study on polyaniline-tin(ii) molybdophosphate ... · eds ›˙.= >˝ %˚˛ ](% ( >˝ %˚˛ = ›˙...

12
dx.doi.org/10.22093/wwj.2018.99450.2498 61 Original Paper Journal of Water and Wastewater Vol. 30, No. 3, 2019 Jouranl of Water and Wastewater, Vol. 30, No.3, pp: 61-72 Study on Polyaniline-tin(II) Molybdophosphate Nanocomposite Efficiency on Removal of Reactive Orange 122 Dye from Aqueous Solutions M. Beheshtikya 1 , P. Gharbani 2 MSc Student, Department of Chemistry, Ahar Branch, Islamic Azad University, Ahar, Iran " Assoc Prof, Department of Chemistry, Ahar Branch, Islamic Azad University, Ahar, Iran (Corresponding Author) P-gharabani@iau-abharacir (Received Sep. 26, 2017 Accepted May 29, 2018) To cite this article : Beheshtikya, M., Gharbani, P., 2019, “Study on polyaniline-tin(II) molybdophosphate nanocomposite efficiency on removal of reactive orange 122 dye from aqueous solutions.” Journal of Water and Wastewater, 30(3), 61-72. Doi: 10.22093/wwj.2018.99450.2498. (In Persian) Abstract In the last few years, color removal from textile industries has been given much attention because of its potential toxicity and visibility problem. There have been various promising techniques for the removal of dyes. Adsorption is one of the most popular, effective and economic methods. Nanocomposite of polyaniline- molybdophosphatetin (II) was synthesized by polyaniline and molybdophosphatetin (II) via simple and easy method and was characterize by FTIR, XRD, FESEM, TEM, BET and EDS. Then, the efficiency of synthesized nanocomposite was investigated on the removal of Reactive Orange 122 dye. FESEM and XRD data reveled that the size of nanocomposite was 80 nm and its structure was amorphose. As results, dye adsorption onto nanocomposite was reached to equilibrium at 40 min. Also, its removal increased by increasing of nanocomposite dosage and decreasing of pH and dye concentration. Isotherm adsorption studied cionfirmed the Reactive Orange 122 dye adsorption onto polyaniline-molybdophosphatetin (II) was obeyed Langmuier isotherm and the maximum adsorption capacity for removal of Reactive Orange 122 dye by polyaniline- molybdophosphatetin (II) was obtained about 47.42 mg/g. The maximum removal of Reactive Orange 122 dye (87.56%) by polyaniline-molybdophosphatetin (II) was obtained at pH =2, 0.1 g/250ml of nanocomposite, and 50 mg/L of dye concentration. Keywords: Nanocomposite, Langmuier, Tin, Reactive Orange 122.

Upload: others

Post on 27-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • dx.doi.org/10.22093/wwj.2018.99450.2498 61Original Paper

    ����� � �� �� Journal of Water and Wastewater

    ��������� ����� ����� Vol. 30, No. 3, 2019

    Jouranl of Water and Wastewater, Vol. 30, No.3, pp: 61-72

    Study on Polyaniline-tin(II) Molybdophosphate Nanocomposite Efficiency on Removal of Reactive

    Orange 122 Dye from Aqueous Solutions

    M. Beheshtikya1, P. Gharbani2

    1.MScStudent,DepartmentofChemistry,AharBranch,IslamicAzadUniversity,Ahar,Iran

    2.Assoc.Prof.,DepartmentofChemistry,AharBranch,IslamicAzadUniversity,Ahar,Iran

    (CorrespondingAuthor) [email protected]

    (Received Sep. 26, 2017 Accepted May 29, 2018)

    To cite this article : Beheshtikya, M., Gharbani, P., 2019, “Study on polyaniline-tin(II) molybdophosphate nanocomposite efficiency on removal of reactive orange 122 dye from aqueous solutions.” Journal of Water and Wastewater, 30(3), 61-72.

    Doi: 10.22093/wwj.2018.99450.2498. (In Persian)

    Abstract In the last few years, color removal from textile industries has been given much attention because of its potential toxicity and visibility problem. There have been various promising techniques for the removal of dyes. Adsorption is one of the most popular, effective and economic methods. Nanocomposite of polyaniline-molybdophosphatetin (II) was synthesized by polyaniline and molybdophosphatetin (II) via simple and easy method and was characterize by FTIR, XRD, FESEM, TEM, BET and EDS. Then, the efficiency of synthesized nanocomposite was investigated on the removal of Reactive Orange 122 dye. FESEM and XRD data reveled that the size of nanocomposite was 80 nm and its structure was amorphose. As results, dye adsorption onto nanocomposite was reached to equilibrium at 40 min. Also, its removal increased by increasing of nanocomposite dosage and decreasing of pH and dye concentration. Isotherm adsorption studied cionfirmed the Reactive Orange 122 dye adsorption onto polyaniline-molybdophosphatetin (II) was obeyed Langmuier isotherm and the maximum adsorption capacity for removal of Reactive Orange 122 dye by polyaniline-molybdophosphatetin (II) was obtained about 47.42 mg/g. The maximum removal of Reactive Orange 122 dye (87.56%) by polyaniline-molybdophosphatetin (II) was obtained at pH =2, 0.1 g/250ml of nanocomposite, and 50 mg/L of dye concentration.

    Keywords: Nanocomposite, Langmuier, Tin, Reactive Orange 122.

