471 44 #44

4 ##4# 4 44 #4 oven4 4#4. oven4 ### 40°C4# 52°C °] 44

4## 44. 5244444# cracking4 4444. 4## 4# #4# 4##4

##4 #444 4## 44# #44 4#4 #4# #4 #44 44 #44

oven4 4#4# parafilm## #4# s#44 2-34 44 4## 44. #44

^# 4#4 #4#4 ##4 #4# crack4 4^44 4#4#4 4444

44. oven4 #4 4# 4#4 #4# #4 ^@##44 #44 444 4

4 4# 4# # 4 4#4 44# 4#444 444# #44.

# 444 parafilm# 444# oven#4 44# 4 24^# 4444 444 #

4 4#4 4444. 444# 44 #44 444 #4#4 4## 4 4 4

34

Page 35: Study on the Fundamentals of Atomic Energy

4. 4144 #4 4 5444 44# 444 polishing0] 45# 4 #4 #

2] A}44 ##44 Thorlabs 42] fiber polishing# lapping films (LFP5P,

LFP3P, LFP1P, LFP03P)# #44 55 4444 polishing 444 44.

(http://www.thorlabs.com #2:) °] 4 4 444 444 Bryans 44 5314; 4

444 P-4 44 4444 45. 45 7] 45 44.128]44 2-64 4 44# #44 454 #4 3i4M5#2] .44-# oven

4 #444 44 5#°] 4. 44 2-74 oven44 condensation0] 454 314]

45€4 s4°14.

35

Page 36: Study on the Fundamentals of Atomic Energy

-------Methanol 81ml7.2ml of [Distilled water (360mL)+HCl(lM)0.3ml]---- Distilled water 27ml---- Glycerol 7.2ml

Dye solution

Laser medium

Uncover sealing

40 - 52°C, 2 days in oven

40 - 52°C, 2 weeks in oven

TMOS(tetramethylorthosilicate) 22ml

Pouring into polystylene cuvettes and sealing

40min(methanol) 70°C, gentle stirring in water bath

Put in a container and place in a water bathShake for 15min in ultrasonic bath to be mixed evenly

3.^ 2-12 TMOS# sol-gel 444^

36

Page 37: Study on the Fundamentals of Atomic Energy

2-6 ## W (#*1*1 Wg, RhBdoped-, Rh6G doped-, Pure sol-gel)

3.^1 2-7 ^1)2:7)- #5.# sol-gel Ji^l] (pure sol-gel , RhBdoped sol-gel)

- 37 -

Page 38: Study on the Fundamentals of Atomic Energy

4] 3 ^ Ji#] 4^#

344### 444 444## 4# #7] 444# 4441# #44 44# 444 4 #4444=44 # 444 444 44 #44 M44 W=44 44. 1# 344### #4 #3I#7> #444# #4 24444#4 4#4 4& #4 ###4 914###. # 4#44# ###4 344##4 #4^# ^A}e}4 4-4- 612nm4 TEMw 33, 4 44^ 1.04mrad# 4:#He-Ne 4 4 4 (Research Electro-Optics, Inc. Model : LHOR-0300)# ###4 4-. 3^ 2-13# ##, He-Ne 444 4# &4447} 200mm# #3# 4## 4 34#44#4 ####3, 44 433 444# 44444 44# 4 5mm491#. 3## #4 3.44-44# 444 ### 4# #4#91#4 4d: 4## #4:4 44 50mm## 4#4# 44 ### 444 44 444 #3 4 #$14-. 44-4 344### 44# 43#4#y] 4 #4 ##4-4 344# 4# #4 #4 44# #4 #914. 34 3 444 44# Rhodamine 6G(Exiton)4 4## 4 71-#4 444 914. 44444 34 4 #4# 44 44 4 444913 4#7l ^##4 ##91## #4 444 4##4 4## 443 4# MMA4 #44 444. 4#44 3444434 4#4 4# #4# 44, 3# 2-144 (a)44 (e)# 44 L14# L5#4 44# 4##

