studies of extraction, storage, and testing of pine pollen

11

Upload: lamnhi

Post on 10-Feb-2017

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Studies of Extraction, Storage, and Testing of Pine Pollen

Zeitschrift fiir Forstgenetik

und Forstpflanzenzuchtung

3. BAND 1954 HEFT 2

Herausgegeben

voh

H. JOHNSSON W. LANGNER R I RIGHTER K. SATO

Ekebo Sdimalenbeck Placerville Fukuoka

J. D* Sauerlander's Verlag, Frankfurt a. M.

Z. Forstgenetik

Page 2: Studies of Extraction, Storage, and Testing of Pine Pollen

The

Journal of Forest Genetics and Forest-Tree-Breeding:

publishes original articles, general reviews, and communications

on genetic, cytological, and breeding subjects of significance to

forest genetics and forest-tree-breeding.

Publication Schedule: The volume 3 of the Zeitschrift fttr Forst-genetik und Forstpflanzenzuchtung is published from January

to December 1954 in 6 numbers.

Subscription option: The Zeitschrift ftir Forstgenetik und Forst

pflanzenzuchtung may be ordered through book-dealers of Ger

many and other countries, or directly from the publisher. Sub

scriptions become effective upon order for a volume. Subscrip

tions continue in effect if notice of termination does not directly

follow delivery of the last number of a volume.

Price of Subscription for the 6 numbers of volume 3, DM 30,—

($ 7,12)— plus shipping cost—, for students, DM24,—, or respec

tively S 5,70.

Manuscripts for the Zeitschrift ftir Forstgenetik und Forstpflan

zenzuchtung should be sent to one of the editors:

H. Johnsson, F8reningen fOr vaxtforftdling av Skog-

strSd, Ekebo, Kallstorp, Senweden.

W. Langner, Bundesanstalt ftir Forst- und Holzwirt-

schaft, Abt. Forstgenetik und Forstpflanzenzuchtung, Schma-

lenbeck liber Ahrensburg (Holstein), Siekerlandstrafie 2,

Germany.

F. I. Righter, Institute of Forest Genetics, California

Forest and Range Experiment Station, P. O. Box 245, Ber

keley 1, California, U.S.A.

K. Sato, Faculty of Agriculture, Kyushu University,

Fukuoka, Japan.

The editorial office of the Journal is located in Germany at (24 a)

Schmalenbeck tiber Ahrensburg (Holstein), Siekerlandstrafie 2.

Reproduction of contributions' is not permitted; reproduction ofillustrations is permitted only with the approval of the author

and the publisher.

Reprints: Authors may obtain, free of charge, up to 50 reprints

of their articles. Additional reprints may be purchased if ordered

in advance from the publisher.

Advertisements: Inquiries about the size and price of advertise

ments should be addressed to the publisher.

Publisher: J. D» SauerlSnder's Verlag, Finkenhofstrafie 21, Frank

furt a. M. I, Germany. Banking accounts: Commerz- und Credit-

bank, Frankfurt a. M., Stadtsparkasse, Frankfurt a. M. (Giro-

konto 96 95). Postscheckkonto: Frankfurt a. M. Nr. 8 96.

Editorial Directions:1. Manuscripts should be submitted in English, German, or French,

type-written (on one side of page only), and ready for printing.

The place of origin of the article should be given at the head of

the manuscript.

2. Illustrations should not be attached to the manuscript. They

should be loose and numbered on the reverse side. Legends for

illustrations and large tables should be arranged in succession

on a separate sheet. The position for their insertion in the text

should be indicated on the margin of the manuscript. The num

ber of illustrations and tables should be limited to those that are

necessary. Tables and diagrams should not overlap in their con

tents.

3. References should be made in the text by giving the name

of the author with the year of publication in parentheses; for

example, Baur (1929). A list of the references, arranged alphabe

tically according to the authors names, should be given at the

end of the article in the following manner: name of author, first

name (initial), complete title of the article, place of origin (for

books, only), number of volume (underlined), number of pages,

year of publication (in parentheses). All names of authors should

be underlined in plain red.

4. Drawings should be in india ink on white cardboard or parch

ment paper.

5. Parts of sentences to be emphasized should be italicized and

underscored with a wavy line in red pencil. Heavy type is pro

vided only for tables; such parts of sentences should be under

scored with a straight line in blue pencil.