  • dx.doi.org/10.22093/wwj. 2018.99450.2498 62

    ����� � �� �� Journal of Water and Wastewater

    ������� ������� ����� Vol. 30, No. 3, 2019

    مقاله پژوهشي

    و فاضالب، دوره 61-72، صفحه:3، شماره30مجله آب

    �*�L �5*�(��!� ��/0Q��L0E�E �) .!7 ��4>�+% )0� 8 ! E-II(�TDE* HMB *�;�UE*�E 0 �L�*VWW X0!"� /� �(- ,�

    �,$ "AJ>6 R9(�*"D�6(p K9�(I �.

    =>,�#�% [�@ 5�B��� ,� �*��? +��' 5��A ,�'�� +)��'��? ����� ,�� �K�� ���#� ,�� ,+�9)� �8 5�/���

    C>,�� �K�� ,�#�% [�@ 5�B��� ,� �*��? +��' 5��A ,������ ���#� ,�� ,+�9)� �8 5�/���

    �)#5��E (4GE�[email protected]

    ������)�/�/������/�/�(

    *02 #( #)��� 8�� #( 9�:*� ;��(:+ ����4( 6�+7� ��/ ��1C5% �*�� .>��P*%D ��.b���� �"�(*V ��(%+��F G+.�c�*V �P*P �) 4�S ^*0A-')��&�� O���P3II(��HP( MW� (��8P(*P ��1V�(�JJ [���� .� �%3 *� "

    �267*- ' 23 �8��9)��(KJ=- D s�� �����(�O��- ��V�Q ����

  • ���? +)��*#+�% ;#

    a��? ��� +X����8... dx.doi.org/10.22093/wwj. 2018.99450.2498 63

    ����� � �� �� Journal of Water and Wastewater

    ��������� ����� ����� Vol. 30, No. 3, 2019

    ������ )Saadatjou et al., 2009 ����%B�( .(�)-��< () -�}$����$���( ���'() �����2����1��M����7 ()���I� �(1��� &������)

    (Karadag et al., 2007) ����%B�( )�7- .��2���(�)�>- �D �������4 () -�6��� .�� � >-;5 ��8?���� ��(��� �� ��������)6

    �� 2)1>- D .���) &������-(� M��,� () -�1��%\� �� � () �� ��1�2������� 6���4 () (�v< �� - >)�� E-�V�1�� () T�89� Mn

    �(2�@O !7�� - >)�) ���� �1 ����� =��������������������� (Daneshvar et al., 2006)6&12) .1� ��8�� �321-��< ���4 ��

    ���� ����� �� ���%B�( .�D�� () T;�,� !7���%���E��� - M�� ���� M���)�� )Yazdanbakhsh et al., 2015.( �%B�(¤���(1\�(��� ��wzz &���)w��( :�� ( ���1������

    ��11��� T���� O�C31H20ClN7O16S5.4Na =��� () (���O- ���� ������'�7���� ��� ��� �B�(��� >)�o������� - )��� )��7- &�12)

    M�Q - �� ?, M� (��,� () M- �1� �=�� .(Saeed et al., 2015).

    N-( � M���������� �������������o8����� M������_�1�3�����7� )Saeed et al., 2015, Rasoulifard et al., 2010 6(

    O� �2�1� �81) M�Puasa et al., 2012 ���� 6(1M�.(Mário et al., 2009) M�1���1�x� ��O ��I14(Riera-Torres and Gutiérrez, 2010) 9?�� �3��7 -�)Gharehkhani, 2016� ��� (�03��<�%B�(����(1\�(�� ��wzz � � .=� >�� >)�o���� .1� O 6M�����

    9? �37���2)1� &D)�� �7�� )(�� M)�� M�(� -1 �I (� �" �.1�_� .=� ��O D � =�4 �1>����1���4� �`)(Saeed et al.,

    2015)� 61��M� )Rasoulifard et al., 2010(:�� ¥(�" ()�4 -) %�Ilhan et al., 2008�� ( � �� �~�7 M���5�03�< .��� �%�B�(

    .=� >�� >)�o��

    Fig. 1. Structure of Reactive Orange 122 dye 48��/�\�(�� �1���( �%B�( (��,� `gg

    1 Trapa bispinosa’s

    ,������1a� ��������=������ ����¦2¦��@�6�!8F �� �!�����1x ���184���¦5��+� ��G�(~¦��@� -���������O�Z �M)����G�(~

    �;'��>������ ��184 ���� &��12) �,*��1����� ����)����O��6�� �~�7 M���5 ���9?���()���7 "(���O D ���� .(Khan and

    Shaheen 2013).��������=� ���� ��,� ��>�����G�(~ ¦��@� - �184���

    �¦26¤������7 ����V�Q ���)������ �� �85)����)�����O�� ��()������V� ��G�(~ ��1�-��,)�I�M¦�)��� ..(Sharma et al, 2014).