44 #44 444 4# 444 444. 34 2-144 (e)# 434 34444

#4# 4## ##4#3 ####& 4 # mm4##4 44 4# 4444

3 g## 4# #4# #44. &44444 He-Ne4 444 44 444 4

#4Mm447> 433 34444# 444 44# 444 4# #4 4#4 #

44914. ##7143 444 444 4#4 4# 44# 3^ 2-144 (f)44

(k)#4 #4^91#. 4 4#4 444# 4##44 4 44 4=4 ###44

g#44 443 #4#4 ##913# #44 44# 4# ##44# 4##

34444#444 444 4## 4## #3 914. ## #444 4 44#

#4 4=914. #44(Zygo Corp.)# 4## # 4#4 #43# #4#4 #44

#44 ### 4#4 4# ##433 #449134, 4#4 34 4### #

4#4#4 4#4 444 91914. 4# 444## 344##4 4# 4##

#4 4-## ##4 44# #4 4=3 #4#9M 4#4#. 444 44444

#44 #4#4 ##3 4#4 4#4 #4 9144, #47]444 round-trip#

# 4 43 44# ##4# 4 ### #3433 3444 4#4# #44

- 38 -

Page 39: Study on the Fundamentals of Atomic Energy

4 4^54 3M4 #44^4 4% 444 ^_44 44. ^4 #44^1444 #445 44# #444.

Spatial Mode

f = 200mmA...

He-Ne Laser

V

L=50mm4—i.

ScreenSolid-State Dye

Commercial Solid-State Dye

Manufactured Solid-State Dye

DII 0miM#9

^4 2-14. 4 #4 -44 He-Ne 444 44 4445.

- 39 -

Page 40: Study on the Fundamentals of Atomic Energy

X 10-4

Wavelength(nm)3.4 2-15 a.44 ^#4 44^ ^ 4444

3.^ 2-16. Zygo# 444 444 44.

- 40 -

Page 41: Study on the Fundamentals of Atomic Energy

^44^ #44 4^7] 10.8% 4^-4 GIM4 #444

4# 4^7] &&# 1.2%44. S# Z4H^M4 #4#^## 3ns44. 4

#4 Z3H^ 4"4# #4# #4 3mJ/pulse( 5-9 J/cm44 4#4444

4 4&4 4r# #44-^# 444

oT 800 -Slope Efficiency = 10.8 %

Q. 600 -

~ 400 -

5 200 -

Pump Energy(mJZpulse)

Zi4 2-17 4#4 #44444 z4M^ 4444 #4#&

Poly(methyl methacrylate)

NK-55

10 20 30 40 50 60 70Number of laser pulses x 1000

- 41

Page 42: Study on the Fundamentals of Atomic Energy

3.4 2-18 444 ^44444 NK-55 ^ PMMA 34143: 4444 4^4

44#43414 3: #4 7>4- e 444 4444 44 44 1444 344 eflo]x4 4

7+44 4 41 photodegradation 4 4. °] 4 1 photodegradation4 414141 4 4 7\

47} 444 3 44^4 44^ singlet oxygen33 14 4 $14. 3 4 lr

pyrromethene 567 4 34 4 4 4 =h4| 344. 3 4 4 # =4 $14°1 singlet

oxygen4 4 4 x] =h43 43:4 344 14 (triplet state)4 t] 4 444—4. 4

^4 444 44444 4^7}^## 4 4 $14. 444 4:34 #4]# 434

44^44 4:34 44 #44-4 43:4-0-4 434 4 4 #4 4- 4:34 44^

4 44 43:4'-@-i: 43-4 4 44 photodegrationlr 44 444. °14 4 44-7]

444 3443 4 #4 4 43:# 417]# # 4# 47}4# "#4 4^4 44

4# 3443#4 W4# 444$14.