6. Authors will receive two galley-proofs with the manuscript of

their work, one of which should be corrected and returned imme

diately to the editorial office in Schmalenbeck. Large corrections

must be avoided, if possible.

Die

Zeitschrift fur Forstgenetik und Forstpflanzenzflchtunsverdffentlicht Originalarbeiten, Sammelreferate und Besprechun-

gen genetischen, zytologischen und ztichterischen Inhalts, soweit

sie ftir Forstgenetik und Forstpflanzenzuchtung bedeutungsvoiJ

sind.

Erscheinungsweise: Der Band 3 der Zeitschrift ftir Forstgenetikund Forstpflanzenztichtung erscheint in der Zeit von Januar bisDezember 1954 in 6 Heften.

Bezugsmoglichkeiten: Die Zeitschrift ftir Forstgenetik und Forstpflanzenztichtung kann durch den in- und auslfindischen Buch-

handel Oder direkt vom Verlag bezogen werden. Das Abonne-

ment gilt bei Aufgabe der Bestellung ftir einen Band. Das Abonne-

ment lMuft weiter, wenn nicht unmittelbar nach Lieferung des

Schlufiheftes eines Bandes eine Abbestellung erfolgt.

Bezugspreis ftir die 6 Hefte des Bandes 3 betragt DM 30,— (ftirStudenten DM 24,—) zuzUglich Versandspesen.

Manuskripte ftir die Zeitschrift ftir Forstgenetik und Forstpflanzenztichtung sind an einen der Herausgeber einzusenden:

H. Johnsson, Foreningen f6r Vaxtfarfidling av Skog-

strMd, Ekebo, Kallstorp, Schweden.

W. Langner, Bundesanstalt ftir Forst- und Holzwirt-

schaft, Abt. Fortgenetik und Forstpflanzenztichtung, Schma

lenbeck tiber Ahrensburg (Holstein), Siekerlandstrafie 2.

F. I. Righter, Institute of Forest Genetics, California

Forest and Range Experiment Station, P. O. Box 245, Berke

ley 1, California, U.S.A.

K. Sato, Faculty of Agriculture, Kyushu University,

Fukuoka, Japan.

Die Schriftleitung der Zeitschrift befindet sich in (24a)

Schmalenbeck tiber Ahrensburg (Holstein), Siekerlandstrafie 2. -

Der Nachdruck der BeitrSge 1st nicht gestattet, der Nachdruck

von Abbildungen nur mit Genehmigung des Verfassers und des

Verlages.

Sonderdrucke: Den Verfassern konnen von ihren Arbeiten bis

zu 50 Sonderdrucke kostenlos z'ur Verftigung gestellt werden.Dartiber hinaus besteht weitere Bezugsmdglichkeit gegen Berech-

nung bei rechtzeitiger Bestellung beim Verlag.

Anzeigen: Anfragen tiber Preise und Grofie von Anzeigen wer

den an den Verlag erbeten.

Verlag: J. D. Saueriander's Verlag, Frankfurt a. Mi I., Finken

hofstrafie 21. Bankkonten: Commerz- und Creditbank, Frankfurt

a. M., Stadtsparkasse, Frankfurt a. M. (Girokonto 96 95). Post

scheckkonto: Frankfurt a. M. Nr. 8 96.

Redaktionelle Anweisungen:1. Die Manuskripte sind in englischer, deutscher Oder franzosi-

scher Sprache in Maschinenschrift (einseitig beschrieben) druck-

fertig einzusenden. Der Entstehungsort der Arbeit ist am Kopf

des Manuskriptes zu vermerken.

2. Abbildungen dtirfen nicht aufgeklebt werden. Sie sind dem

Manuskript lose beizuftigen und auf der Rtickseite zu numerie-

ren. Legenden zu den Abbildungen und gr&fiere Tabellen sollen

auf einem Sonderblatt der Reihe nach zusammengestellt werden.

Die Stellen ftir ihre Einftigung in den Text sind auf dem Rande

des Manuskriptes zu vermerken. Die Zahl der Abbildungen und

der Tabellen mufi jedoch auf das Notwendigste beschrSnkt blei-

ben. Tabellen und Diagramme dtirfen sich in ihrem Inhalt nicht

uberschneiden.