    �.���� � 6-(;'¦9? ����G�(~ ¦��@�6��&��12) ������¦�,

    (�1����� �,�-e? �I� �;'��>.1���� ����G�(~ -���� � 1846�7�� �)�� �(���,)!87 �>)�=.84���181.��� &�12) %�� 6M�� �4��(���9�1�?�-��(�

  • +2��* �#�� +��*�S X#��% � ��L dx.doi.org/10.22093/wwj. 2018.99450.2498 64

    ����� � �� �� Journal of Water and Wastewater

    ��������� ����� ����� Vol. 30, No. 3, 2019

    � =� � �)���7�(�I� ���� 6> �� �1E� �4 G�o2�� �=� �� �2(��e(�I� ���1 8� 6����8" )II(� 61� o�O�� 6:1��1 ���:� -�L2��1G��� � =� � �� , M�2��(���.����

    ././Y9?#w��$ #D�D %A2�"I x\ :�@=��0&,�#� K,,D�(II)

    � ����1����� �����=84���1812�� .1�8" G�o�O-��(II)6(��V� -����� 8����8" )II(z/$(J��6�1� o�O�:w/$(J��� -��L2��1G��� w/$(J����1�>�� ��� -&�,�) ��: �I� w$$$

    ¦ ¦-( ���=��) (� " M%�6�� .�� �O�Z� >)-%O� M��� ��1� o�O�:�� 8����8" )II(6�( T��89� o�1�-��� �O��Z� M��� ��L2��1G��� �( T�89� 21���(�� .��T84���1�81.��1>�� �(Gharbani, 2017) ��(� �����T�89� �O�Z� ����( .�� �1!()�:�C92 �� ��-�@� ��� ��I���� &�����.� � �1!

    � �����:=5� -(�M%� -�@� ��G�� z|=5� ()��)�q���� -��=2�< .�� (� " �@� .=O D ��:����� -( T�89� ��� "�1j

    �,�� 0�' ��-�@� ���U�.(�� ��I��� ��� ��6 �?V� ()M-� () ��)�}$s�1�8 �7():I, ��.)��� :I, >�� ��� M-���

    ) , >�� -���1��1 ���:w/$(J��� ��� G��� z|=5�� -(��1 ���=5 rpm w}$()s��� (� �" >)�) .��� T��89� a�)��\�

    0�' >�� -��������pH �� O��'���,�)��� �?V� �� ��� �I��� >)�) ��-()M-� ()��)�}$s�1�8 �7():I, ��.

    ./B/"5W� �rQ ������� ����� �3��7 9?������(��1\�(���� ��wzz -( ����������

    ������� >�� %�� =N-( ���14�� E��\�� ���.G� �11X� =�C8F ���(1\�(�� ��wzz ()T�Q M�� =���� ��� ���� ���(�4 j�8��� 1C� (��V� 6�~�7 =C8F (���1\�(�� ��wzz6pHT�89� M��� -

    )(��� s��� ����(��(� �" =�O D .(���V� ������ �� ()z}$ 81����( T�89� � �12���( �1 \�(��� ��wzz ��� .�2(� ()� }$$ 81���@� .�� ����( �12 ����� (���V� M)��� �O�Z� ���~��7 �6

    - �� >) L� T�89� ���� A�I� M�� G�� � �@� (�) ���E��\��� ��� .=��O D���C��1LpH � T���89�NaOH -HCl .���� >)�o����

    1 Dae Jung 2 Scharlau 3 Merck

    ������ �3��7 >�B���) � >)�o���� ���� M) ��� 0���' � ���@� ���� ����O����UV-Vis .�� =�H � ���%�B�( ��'() .11@����( �1 �

    \�(���wzz >�� 03< ��2)�@� w�� >)�o��

    )w(100A

    )AA((%)movalRe0

    t0 *−

    =

    �2)�@� .�� () �x A0-A t�� () �3�7 - �12-� �37 !1� � M���t.=�� .1��_�

    (��V� �%B�(���(1\�(�� ��wzz �37 >�� �� �-( e?� �~��7 mg/g)) T)�@� M�� () (qe� ( �2)�@�z�� ���9�

    )z(Vm

    )CC(q e0e *−

    =

    �� .�� ()�2)�@� Ce6C0�� � �1!=�C8F ��12-� -=�C8F 2)��@��T��89� !��< �

    ¦81� E D �12 ()��.����� VT�89� L\< ��12 !��< � -mM-�~�7 E D !�< �.=�

    e/�/�/G(3�%9� "5W� �rQ '�! ��E �-% ����37�( GJ)�@��Z��� �� ��� ������@�1�1 (���V� .

    -( � >�� �37 >)�����) () �~�7 e?��41�� .�� (���.���-( T-����� ���� .�E ��-% ����� >)�o��� )(�����E ��-% ����B�J��1 6 2��- O1�� -1� .��� ���� GJ)�@� �� ����� � �1 () !�>)(-�

    =� >��

    ){(m L eeL e

    q K Cq =

    1+K C

    )|(1n

    e F eq = K C

    )}(e T eq =B ln(K C )

    GJ)�@� .�� () �� qeT)���@� T���< () �~���7 E ��7 ���)�� �3�7 >��� ��� ��

  • ���? +)��*#+�% ;#

    a��? ��� +X����8... dx.doi.org/10.22093/wwj. 2018.99450.2498 65

    ����� � �� �� Journal of Water and Wastewater

    ��������� ����� ����� Vol. 30, No. 3, 2019

    �~�7 � ¦�81� !�< .=�� E �D �� E �D KL�3�7 T)��@� =���H �� �12 !�< � 1B�J �9? ¦�81� 6E �D KF-1/n =���H ����

    .������� 12����- O E ���-%��KF�9?�� �3��7 =��1O ^ !���< � (mg/g) (L/mg)1/2 -n9?� �3�7 �� &������ M��I� �(�.���)