S 2 = 3.1 ±0.08 eV = 3.18±0.1 eV

X= 410±10nm X = 800+50 nm

,67± 0.04 eVX T = 110 |± s

X = 540 i5 nm

X = 920± 25 nm

singlet oxygen = 0.98 eV

G = 0 eV

72-4 2-19 Pyrromethene 5674 4 4 4 44

#4:43(photostability)#4# ^^31# 4^444 #443: 4#4 $14. 1^3443 4&4 1# 44444 1^# 4^4$14.

r( t )i f) - 6Photostability (P. S) = , (GJ/mol)

7lr LC

444 E# 134- 444(rnj), Tpo # &4 #44 #3#. ^@444444 ^

- 42 -

Page 43: Study on the Fundamentals of Atomic Energy

plane-plane #4444 44# 15mm4JL lens# 4#44 all°1 4 'Da] 4^^.

2mms. #44 444 4 44444. 44 # 444£ #4s## a.4#4.

HR >560nm R=70% broadband90% T @ 532nmFocusing lenses

Solid dye sample

214 2-20 M4# 4444 4)4 444-4^

44 2-8 3.44^# 444 444 4 44s 444-4 (4#4 M4 41444# 4#4 4 44)

5 2-34 PMMA4 444 #44 4# 444 s #4 4444. #4 44 4

44# 444 24444 444s 44# 4444S4 #4 Tinuvin# 4

44 4#4) 44 3 44 444s# ^ $1## ^ # $1^4.

- 43 -

Page 44: Study on the Fundamentals of Atomic Energy

a 2-3 4/Ml 4 4# PMMA z4H^#4 444 ^4

AdditiveRelative cone.

additive(additive/P567)

Relativeefficiency

(additive/P567)

Highestphotostability

(GJ/mol)

Increase inphotostability(additive/P567)

None 0 1.00 20 1.00COT 0.25 1.00 40 2.00

Dabco 0.2 0.95 45 2.25Tinuvin 770 0.5 0.85 60 3.00

TMP 0.5 0.91 50 2.5

TP A 0.5 0.91 40 2.00

it 2-4fe #44 A# 4 44 pyrromethene 3.4 4] dh #4 4 /J4 # 444 4 4

4 4## #4% #4&4 4^ #4 Dabco# ^/J444 44 4 5

44 444A# 4# 4 444.

it 2-4 pyrromethene°] 444 sol-gel 3.44^#4 4 444 4# 4444 44

Additive Cone, of additive(1x10-4 M)

Efficiency(%)

Photostability(GJ/mol)

Increase inphotostability

None 0 25 40 1.0TP A 66.8 22 160 4.0TMP 13.3 20 152 3.8

Tinuvin 770 33.4 20 165 4.1Dabco 66.8 24 200 5.0

- 44 -

Page 45: Study on the Fundamentals of Atomic Energy

*tl 3 & nl-g-71-a all o 1*1

4] 1 ^ 4^=^ 4^-7}^ 4]^]^ ^^17] 4]3]-

1. Littrow 4 447}# 544#444 44

5 4447-1# 444 ^§44 447}# 5445 44 4 #44# 4444

zl 444- 54444. 44 444 14454 444 Littrow 4 4444 4

44 4 #4 5## 54 #4. Littrow #44# 44 4447}# 7}#e}

4 1444# ## 44 feedback 44554 44# 4444 444 44#

#54 4 44.

44 3-1 : 444 Littrow4 4444 44 44 445#

54 3-1 4 3-2# 44 Rh6G 4 RhB# 47}# PMMA 5^45 ## 4#

4 447}4 44 4444. 5444 4 4 444 545nm-625nm 4 444 4

4# 4#45 44# # ### 54#4.