3. Literaturhinweise sind im laufenden Text nur durch den Na-

men des Autors mit der elngeklammerten Jahreszahl der Ver-

dffentlichung anzuftihren, z. B. Baur (1929). Am Schlufi der Arbeit

1st dann ein nach Autorennamen alphabetisch geordnetes Litera-

turverzeichnis zu geben, und zwar in der Reihenfolge: Name des

Autors, Vorname fabgektirzt), vollsta'ndiger Titel der Arbeit, Er-

scheinungsort-Xnur bei Btichern), Bandnummer (unterstrichen),

Seitenzahlen, Erscheinungsjahr (in Klammern). Alle Autoren

namen sind einfach rot zu unterstreichen.

4. Zeichnungen werden auf weifiem Karton Oder Pergamentpapier

in Tusche erbeten.

5. Satzteile, die hervorgehoben werden sollen, werden kurslv ge-

druckt und sind mit Rotstift gewellt zu unterstreichen. Fettdruck

ist nur bei Tabellen vorgesehen, solche Satzteile sind mit Blau-

stift gerade zu unterstreichen.

6. Die Autoren erhalten zwei Fahnenabzilge mit dem Manuskript

ihrer Arbeit, von denen der eine horrigiert umgehend an die

Schriftleitung in Schmalenbeck erbeten wird. Groflere Korrek-

turen mtissen mdglichst vermieden werden.

INHALTSVERZEICHNIS

Induction of Polyploidy in Pines by means of

Colchicine Treatment. By Sin Kyu Hyun .... 25

TJber zwei Typen der Japanlarche (Larix leptolepis

Gord.) in Schleswig-Holstein. Von F. W. Frhr.

von Schrotter .33

Studies of Extraction, Storage, and Testing of Pine

Pollen. By J. W. Duffield 39

Buchbesprechungen .46

Referate 46

Ausgegeben im Marz 1954

Page 3: Studies of Extraction, Storage, and Testing of Pine Pollen

Studies of Extraction, Storage, and Testing of Pine Pollen

By J. W. Duffield

Institute of Forest Genetics, California Forest and Range Experiment Station1)

(Received for publication, October 6, 1953)

Introduction

This report assembles the results of a number of small

exploratory studies on the extraction, storage, and viabi

lity testing of pollen of several species of pines. These stu

dies indicate clearly the need for more knowledge of the

physiology of pollen — particularly of the relation be

tween atmospheric humidity at the time of pollen shedding

and the subsequent reactions of the pollen to environmen

tal conditions.

1. The Importance of Extraction Humidity and its Control

The importance of humidity of the air in which dehi-

scence occurs has long been recognized. Lidforss (1899)

allowed flowers of a number of angiosperm species to shed

pollen under various humidity levels, and found that, in

general, pollen shed at the higher humidities was more

germinable and more resistant to moistening injury than

that shed at lower humidities.

On March 18, 1946, the writer set up a small test to de

termine the effects of extraction humidity on germinabi-

lity and storage properties of pollen of Pinus canariensis.

Unopened catkins were collected from branch tips from

which some pollen had already been shed. All material

was taken from a single tree. Equal numbers of catkins

were placed in each of four cylindrical wire baskets

set in funnels which led into small shell vials. Each

assembly was placed in a glass jar in which relative

humidity was maintained at 10 percent, 25 percent,

or 75 percent by sulfuric acid solutions. All jars

were then placed in a constant temperature cabinet

at 22° C. On March 28, the extractors were removed

from the constant temperature cabinet and shaken vigo

rously until no more pollen fell into the vials. The yield

of pollen and the change in length of catkins during the

10-day extraction period were:

Extraction hu.idity Pollen yield ,cc.)

10%

25%

50%

75%

.67

.77

1.00

.29

-10

0

+ 50

+ 75

After the catkins from the 75 percent relative humidity

extractor had been exposed to the relatively dry air of

the laboratory for a few minutes, they shed about 0.7 cc.

of pollen, which, however, was not used in the subsequent

tests of germinability and storage.