    B1=RT/b ���H��� D �� �� =��9?� �3�7�B�����- )(�) KT4 =��H12)�@� ����-�� =��H ���� E �-%1. �� ��12 !��< ��E D =� .(Gulnaz et al., 2006)

    ./E/%,��D�

    ��� ����2�1���� %� �� �����O- ��� UV-Vis T���DR5000- 15V =� � ��` �����6j1Q >�B�) N� �4 � � �@������

    )XRD T��� (Panalytical x pert pro 6>�B��)FESEM T���FESEM: Zeiss Model Sigma VP � �� -�EDS �E �� (�%�O�

    Dxford instruments � ��� .���� >)�o�����2�����1%BET T���� �Quanta Chrome � � -�2���1%TEM >�B�) � FEI Tecnai™

    Transmission Electron Microscopes .�� >)�o��

    �/T56 � U9�AD �/�/0� %A2� Y9?#w��$ #D�D "9���2�

    Q1jFTIR 84���1812�� .1��8" G�o�O-��(II) &��� ()zM��I�Q .=� >�� >)�)1�� >���I� .�4 j1�cm-1 {|$$ b�� �

    >- �D M(��V���� - M(�V�� �I� �� ����OHQ -�1

  • +2��* �#�� +��*�S X#��% � ��L dx.doi.org/10.22093/wwj. 2018.99450.2498 66

    ����� � �� �� Journal of Water and Wastewater

    ��������� ����� ����� Vol. 30, No. 3, 2019

    >�� �x �w$$ � �� =� ������ �1�R���������� %��� �� ��=84���1812�� .1�8" G�o�O-��(II) � �� .=���( ���1����� ��I

    ���� �� Q ��C� )(��� =�1jEDS &���� () M�|>���� >)�) M��I� ��� >�����I� ���� (�?����� .=��������Q i����?� )��1 jEDS ������

    ������ 6.� � '��5 &��� >�� %�� =12�� 6M- ��1��8" - M���+2�,�� - =��)� B�) M� ()�� >��� �� )��1�R�� �� *��8,

    84���1812�� .1�8" G�o�O-��(II) =� >�� %��.

    &��}-�+���������� �](%� () �( >�� %�� =���������� M��I� j8�������) ���� ����� &��� i���?� . �� �84 =���1�81.

    2��1�8" G�o�O-��(II) a;��� &�8���=� O ^ �3�2 -�1 =��)���� ����, �~�7 M���5=��)� � .�>���� D1 �")1e?� =)�o���%��� �~�7 e? =��|/wE D � �� � ������� =).

    Fig. 4. FESEM & EDS of polyaniline-tin(II)molybdophosphate 48�E/ ��+� FESEM -EDS �8" G�o�O-��12�� .181�� �84(II)

    Fig. 5. TEM Images of polyaniline-tin(II)molybdophosphate 48�S/ �-�+�TEM �8" G�o�O-��12�� .181�� �84(II)

  • ���? +)��*#+�% ;#

    a��? ��� +X����8... dx.doi.org/10.22093/wwj. 2018.99450.2498 67

    ����� � �� �� Journal of Water and Wastewater

    ��������� ����� ����� Vol. 30, No. 3, 2019

    B/./19��?� D� "5W� �rQ '�!�� �%M "�D�� D # ,A$�ee

    '�� (6"I x\ :�@=� � 0&,�#� K,,D�(II) �� �� ���@2�?� H� -s���� M���� G��� )�~��7 ()M�%��1� �3��7 9?�%�B�(���(���1\�(��� ��`gg6������ ���()��4 (���V�

    ���� � j��8������>���� %���� =)$z/$6$|/$6$/$6$/$6w/$(E D -z}$ 81��� �12 T�89��(��1\�(�� ��`gg ���8F ��=C

    }$ ¦81� �12 () E D M�� G�� () -wz$ .�� E�\�� �V1") ��7�� ��&�� �����~�7 ) M�%1� ���%O� �� �� =O D �\1�� M���6�37 9?�����%���B�(¤�(�����1\�(����� ��`gg -( ��������84���1���81.

    2��1���8" G�o���O-��(II) ��� ���%��O���(���%��O� .���� &��12) .����������U M��1� .1� �~��7 G�(~ M�%�1� ���%O� �� �� ) � M�g/��`/E D ()g�81� 6 �12 )���@� >��B��7 ���� �� )��7�� T��@O-(����O�� ���%�O� s�� e? �\1�� () - G�(~���� (Auta and

    Hameed, 2011) 9?�� �3��7 ���'() -��%��B�(��� J�����)-( .9? �37 �@2�?���%B�(��(��1\�(��� ��`gg -( ����~��7

    �84 =���1 ����1����M� ���1���U %1�� .1���\ ��)�) M���I� �(=��� >)Rasoulifard et al., 2010.( O Q ��) �� ()�3�7 M�%�1� ���

    @� ��( ������=���) -���� � ���� G��C92 () ��"�- () .>�B��7 )��@� �12-� ���)��� (�1�� G�(~���� s �) () =�� ���� 6

    �� - �(�� �M��� 6M�� =�3D ����9?� �3�7�- >��� p����� � ���� �37 =5 �����)Mehrizad and Gharbani, 2016.(

    Fig. 6. The effect of dosage & contact time [RO 122 ]0=50 mg/L; pH=5.9; T= 25±20C