- 45 -

Page 46: Study on the Fundamentals of Atomic Energy

530 540 550 560 570 580 590 Wavelength(nm)

3.^ 3-1 PMMA4 Rhodamine 6G 4 B7} ^7}^ ^

570 580 590 600 610 620 630 Wavelength(nm)

3.^ 3-2. PMMA4 Rhodamine 6G 4 B7} ^7}^

2. %|]^-

^44 4^44 =r 4^# 44# 3-44^4. 3.44^4 7}4 e 44 4 4444 444 44 44 ^1444 4^44 4d: 444

- 46 -

Page 47: Study on the Fundamentals of Atomic Energy

1 #4 4 (photodegradation) 4 4. 4 4 4 H4 414H H# 445# 4 44 #40] 444-^ 4 14 4 4 #14 1# 431%M 1114 ^#44-.°] HH 444 44, 4tt71 (free radicals), 1#4 4444, #### 44# #44 #!#! Ml# 4444. 51# 1#1# !#!4 44444 4 444 444 44 44444 4444445. 444*1 44 444 4 4 44# 4#44 #4144 444# 14# #444. 4##44 14, #4 4 4444 1## 44# 51# 31## 4#, 5# 44 !3#4 (finance) 4 44 44#44. 4#4 4#44# 444 #44 4### 444#4 4# 444# 44 4 #414#€# 4 4 5# 4#44###4 4#4# ###4444 114## 444. 444 ##54 ##44 44 1# 44# 4# 4#5 4#4 4 4# #444# 444#. 441 #44 1#!5# 1134 1#4 4441# #3# A}## # m.

4-4 3-2 !!##! 44##4 4#4 441 #4# 344#314 4

3. 554 44#55 4444 3445444 44

si #1#44# #14 141 6cml 531 344# 444 #14# 4 444 444 4#^4 #11 144# 11414. 41 3-3# GlMl 34 43 4444 &#4 #14 1##1# 14 41# fringe 44# #4#4

- 47 -

Page 48: Study on the Fundamentals of Atomic Energy

#4 #4 ##4^.4 44"% l.5GHz44 4# # #

4-------- ►

44 3-4 GIM4 2^4# 444# #44 4##4# 4# 4## fringe

44

4. self-seeding 4 4444 244#444 444 44

444#(self-seeding)4 #444 444 #44 44 ##444 ##444

###4 4# ###4444. 4444&#4 14444 ## #444#

GIM4 #44# ##44 4## #W4 04444 ## #444# 444

#44# ##444 44# #^#4. # #44# 4# ## 444 444

4# #444 # #^-4 4#^#4 4#44. ##44# ### 4#

#444 4 4#4 ##4444 44# ## ##44# 4## 44 44 4

#4 4#44# 4# ## 4#2& #4# 4 #4. 44 3-5 # 44# 44

- 48 -

Page 49: Study on the Fundamentals of Atomic Energy

4M ^444 44 ^ 3-3 4r #4444 44 ^4^44 47] 4#4 4444 44 #4 ^4^44 #4 #444.

- 49 -

Page 50: Study on the Fundamentals of Atomic Energy

15000

12500 -Self-Seeded Output

7500 -

5000 -Broadband Output

2500 -

550 560 570 580 590 600 610

Wavelength(nm)

#4 3-3 Self-Seeding 444 #44 4 #4^ #44444 3] 4 4 #33 Arteej ti]57.

5. #44 #4 4444 5 4] 4# 4 4 4 444 7^4

444 44 4444 #44#444 4444 444 4 44 4, 44444

#, 3.42 44:44 #44# 4# ## 4### 444## 444 444 4

## 4#4 44# self-seeding #444 #4 4##

4 7fl 4 44444 #4 wide-band (560 nm ~ 650 nm)S.4 4 4 45. 44#

4 30%44. 44.\i4 si]44 44 #44# self-seeding #44# 5444,

44444# l# 4444 444# #44##4 44# 44 44444#

2# 444# 44444# 4##4 44# 44. 44 444## 44 44

44 444 44444# 1# 44 4 4#5, 44444# 2# 444##4

4 44# 44. 3]#4414 4444 24 grazing ## 444# 444 %2#

44 88°# 4##44 #4444. 444, ##444# 1,4 244 # ?iM 4-

4 44 4# 444 4444 4 44. #4 # 444 244 44 #44

#4444 442-444 #4 # #4#4#4# #4 4 44444.