These findings appear relatively easy to interpret on

the basis that pollen shedding is the resultant of two pro

cesses: The biological process of growth and elongation

of the catkin axis and the physical process of rupture of

the sporangia. The growth of the catkin axis requires

water, which may be furnished by the vascular system to

catkins on the tree or by a humid atmosphere to catkins

') The California Forest and Range Experiment Station is main

tained by the Forest Service, United States Department of Agri

culture, in cooperation with the University of California at Ber

keley, California. The author's present address: College of Fore

stry, University of Washington, Seattle 5, Washington.

in an extractor. Rupture of the sporangia requires relative

desiccation of the sporangium walls by a rather low

humidity (50 percent or less in this test). This interpreta

tion is similar to the one arrived at by Scamoni (1938), who,

however, used catkin-bearing branches of P. silvestris

rather than detached catkins in his experiments. Very

likely, in nature, elongation of the catkin axis and rupture

of sporangia occur simultaneously, the first process sup

ported by moisture supplied through the vascular system

and the second promoted by high evaporation associated

with sunshine, wind, and high temperatures (Scamoni,

1938). It appears quite difficult to reproduce these condi

tions in any practical type of extractor, but there is pro

bably a good chance of bringing about these two processes

in sequence, by adopting an extraction schedule under

which the catkin axes are allowed to elongate at a relative

humidity of about 50 percent and a temperature of 25° to

30° C, followed by reduction of humidity to 10 percent or

25 percent to cause rupture of sporangia.

So much for the mechanics of pollen extraction. What

of the effects of extraction humidity on the viability of

the pollen? To answer this question, the pollen of P. cana

riensis extracted on March 28, 1946, was, on the same day,

subdivided into nine lots for each extraction humidity, and

stored at 0°, 10°, and 22° C. and at 10 percent, 25 percent,

and 50 percent relative humidity.

All 36 samples were tested by the vapor method2) on

November 12, 1946, two replications being set up. Fifty

grains of each treatment were counted in each replication,

making a sample of 100 grains per treatment. The results

are shown in Table 1.

Table 1

Germination of Pinus canariensis pollen stored 229 days

Storage conditions

Percent germination when

extraction humidity was

io% 25% I 50% 750/0"

Temperature 0° C.

10% humidity 67 68 68 I 5225% humidity 78 62 72 ! 1950% humidity 76 78 68 21

Temperature 10° C.

10% humidity ! 61 70 8225% humidity 76 68 7150% humidity ■ 64 89 33

Temperature 22° C. ■

10% humidity j 55 83 5725% humidity '' 55 39 4050% humidity 5 7 0

The results of this test may be summarized as follows:

Extraction at 75 percent relative humidity is disadvanta

geous regardless of how the pollen is stored subsequently.

It should be noted, however, that the pbllen extracted at

75 percent relative humidity was handled in a room with

a relative humidity of 30 percent to 50 percent when the

pollen was segregated into lots for the storage test. These

fluctuations in humidity, although brief, may have

influenced the germinability of certain lots.

18

4

13

0

0

*) Pollen testing methods are described in a subsequent section

of this paper.

Page 4: Studies of Extraction, Storage, and Testing of Pine Pollen

During the course of the germination counts, certain ob

servations were made on the appearance, tube length,

forking, and bursting of each lot. Every sample of pollen

extracted at 75 percent relative humidity had a large

majority of grains which floated with bladders up and

had two or three large vacuoles generally arranged along

the short axis of these grains when viewed from above.

This was also true of the lot extracted at 50 percent and

stored at 22° C. and 50 percent. In general, pollen extrac

ted at 10 percent or 25 percent and stored at 0° C. or 10° C.

showed a high proportion of cytoplasmic extrusion both

from germinated and ungerminated grains. There was

less of this bursting in the lots extracted at 50 percent

and virtually none in those extracted at 75 percent.

Only by experiment can these findings with respect to

germinability of pollen extracted under various humidity

levels be related to the ability of such pollen to effect fer

tilization — particularly after storage of one year or more.

Nevertheless, it seems clear that variations in extraction

humidity such as those used in this experiment produce

effects which are certainly worth investigating further,

especially since variations of equal magnitude undoub

tedly occur between routine extractions of the pollen used

in breeding. Therefore, it should be worthwhile to deve

lop an extraction technique which will afford fairly accu

rate and individual control of the extraction humidity

(and temperature) of each lot of pollen. Such a technique

will not only be useful in conducting experiments to deter

mine optimum extraction conditions, but also, after these

are determined, it will be necessary in routine breeding

operations. It is quite possible that once pollen extraction

is better standardized and species requirements under

stood, many species crosses which have failed in the past

may be found possible. At any rate, it seems clear that

standardization of humidity and temperature at which

pollen is extracted must precede any careful work on pol

len storage and barriers to species crosses.