    48�Z�~�7 ) H� -s�� M�� G��

    T= 25±20C6pH=5.9 -[RO 122 ]0=50 mg/L

    ��� �7�� �&�� 6�%B�( �9? �37¤�\�(��� ��1���(wzz ��84 �-( � ) ��8" G�o��O-��12�� .1�81��II � ��@� (|$��� ��V1")

    T)�@��1(M�� �32 . |$�� �V1") M���5M�� ���O D �C� () T)�@� .�� %1� M�(��� - ) O ¦2�( >) �� N(�%D ��� ���� �3�7 =5 �9?��%B�(��(��1\�(�� ��`gg -( �� �~�7�84 =�1 ��

    �1��M� 2-� G�C92 ()1() - >)�� J�� �g")1=���� �V ��� =�2�< T)���@����� ���()Rasoulifard et al., 20109?�� �3��7 .(��%���B�( ¤�(�����1\�(����� ��`gg -( ������ =����4���1 >�Trapa

    bispinosa’s �12-� G��C92 () %�1 � ��� ��@� - �`g ")1��� ��V T)�@� =2���� %��� = ��.)) D (�� o' �?V�84���1812�� .1�8" G�o�O-��(II) )-��< ()/|������ )Gharbani, 2017�?V� (�� o' �?V� .( ����� =��

    ��(���9?�-( �?V� .�� ()�.=�� o�' �C� )(�� >)�� e?�@��9? (�� 6�?V� .�� � &�"�-(�- =��� �C� )(��� !1� ��@� o�� M� ��=�) .� .1�U �"�- (��� ) � M�1� M���84���1�81.2��1�����8" G�o�����O-�� (II) ()pH ������ �/|6(������ M-������ ()/|pH< 9?�� (���� ��(�)�() - =����/|>pH�(�)�(����

    9?�o����%O� &12) .=���37 ��%�B�( -( ����84���1�81.2��1�8" G�o�O-��(II) ()pH����1����� =�� .��� �%�B�(¤���(1\�(�� ��`gg ��( :� ���1���(��� �� () .�� ����� 6=��o���)(�)�" :1����- ��2� ��~�7 .��� ��( .1�� �1����~��7 -�(�)�() =�� (��pH����1���37 M�%1� ���%O� &12)�%B�( =�.

    O Q ��()pH���6 �J��84���1812�� .1��8" G�o�O-��(II) o�� (���� )�, ��� 1D��) )�� - ((�� o' �?V� =85 �� �@O�) =851.

    �(�) >���� �37 - �~�7�o�� (������� 03< �'() 6��� �����)Saeed et al., 201503��< .( �%��B�(¤���( �1\�(���� ��`gg ����7�" �~��� :� ¥(��� >�� :I, %1�I� �� .�1< M�%�() �( 03

    0

    20

    40

    60

    80

    100

    0 20 40 60 80 100 120

    Rem

    oval

    (%)

    Time (min)

    0.02 0.04 0.06 0.08 0.1g/250ml

  • +2��* �#�� +��*�S X#��% � ��L dx.doi.org/10.22093/wwj. 2018.99450.2498 68

    ����� � �� �� Journal of Water and Wastewater

    ��������� ����� ����� Vol. 30, No. 3, 2019

    Fig. 7. The effect of pH [PAMPT ]0 =0. 1g/250mL, pH=5.9, T=25±2 0C

    48�[ H� pH T=25±2 0C6pH=5.9 -[PAMPT ]0 =0. 1g/250mL

    pH���¤�1� )�) M�I�=� >�� �� 2)1����- ��2� ��~�7 &1� :1.���o�� (����� ����� �%���B�( - =����� (����� ����� �~����7�)�����=���� >

    .(Ilhan et al., 2008) H� �@2�?�pH 03< () �%B�(¤���(1\�(�� ��`gg � O �������

    ���1��14 M�1��O IUV/H2O2� ���< �� )�) M�I� �1 03�< M�%9� ()1f�����,��� c(����) .(Naderi et al., 2016).��'()

    ���-( T�@O�PAMPT )�) =��� .(Gulnaz et al., 2006).2�(�� M�(��� - ) O1I� %) � >���>��%O� �� �� ���=�C8F �

    2-���1-( ��� M� �3��7 ���'() 6�%��B�( ���1����������� M���� ������ )Rasoulifard et al., 2010.(

    Fig. 8. The effect of Reactive Orange 122 dyes concentration

    [PAMPT ]0 =0. 1g/250mL, pH=5.9, T=25±2 0C48�t/�%B�( �12-� =C8F 1HR�1���( �\�(�� �wzz

    T=25±2 0C6pH=5.9 -[PAMPT ]0 =0. 1g/250mL B/S/G(3�%9� "5W� �rQ '�! �� ( � (�C�����E �-% ���9? �37�B�(%�¤���( �1 \�(��� ��

    wzz -( ��84���1812�� .1��8" G�o��O-��(II) T��89� 6��������2-� =C8F �1 � j�8��� ����( �1 \�(��� ��wzz ()pH =���H/}-

    �V����H A�I� (����� 6�~��7 �1 2)��@� ��C92 () - ��|$")1��V(��V� .�� =�H �37

    ����������(�)�� �F��1��?, �9?�� �3��7��%��B�(¤���(��1 �\�(���wzz -(�84���1812�� .1��8" G�o��O-��(II) &��� ()