- 50 -

Page 51: Study on the Fundamentals of Atomic Energy

25000 -

20000 -

15000 -

10000 -

5000 -

Wavelength(nm)

- 51

Page 52: Study on the Fundamentals of Atomic Energy

6. Three color 3] °] 4 4471 ^114

494*1 4^44 314444 SLM 944#44 99 #4- 4 4

4ir 4-§-44 4 c,] x\ ##4 tc)-^ T##5|^ 44444 4# 32.4 xfl

T #-& 444-31 ojs.^. ^94^ 997H 4444s 4-0-4-31 444 414

4 4^4 37fl4 44714 444 44 14 #44# 944S&4 ^l^I 4T

4444 #4 999 44^4 44 3-74: 444 344 44 3i44d:44 4

4s^9 49 5.944 3i4 3-54 s4#4. 4 344 4 4

44 4 s# 4 4 4444 444 444 4s^ss4 4-0-71-944 44.

- 52

Page 53: Study on the Fundamentals of Atomic Energy

3000 -

2500 -

2000

1500 -

1000

500 -

560 570 580 590 600 610 620Wavelength(nm)

54 3-5 454 34# 4444 44 5#4 #4 5#m4

7. #5444 (dfdl) a.4 ell44

#5444 444# 44 4 444444 4 #4 43gain grating)4 44 44

4# 4 #5 4 5 444 444 45445# 544 444 44. 4544- #

5 454 444 452. 54M##4 45444 5 45#4 444 454

54H##4M 5444 4444# 4444 5 44. 544544 5#4

4444# #54 4#4544 444 #44 445# 444 ^44

5544# 4544 #44 4 44. 444 # 4544 544# 45444

4 44 44 #44 454 44 444# 444 44 445 44 454 44.

454 452.4 454#4 &# 444# 4# # 44. 54 3-8 # #54

4 54M5 4444 445#4- 54#4. 54 3-6 4 #5414 44 4 4

4144 #4 5454# 54#4 ## 4455 444# ## %4.

- 53 -

Page 54: Study on the Fundamentals of Atomic Energy

H|/aBJ

jJrjStr ■

w l '.

4# 3-8 3M44 44 2.^

3000

2500

4§ 2000

_o5 15006to5 1000

500

0540 550 560 570 580 590

Wavelength (nm )

3 4 3-6 DFDL 3M4 #4 ^4^4

4] 2 ^ 4^-

447t4 3M44 4^# 44447] 444 7}/]^-#^ 244 (seh-seeded

dual- wavelength) 2 4| 4 4 4 4 44 4444 4444 # 44 44 444.

44 3-94 444 447>4 44444 controller4 2-44 4.

DFDL spectrum

J L

- 54 -

Page 55: Study on the Fundamentals of Atomic Energy

4444 °1] 444 DCmotorfe- Maxon4 ^#44 Stepmotor4 Oriental motor

4 Vexta, PX245M-02A$a^-4 44, ^^4 444, 4444 ^ 4#^ 44 2

phase, 0.9deg/step, DC6V, 0.6A°] 4. HS)jL DriverX 4 A1 Oriental motor-1

^l-e-A-5. 5-l^^r SPD4208A44. 44 3-104 4444 44444 444 2

44 ^44^4444 44Mir S.443. $14.