2. Pollen Storage

In 1945, samples of pollen of seven species of pines

were placed in storage by Dr. N. T. Mirov. Four levels of

temperature (0°, 5°, 10° and 22° C.) and four levels of rela

tive humidity (10%, 25%, 50% and 75%) were used. The

dates of collecting and storing of the pollen samples are as

follows:

Species

P. radiata D. Don

P. canariensis Smith

P. taeda L.

P. echinata Mill.

P. ponderosa Laws.

P. strobus L.

P. lambertiana Dougl.

Date collected

April 10

April 11

May 3

May 24

May 24

July 11

Date stored

February 24

April 18

April 18

May 10

July 2

July 2

August 8

In 1946, the germinability of these samples was deter

mined by dusting pollen from the storage vials onto mar

ked spots inside a Petri dish bottom. All sixteen storage

conditions were tested in a single dish, and two dishes

were set up for each species. The samples from each sto

rage condition were arranged in randomly-selected Latin

squares. Each Petri dish bottom so set up was then inver

ted into a Petri dish cover with enough water in it to

cover the bottom and provide a water seal, so that the air

in the dish was kept saturated with water vapor. The

dishes were then incubated at 25° to 28° C. for 48 to 72

hours. Germination percents were determined from 100-

grain samples, that is, the sums of two determinations of

50 grains each (Table 2).

Table 2

Pollen germinability — seven pine species

Species

P. radiata

P. canariensis

P. taeda

P.echinata

P. ponderosa

P. strobus

P. lambertiana

Date

of test

May 22,

1946

May 22,

1946

May 22,

1946

Oct. 15,

1946

Sept. 10,

1946

Oct. 15,

1946

Sept. 10,

1946

Days

stored

391

338

338

523

435

470

398

Storage

temp.°C.

0

5

10

22

0

5

10

22

0

5

10

22

0

5

10

22

0

5

10

22

0

5

10

22

0

5

10

22

Relative humidity

in storage

10% 25% 500/q 75<y0

Percent germinated

2

3

33

10

61

68

65

65

39

30

35

41

86

91

82

88

71

60

70

70

85

88

88

74

9

7

16

31

78

73

69

24

62

61

57

36

36

33

30

46

82

83

83

67

68

58

61

57

82

91

69

66

18

36

27

5

67

56

11

0

70

60

51

0

30

33

58

0

98

90

94

0

71

51

16

0

S3

81

36

0

11

28

6

0

1

0

0

0

30

4

0

7

0

0

0

60

4

0

0

0

0

0

0

13

0

0

0

0

0

0

0

In two respects these tests are quite consistent and

conclusive. First, storage at 75 percent relative humidity

is undesirable, regardless of temperature. Secondly, in all

species, storage at 50 percent relative humidity and 22° C.

is undesirable, and in most species, this is true of storage

at 25 percent relative humidity and 22° C. In one respect

the species tested seem to fall into two groups. P. radiata

and P. lambertiana pollen stored at 10 percent relative

humidity and at 0° and 5° C. showed very low germina

bility, whereas this effect was not found in the other five

species tested. In order to determine whether this effect

was real and not due to experimental errors, a repeat test

was made, October 18, 1946, with pollen of P. radiata

(Table 3).

Table 3

Germination percentages — Pinus radiata pollen stored for 540 days

Tempe

rature °C.

Germination when relative humidity

in storage was

10,% 25%

0

5

10

No.1)

0

0

1

0

0

0

7

0

0

7

14

13

• °/o2)

1

7

34

No.1)

18

16

24

20

22

moldy

22

19

21

23

25

21

°/o2)

78

84

90

No.1)

22

23

21

19

24

19

20

17

14

8

10

9

°/o2)

85

80

41

') Number germinated in a 25-grain sample.

2) Totals or germination percent.