    .=� >�� >)�) M�I� T-�7 ()`��1� �Z %�=���H !�B���� -����E �-% ���B�J1- O 6 2���1�� - 1>�� >)(-� ..=�� i���?�

    &����T-���7 -w���� 6 ��Z =��85�B������ !�J�������E ���-%

    B�J1) y/=R29?� �37 6(�-( �� �%�B�(��84���1�81.2��1���8" G�o���O-��(II) � ��B�J E ���-%��1@�� ��1��� =�- �����

    � ��������7 ) �85 .�� M��J:�� G(��' �� T��� () .=�� �

    B�J1� � u O ��� =� .�J:��� �T���2�� ����&�< >)��� >��¦� �~�7 �37 () - )�� ���� ��� (���V� �~��7 �?���37�4 - M���1������=ID � �37 34� ���(��4 .=�qm ()

    ��B�J E �-%1O ^ ����< >���) M�I� �1=� �� �~��7��3�79?��%B�(¤�(��1\�(�� ��`gg =� )�, e? () � () ��� �� .

    ��-n4 T-�7 i��?�`�� �� �yg/y�18��� E �D � E D�=�)9? �37 .�����%B�(¤�(��1\�(�� ��`gg -( ��� =�41>�

    87.56

    71.65

    61.5652.45

    46.89

    0

    20

    40

    60

    80

    100

    2 4 6 8 10

    Rem

    oval

    (%)

    pH

    0

    20

    40

    60

    80

    100

    10 20 30 40 50

    Rem

    oval

    (%)

    RO122 Concentration (mg/L)

  • ���? +)��*#+�% ;#

    a��? ��� +X����8... dx.doi.org/10.22093/wwj. 2018.99450.2498 69

    ����� � �� �� Journal of Water and Wastewater

    ��������� ����� ����� Vol. 30, No. 3, 2019

    Fig. 9. Langmuier, Frundlich and Temkin isotherms for RO122 dye adsorption onto PMTMP

    48�u/�37 .1��- 12��- O 6 1B�J E �-%�� �%B�( �9? �1���(

    �\�(��wzz �-( �PAMPT

    ���1�1� �4� � �1%� ��B�J E �-%1 ¦�� =�1@�� ����(Saeed et al., 2015) .

    � �����V��O ^ ������1�~���7 �3��7 =������3��7 () j��8���9?��%B�(¤���(1\�(��� ��`gg �~��7 6����- >)�o��� )(���O ^1T-�7 () ���� �37 =g� >�� �';, .=�V� ���O ^ ��1=

    � () �37�B�J E �-% �1 �� >����I� ���� )��� %�� :�� ¥(��"6>�� :I, � - ����) 6=��4 �1 >� ����1�1� ��4� � O ^ �1 �3�7 =

    J�����3�7 () �%�B�(¤���( �1 \�(��� ��`gg �V� () .���(�)���� 84�-��1&�2� &n2��- G�� �84���1�812�� .1��8" G�o��O-��(II) 6

    O ^184 �37 =���1�812�� .1��8" G�o��O-��(II) �1 ��I =�� -����������� ���5�7 M����~� ���� ���8��" ��19?� �3�7 () J��� =�

    �%B�(����(1\�(�� ��`gg ��.)-( (��

    ��0Q*=��H E �-%�� ��� �9? �37 .1��- 12��- O 6 1B�J ��� �%B�( �\�(�� �1���(`gg �PAMPT Table 1. Isotherms constants of Langmuier, Frundlich and Temkin for adsorption of Reactive Orange 122 onto

    PAMPT

    Temkin Isotherm Freundlich IsothermLangmuier IsothermR2KTBR2nKfR2KLqm

    0.9721.229.230.9010.10980.540.9840.5247.42

    ��0Qe/�@� E �-%�� ��� ���(�4 �\�(�� �1���( �%B�( �9? �37 �� � �2)`gg �~�7 �-( � j8��� ��� Table 2. Equlibrium isotherm parameters for adsorption of Reactive Orange 122 onto different adsorbents

    Adsorbent Langmuier Isotherm Frundlich Isotherm Temkin Isotherm

    KL (L mg/L) R

    2 qm (mg g/L)

    KF(mg g/L)

    (L mg/L)1/2R2 n

    KTLg/L)( R

    2 B(Kj mol-1)

    Polyvinyl alcohol-alginate 0.0091 0.917 40 0.0789 0.98 3.38 0.00744 0.828 475.36

    (Saeed et al., 2015)

    Trapa bispinosa Fruit 0.0143 0.881 76.92 3.141 0.903 4.25 4*10-7 0.889 215.44 (Saeed et al., 2015)

    Trapa bispinosa seed 0.0151 0.926 66.66 2.618 0.897 5.6 6*10-7 0.915 233.73 (Saeed et al., 2015)

    Trapa bispinosa Fruit 0.072 0.962 111.11 11.272 0.231 3.42 0.033341 0.917 176.21 (Saeed et al., 2015)

    Trapa Fruit bispinosa/H2O2 0.0189 0.939 100 3.758 0.803 6.95 5*10

    -7 0.94 172.65 (Saeed et al., 2015)

    peel bispinosa Trapa /H2O2 0.075 0.977 111.11 13.58 0.75 10.99 1*10

    -7 0.91 186.42 (Saeed et al., 2015)

    Dried green mushrooms 0.0197 0.94 180.7 22.7 0.97 2.799 (Ilhan et al., 2008)

    polyaniline-molybdophosphatetin(II) 0.984 0.52 47.42 80.54 0.901 0.109 1.22 0.972 9.23