- 55 -

Page 56: Study on the Fundamentals of Atomic Energy

4# 3-10

- 56 -

Page 57: Study on the Fundamentals of Atomic Energy

*tl 4 & ^5 ^

44 44444# z44#4444 4#4 4#7} 44l4z 4#4 444 # 4#4 4# 4##7l- 444 ^_4#4 44. 442.# z44#444#444 4 ##2- 42. ?MM4 444## 4# 4" 44# 444. 4# 4 44 44444 ## 444 444 444 4^4 4444 #4 #4# 44 444# z4#4 #^_44 ^4 444 #2. 4444 444 4-# 4# f4 44^ #444 4-4# 4#44 /Ml## 44 444 z4M#4 444 4 444 l GHz444 ##444 444 4# 444 441 4# 4 44. # 4 42.# 4# z4M##4 #4412. #444 4#44 44 4#4 444# 444 444, zz. #44 W 4442.2. #442.2. 444 44 44# 4# 4#& 4#4 ##&4 444 444444 4#44# 4#44 4#4 4 42-2.2. 444 44# #44 4 444 444. 4 4#2 444 444 4 4# #44 442.4 444 4#44 4# 4 4# 4# 4#444 #44, ##4 4 4#4 #4 44 #44 44# 44 #2#2 #2.2.2. z44#4 444 ##4/1- 7}#44# 444.

si4 2414## #42-4 #x> ###4# 7>4ai #2.2.2 #444^2414## 4#4 4#4 44# 7>4#4 44# 4444 #2.2 44 4 4 4 444#7]- 4#42.2 444 ## 4&#, 4444#, 4## #4 #4# 2. 4#4 4 # 4# 444.

- 57 -

Page 58: Study on the Fundamentals of Atomic Energy

n 5 #

[1] , B. H. Soffer and B. B. McFarland, "Continuously tunable narrow-band

organic dye lasers", Appl. Phys. Lett. 10, 266 (1967).

[2] , O. G. Peterson and B. B. Suavely, "Stimulated emission from

flashlamp-excited organic dyes in polymethyl methacrylate", Appl. Phys.

Lett. 12, 238 (1968).

[3] , E. J. A. Pope, M. Asami, and J. D. Mackenzie, "Transparent silica

gel-PMMA composites", J. Mater. Res. 4, 1018-1026(1989).

[4] , Edward T. Knobbe, Bruce Dunn, Peter D. Fuqua, and Fumito Nishida,

"Laser behavior and photostability characteristics of organic dye doped

silicate gel materials", Appl. Opt. 29, 2729-2733 (1990).

[5] , K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin,

V. S. Nechitalio, and A. M. Prokhorov, "Dyes in modified polymers:

problems of photostability and conversion efficiency at high intensities",

J. Opt. Soc. Am. B9, 143-151 (1992).

[6] , D. Lo, J. E. Parris, J. L. Lawless, "Laser and fluorescence properties of

dye-doped sol-gel silica from 400nm to 800nm", Appl. Phys. B56,

385-390 (1993).

[7] , M. L. Ferrer, A. U. Acuna, F. Amat-Guerri, A. Costela, J. M. Figuera,

F. Florido, and R. Sastre, "Proton-transfer lasers from solid polymetric

chains with covalently bound 2 -(2' -hydroxyphenyl)benzimidazole groups",

Appl. Opt. 33, 2266-2272 (1994).

[8] , A. Maslyukov, S. Sokolov, M. Kaivola, K. Nyholm, and S. Popov, "

Solid-state dye laser with modified poly (methyl methacrylate)-doped

active elements", Appl. Opt. 34, 1516-1518 (1995).

[9] , A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K.

Sasaki, "Polymer optical fiber amplifier", Appl. Phys. Lett. 63, 883-884

(1993).

[10] . Akihiro Tagaya, Yasuhiro Koike, Eisuke Nihei, Shigehiro Tetamoto,

Kazuhito Fujii, Tsuyoshi Yamamoto, and Keisuke Sasaki, "Basic

performance of an organic dye-doped polymer optical fiber amplifier",

- 58 -

Page 59: Study on the Fundamentals of Atomic Energy

Appl. Opt, 34, 988-992 (1995).