40

Page 5: Studies of Extraction, Storage, and Testing of Pine Pollen

Results of this test fully bear out the indications that

P. radiata pollen is sensitive to low-humidity, low-tempe

rature storage. It may be asked whether this is a matter

of actual species differences or is an effect of differences

in extracting and handling the pollen samples before they

were stored. Although some of the data in Table 1 make

it appear that low extraction humidity makes pollen more

sensitive to low-humidity storage, yet several repeat tests

with samples extracted and stored at low humidities fai

led to give consistent results. Therefore, this question

must remain open for the moment.

In discussing storage requirements, the results of the

present work should be related to previous findings.

Duffield and Snow (1941) found that storage at 0° or 4° C.

and 50 percent relative humidity was most favorable for

pollen of P. strobus and P. resinosa. The present work is

in general agreement with these findings, and supple

ments them to the limited extent that it shows that if

the optimum humidity is greater than 50 percent it cer

tainly is not as great as 75 percent. In this respect the pre

sent work differs from the findings of Johnson (1943),

who reported good germination for several pine and

spruce species after 12 months' storage at 2° C. and 75 per

cent relative humidity. In fact, he reported this condition

to be the optimum for one lot of P. strobus and one of

Picea glauca. This is an important difference, and the

reason for it should be investigated. Another of Johnson's

findings is in agreement with the present study, namely

that, "There is considerable specific difference in tole

rance of low humidity storage at both 2° C. and room tem

perature". However, it should be remembered that presu

med species and tree differences in Johnson's work, as

well as the present one, might in reality be traceable to

extraction differences. It is interesting to note that

Johnson states, "All material was stored for several days

over anhydrous calcium chloride prior to testing", but

does not specify extraction techniques. This preliminary

desiccation of the pollen might well account for the into

lerance to low humidity storage of most of his samples,

although, as previously noted, this question is still open.

In the study by Duffield and Snow (1941), pollen was

extracted by allowing catkins to open and shed on sheets

of paper spread out on tables in rooms with a relative

humidity of probably 25 percent to 40 percent, although

this was not stated in their paper. How these conditions

compare with those in the extractors used at the Institute

of Forest Genetics, (Cumming and Righter, 1948) would be

difficult to state, but probably extraction in an open

room occurs at a lower humidity than in a funnel-and-bag

extractor.

Another factor which should be kept in mind in com

paring Johnson's work with that reported here is that

different germination techniques were used. Johnson

sowed his pollen directly from the desiccators onto a moist

agar medium, whereas in the present tests, vapor germi

nation was used. The significance of this difference in

procedure will be discussed later.

Storage at 25 percent relative humidity appears to be

indicated by the present and previous studies on the basis

that this level of humidity has not been found injurious

to pollen of any pine species at low temperatures, and is

definitely preferable to 50 percent relative humidity when

it is necessary, because of limited cold storage space, to

store pollen at or near room temperature.

3. Pollen Testing

a. Importance of pollen testing

By testing of pollen is meant the determination of its

viability by means of artificial germination tests. It should

be recognized that testing pollen by means of artificial

germination is quite different from similar tests of seeds.

Our knowledge of the growth requirements of seedlings

is usually sufficient to enable us to predict from the

results of a germination test, the number of plants that

may be derived from a given lot of seed. With pollen, the

situation is quite different. The relationships between the

pollen grain and the intended maternal tissues are so

complex and little-known — especially in the gymno-

sperms, that artificial germination tests cannot be relied

upon to give positive information as to the fertilizing

potential of a sample of pollen. However, it seems reaso

nable to assume provisionally that pollen which cannot

be made to germinate by usual means or which, on germi

nation, shows unusually poor tube growth, is likely to be

ineffective in causing fertilization. Herein lies the present

practical value of pollen testing as a routine procedure in

breeding operations. Perhaps the coordination of pollina

tion and germination tests will enable us, in the future, to

make positive as well as negative predictions from ger

mination tests. At any rate, pollen extracted by prevailing

methods is often enough found to be non-germinable to

fully, justify routine testing if only to avoid waste of time

and materials which results when non-functional pollen is

used in breeding operations. An even more cogent reason

for routine testing is the likelihood of drawing incorrect

conclusions from the failure of certain attempted crosses

if non-functional pollen is used unwittingly.

b. Methods of pollen testing

Three main methods of germinating pollen have been

used. They are the hanging drop, agar gel, and vapor

methods. The hanging drop method has been described

by Righter (1939) and the agar gel method by Duffield and

Snow (1941). The vapor method is a modification of a tech

nique described by von Walderdorff (1924), who used

dried 10 percent gelatin solution on slides as a substrate

for the pollen. Moisture was supplied to substrate and

pollen by placing drops of sodium chloride solutions of

various vapor pressures near the pollen. As used by the

writer, this method is simplified to the extent of omitting

the gelatin and providing water vapor by the addition

of distilled water to the bottom of the culture dish.