    This research

    0

    10

    20

    30

    40

    50

    60

    0 2 4 6

    qe(m

    g/g)

    Ce (mg/L)

    Exp. Langmuier

  • +2��* �#�� +��*�S X#��% � ��L dx.doi.org/10.22093/wwj. 2018.99450.2498 70

    ����� � �� �� Journal of Water and Wastewater

    ��������� ����� ����� Vol. 30, No. 3, 2019

    E/�,AD '(,L () ��.��-n4 ���� �����84 =���181.2��1-�� ��8" G�o��O )II(�� �� %�� �O ' �� M- V� - >)� N-(.( ��Q1j����FTIR 6

    XRD %��� ����� ���� ��� �( =R�1� 2���� - ) �� �1%XRD )��7- ���(��,����� 0(��� 2��� -1%FTIR �1�I� %1���� &���� ��=-

    >- D ��� 58���M��I� �( M� () )��7�� )�) ���� .�EDX )�) M��I� ��� ����� ������� A2��, >���� %��� ==��� �(�) -�6.� ��� 6��8"2��1M�� -�1M- � ��� � .�����( ��� G�(~ >�����>���� =) -�2�O(���e?���� �����=2��1-�� ) ��8" G�o��OII M� � (

    -�+�� FESEM ��� �� �� ��O D�)�) M�I� f��� G�(~ >�����)-�< ()����.=� �� M��y�� �V1") M����5 M��� () T)��@�

    �������� -( �� �%�B�( �37�M������( - =�� �~��7 e?�9? �37�()pH����1���12-� =�C8F ��@2�?� .=� �I �1 �

    �%�O� ��� )�) M�I� �%B�(����� ����� (���V� ���8F - =�C2-� =�1��%B�(6��� 03�< M�%�1� � � �1 �%�O� !�������� -����3�7 .����9?��%�B�(¤���( �1 \�(��� ��wzz -( �������� ���� �� =���

    ��B�J E �-%1 =V��?� .=��)

    References Agarwal, S., Tyagi, I., Gupta, V.K., Golbaz, F., Golikand, A.N. & Moradi O. 2018. Synthesis and characteristics

    of polyaniline/zirconium oxide conductive nanocomposite for dye adsorption application. Journal of

    Molecular Liquids, 2016, 494-498.

    Ali, S.R., Ma, Y., Parajuli, R.R., Balogun, Y., Lai, W.Y.C. & He, H.A. 2007. A nonoxidative sensor based on a

    self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the

    neurotransmitter dopamine. Analytical Chemistry, 79, 2583-2587.

    Auta, M. & Hameed, B. H. 2011. Optimized waste tea activated carbon for adsorption of Methylene Blue and

    Acid Blue 29 dyes using response surface methodology. Journal of Chemical Engineering, 175, 233-243.

    Barbero, C., Miras, M. C., Schnyder, B., Haas, O. & KÖtz, R. 1994. Sulfonated polyaniline films as cation

    insertion electrodes for battery applications. Part 1. Structural and electrochemical characterization, Journal

    of Materials Chemistry, 4, 1775-1783.

    Daneshvar, N., Oladegaragoze, A. & Djafarzadeh, N. 2006. Decolorization of basic dye solutions by

    electrocoagulation: An investigation of the effect of operational parameters. Journal of Hazardous Materials

    B, 129, 116-122.

    Gharbani, P. 2017. Synthesis of polyaniline-tin(II)molybdophosphate nanocomposite and application of it in the

    removal of dyes from aqueous solutions. Journal of Molecular Liquids, 242, 229-234. Gharehkhani, E. 2016. Investigation and optimization of reactive orange-3R dye surface absorption by nano-

    MMT/NZVI composite absorbent in a process of textile industry wastewater treatment. Bulgarian Chemical

    Communications, 48, 211-218.

    Ghorban, F., Molavi, H., Fathi, S. & Piri, F. 2017. Application of response surface methodology to optimize

    malachite green removal by Cl-nZVI nanocomposites. Journal of Water and Wastewater, 28(4), 79-92.

    (In Persian)

    Grgur, B.N., Gvozdenovic, M.M., Miskovic-Stankovic, V.B. & Popovic, Z.K. 2006. Corrosion behavior and

    thermal stability of electrodeposited PANI/epoxy coating system on mild steel in sodium chloride solution.

    Progress in Organic Coatings, 56, 214-219.

  • ��? +)��*#+�% ;#

    a��? ��� +X����8... dx.doi.org/10.22093/wwj. 2018.99450.2498 71

    ����� � �� �� Journal of Water and Wastewater

    ��������� ���������� Vol. 30, No. 3, 2019

    Gulnaz, O., Kaya, A. & Dincer S. 2006. The reuse of dried activated sludge for adsorption of reactive dye.

    Journal of Hazardous Materials, 134, 190-196.

    Ilhan, S., Iscen, C.F., Caner, N. & Kiran I. 2008. Biosorption potential of dried penicillium restrictum for

    Reactive Orange 122: Isotherm, kinetic and thermodynamic studies. Journal of Chemical Technology and

    Biotechnology, 83, 569-575.

    Karadag, D., Akgul, E., Tok, S., Erturk, F., Kaya, M.A. & Turan, M. 2007. Basic and reactive dye removal using

    natural and modified zeolites. Journal of Chemical and Engineering Data, 52, 2436-2441.