[11] . Akihito Tagaya, Shigehiro Teramoto, Eisuke Nihei, Keisuke Sasaki, and

Yasuhiro Koike, "High-power and high-gain organic dye-doped polymer

optical fiber amplifiers: novel techniques for preparation and spectral

investigation", Appl. Opt. 36, 572-578 (1997).

[12] . F. J. Duarte, "Solid-state multiple-prism grating dye laser oscillators",

Appl. Opt. 33, 3857-3860(1994).

[13] . F. J. Duarte, "Solid-state dispersive dye laser oscillator: very compact

cavity", Opt. Commun. 117, 480-484 (1995).

[14] . F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T.

S. Taylor, "Dispersive solid-state dye laser oscillators", Opt. Quantum

Electron. 29, 461-472 (1997).

[15] . F. J. Duarte, "Multiple-prism near-grazing-incidence grating solid-state

dye laser oscillator", Opt. Laser Technol. 29, 513-516 (1997).

[16] . F. J. Duarte, T. S. Taylor, A. Costela, I. Garcia-Moreno, and R. Sastre,

"Long-pulse narrow-linewidth dispersive solid-state dye laser oscillator",

Appl. Opt. 37, 3987-3989 (1998).

[17] . Mark D. Rahn and Terence A. King, "Comparison of laser performance

of dye molecules in sol-gel, polycom, ormosil, and poly (methyl

methacrylate) host media", Appl. Opt. 34, 8260-8271 (1995).

[18] . Mark D. Rahn, Terence A. King, Anthony A. Gorman, and Ian

Hamblett, "Photostability enhancement of Pyrromethene 567 and Perylene

Orange in oxygen-free liquid and soild dye lasers", Appl. Opt. 36,

5862-5871 (1997).

[19] . Mark D. Rahn and Terence A. King, "High-performance solid-state dye

laser based on perylence-orange-doped polycom glass", J. Mod. Opt. 45,

1259-1267(1998).

[20] M. Ahmad, M. D. Rahn, and T. A. King, "Singlet oxygen and

dye-triplet-state quenching in solid-state dye lasers consisting of

Pyrromethene 567-doped poly (methyl methacrylate)," Appl. Opt. 38, 6337

(1999)

[21] . Shim M. Giffin, Iain T. Mckinnie, William J. Wadsworth, Anthony D.

- 59 -

Page 60: Study on the Fundamentals of Atomic Energy

Woolhouse, Gerald J. Smith, Tim G. Haskell, "Solid state dye lasers

based on 2-hydroxy ethyl methacrylate and methyl methacrylate

co-polymers", Opt. Commun. 161, 163-170 (1999).

[22] . William J. Wads wo th, Shirin M. Giffin, Iain T. Mckinnie, John C.

Sharpe, Anthony D. Woolhouse, Timothy G. Haskell, and Gerald J.

Smith, "Thermal and optical properties of polymer hosts for solid-state

dye lasers", Appl. Opt. 38, 2504-2509 (1999).

[23] . D. Lo, S. K. Lam, C. Ye, and K. S. Lam, "Narrow linwidth operation of

solid state dye laser based on sol-gel silica", Opt. Commun. 156, 361-320

(1998).

[24] . S. K. Lam, X.-L. Zliu, and D. Lo, "Single longitudinal mode lasing of

coumarin-doped sol-gel sillica laser", Appl. Phys. B 68, 1151-1153(1999).

[25] X.-L. Zliu, S. K. Lam, and D. Lo, "Distributed-feedback dye-doped

solgel silica lasers," Appl. Opt. 39(18), 3104 (2000).

[26] . Gwon Lim, Do-Kyeong Ko, Hyun Su Kim, Byung Heon Cha, Jongmin

Lee, "Single longitudinal mode operation of a solid-state dye laser

oscillator ' , J. Korean Phys. Soc. 37, 783-787(2000)

[27] H. Watanabe, T. Omatsu, T. Hirose, and M Tateda, "Yunable phase

conjugation by intracavity degenerate four-wave mixing in an

injection-seeded solid dye laser," Opt. Lett. 25(17), 1267 (2000).

[28] T. R. Bryans et al., J. Sol-Gel Sci. & Tech. 17, 211-217 (2000).

- 60 -

Page 61: Study on the Fundamentals of Atomic Energy

^ 4 ^ ^ ^

*SJ 7l *^.2A-1 #£_ 4 44 *22 A)#Jr &e22*#2 INIS *71122

KAERI/RR-2165/2001

4# / *41 447}# 24M24144# #4-2# 4## ?i]# #

4*4 4#4*3944 # *4# 2 2 4 (4A}4S}7]#7H##)

4 * A} * * 4 #

4#4(4A}4#7i*7lj##), 44 4n, 4##n ##*n, 4#n

* 4 44 tf7m #=3# 2001.1

4 °1 4

#2.4#

60p.

‘0142 4*2*A}<y

51-§-( o ), 4*( ) 4 29.7 Cm.

4*4-#7fl(0), 444( ), 444

22 A# 4x}22A)

4444714 44 42

xS (15-20**4)# 44444 *4*# PMMA 4 *4*4 #_# o.^* host material^ #4 2^444& 4#* 7H*a}^#.

ell°14 #4 444 44* 444 4#41 4144 24144#* 01*44* 4444# #414 2444 444 #44* 414444. *4*22 444. Ai-44.##444, 24# #44, *2444 #44#* 4444 2 #444& 44^^44 44 3444 #444- ##42 #44# 34 2442 444 42#* 4444 34

4 #44 4*44# 44444. 2# 4*##*4* 4444 447}#* %}*#- 4514. 242 #4*44# 244*4 4*444#* 444 47}** 44

PMMA4 4* 3^, sol-gel# 4# 5414 444* #4* 444.

*7ii 44 4 2(io*444)

271M*#, 447}#, PMMA, sol-gel, 444, *4*22, 47]##, 44**44,4442

Page 62: Study on the Fundamentals of Atomic Energy

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org. Report No.

Sponsoring Org. Report No.

Stamdard Report No. INIS Subject Code

KAERI/RR-2165/2001

Title / Subtitle Development of the plastic solid-dye cell for tunable

solid-state dye lasers and study on its optical propertiesProject Manager and Department

Ko, Do-Kyeong (Quantum Optics Team)

Researcher andDepartment

Byung Heon Cha(Quantum Optics Team), E C. Jung("),

Changhwan Lim("), Hyunsu Kim("), Gwon Lim(")

PublicationPlace

Taejon Publisher KAERIPublication

DateJan. 2001

Page 60p. 111. & Tab. Yes( o ), No ( ) Size 29.7 Cm.

Note ’01 Institute Basic Project

Classified Open( O ), Restricted( ),___Class Document

Report Type Research Report

Sponsoring Org. Contract No.

Abstract (15-20Lines)

we have fabricated solid-state dyes with PMMA and sol-gel materials.We developed various kinds of solid-state dye lasers, such

as single mode laser, a self-seeded laser, a dualwave laser oscillator and DFDL with solid-state dyes and investigated their operation characteristics And we have constructed the 3-color solid-state dye laser oscillator and amplifier system and observed 3-color operation. We also improved the laser oscillator by installing the motorized frequency tuner. We studied the photostability of the solid-state dyes by adding various kinds of additives and achieved 3 times and 5 times enhancement in photostability in PMMA and sol-gel samples, respectively.

Subject Keywords (About 10 words)

solid-state dyes, tunable, PMMA, sol-gel, laser, single-longitudinal mode, self-seeding, dual wave, frequency tuner, photostability