    Khan, A.A. & Shaheen, S. 2013. Ion-exchange studies of ‘organic–inorganic’ nano-composite cation-exchanger:

    Poly-o-anisidine Sn tungstate and its analytical application for the separations of toxic metals. Composites

    Part B: Engineering, 44, 692-697.

    Mário, H.P., Santana, L.M., Silva, D., Freitas A.C., Boodts, J.F.C. & Faria, L.A.D. 2009. Application of

    electrochemically generated ozone to the discoloration and degradation of solutions containing the dye

    Reactive Orange 122. Journal of Hazardous Materials, 164, 10-17.

    Mehrizad, A. & Gharbani P. 2016. Application of central composite design and artificial neural network in modeling of

    reactive blue 21 dye removal by photo-ozonation process. Water Science and Technology, 74, 184-193.

    Meroufel, A., Deslouis, C. & Touzain, S. 2008. Electrochemical and anticorrosion performances of zinc-rich and

    polyaniline powder coatings. Electrochimica Acta, 53, 2331-2338.

    Naderi, T., Ehrampoush, M.H. & Malakootian, M. 2016. Efficiency of electrocoagulation process coupled with

    UV/H2O2 to remove the Orange Reactive dye 122 from wastewater of textile industries. Koomesh, 18, 408-

    415. (In Persian)

    Noroozi, B., Sorial, G.A., Bahrami, H. & Arami, M. 2007. Equilibriums and kinetic adsorption study of cationic

    dye by a natural adsorbent - silkworm pupa. Journal of Hazardouse Mateials, 139, 167-174.

    Puasa, S.W., Ruzitah, M.S. & Sharifah A.S.A.K. 2012. Competitive removal of reactive black 5/reactive orange

    16 from aqueous solution via micellar-enhanced ultrafiltration. International Journal of Chemical

    Engineering and Applications, 3, 354-358.

    Rasoulifard, M.H., Taheri Qazvini, N., Farhangnia, E., Heidari, A. & Doust Mohamadi, S.M.M. 2010. Removal

    of direct yellow 9 and reactive orange 122 from contaminated water using chitosan as a polymeric

    bioadsorbent by adsorption process. Journal of Color Science and Technology, 4, 17-23.

    Riera-Torres, M. & Gutiérrez, M.C. 2010. Colour removal of three reactive dyes by UV light exposure after

    electrochemical treatment. Chemical Engineering Journal,156, 114-120.

    Saadatjou, N., Rasoulifard, M.H. & Heidari, A. 2009. Removal of basic red 46 using low-cost adsorbent of

    hardened paste of Portland cement from contaminated water. Journal of Color Science Technology, 2, 221-

    226.

    Saeed, M., Nadeem, R. & Yousaf, M. 2015. Removal of industrial pollutant (Reactive Orange 122 dye) using environment-friendly sorbent Trapa bispinosa’s peel and fruit. International Journal of Environmental

    Science and Technology, 12, 1223-1234.

    Sathiyanarayanan, S., Muthkrishnan, S. & Venkatachari, G. 2006. Corrosion protection of steel by polyaniline

    blended coating. Electrochimica Acta, 51, 6313-6319.

  • +2��* �#�� ��% � ��L +��*�S X# dx.doi.org/10.22093/wwj. 2018.99450.2498 72

    ����� � �� �� Journal of Water and Wastewater

    ��������� ����� ����� Vol. 30, No. 3, 2019

    Seid-Mohammadi, A., Asgari, Gh. Mehralipour, J., Shabanlo, A., Almasi, H. & Zaheri, F. 2016. Sonochemical

    oxidation of acid blue 113 by Fe (II)-activated hydrogen peroxide and persulfate in aqueous environments.

    Journal of Water and Wastewater, 27 (2), 2-13. (In Persian)

    Semagne, B., Diaz, I., Kebede T. & Taddesse A.M. 2016. Synthesis, characterization and analytical application

    of polyaniline tin molybdophosphate composite with nanocrystalline domains. Reactive and Functional

    Polymers, 98, 17-23.

    Sharma, G., Pathania, D., Naushad, M. & Kothiyal, N.C. 2014. Fabrication, characterization and antimicrobial

    activity of polyaniline Th tungstomolybdophosphate material: Efficient removal of toxic metal ions from

    water. Chemical Engineering Journal, 251, 413-421.

    Slade, R.C.T., Knowels, J.A., Jones D.J. & Roziere, J. 1997. The isomorphous acid salts α-Zr(HPO4)2·H2O, α-

    Ti(HPO4)2·H2O and α-Zr(HAsO4)2·H2O comparative thermochemistry and vibrational spectroscopy. Solid

    State Ionics, 96, 9-19. Thakkar R. & Chudasama U. 2009. Synthesis and characterization of zirconium titanium phosphate and its

    application in separation of metal ions. Journal of Hazardous Materials, 172, 129-137.

    Yagan, A., Pekmez, N.O. & Yıldız, A. 2007. Inhibition of corrosion of. mild steel by homopolymer and bilayer

    coatings of polyaniline and. polypyrrole. Progress in Organic Coatings, 59, 297-303.

    Yazdanbakhsh, A.R., Kermani, M., Komasi, S., Aghayani, E. & Sheikhmohammadi, A. 2015. Humic acid

    removal from aqueous solutions by peroxi-electrocoagulation process. Environmental Health Engineering

    and Management Journal, 2, 53-58.