The details of the method are as follows: A rubber

stamp consisting of a number of circles of 5 mm. inside

diameter arranged in rows and columns to form a

rectangle as in the method described by Righter (1939) is

used to stamp rings of vaseline into the inside of the

bottom (smaller part) of a Petri dish. These rings serve to

localize the pollen, which is dusted on the dry glass sur

faces within each ring. In order to achieve an even

dusting, the pollen is picked up on the end of a wood

applicator 1 mm. in diameter, which is then tapped over

the upper end of a vertical glass tube about 60 mm. long

and 5 mm. inside diameter. The tube is thrust through

the hole in a square plate of transparent plastic large

enough so that whatever part of the dish is being dusted,

the whole dish is protected from air currents and air-borne

contamination. A clean glass tube and a fresh applicator

are used for each lot of pollen. When all the pollen

41

Page 6: Studies of Extraction, Storage, and Testing of Pine Pollen

samples have been dusted into the dish bottom, it is in

verted into the larger member of the dish, which has

enough water in it to provide an air lock. Incubation is at

26° C. to 28° C. This method may be readily transformed

into a hanging drop method by adding a drop of distilled

water to each ring before adding the pollen. Two diffi

culties are often encountered in setting up vapor germi

nation cultures. First, the pollen is likely to roll down the

sides of the glass tube rather than falling freely through

the air, resulting in a crescent-shaped deposit of pollen at

one side of the ring. Second, under some conditions, the

pollen, the glass tube, or both, may pick up a charge, so

that when the glass tube is withdrawn after the dusting,

the pollen flies all over the Petri dish bottom. This can

generally be avoided by withdrawing the tube slowly.

In relation to the vapor germination method, it is inter

esting to note that Kuhlwein (1937) reported that he was

unable to germinate pollen of Pinus silvestris or P. mon-

tana on clean glass in a saturated atmosphere, while gym-

nosperm pollens with swelling layers, such as Taxus, Cha-

maecyparis, Thuya, and Juniperus germinated well under

these conditions. In the present work, some vapor cul

tures have had so much condensation on the glass on

which the pollen grains were lying that they were for all

practical purposes hanging drop cultures — with this

important difference: the moistening of the pollen was

gradual. However, many of the cultures have been true

vapor cultures, the only visible water being on the sur

faces of the pollen grains and the immediately adjacent

glass. In fact, the optical properties of such cultures are

such that, in order to make germination counts readily,

condensation of a large amount of water within the rings

is induced by heating the bottom of the culture for a few

minutes. It is hard to reconcile this finding with Kuhl-

wein's (1937), failure to germinate pine pollen on glass in

saturated air.

c. Relation of testing method to extraction,

storage, and species

For the purposes of this discussion, the methods men

tioned above may be grouped into those in which the

pollen is transferred directly from storage to a wet germi

nation medium and the vapor method by which the pollen

is gradually moistened and finally wetted in an atmo

sphere saturated with water vapor. The results achieved

by these two general methods (Table 4) may be quite simi

lar or very different depending on species and condi

tions of extraction and storage.

Table 4

Germination of pollen of four pine species tested by drop and by

vapor methods

Species

P. canariensis

P. lambertiana

P. ponderosa

P. radiata

Germi

nation

method

Drop

Vapor

Drop

Vapor

Drop

Vapor

Drop

Vapor

Storage humidity')

10% 50%

Percent germination2)

60

72

23

66

28

84

16

8

70

84

73

70

89

92

80

78

Results of a test presented in Table 4 suggest that for

P. lambertiana and P. ponderosa the hanging drop method

is much more suitable for revealing the results of storage

at different humidities. Whether storage of pollen of these

species at low humidity would have an unfavorable effect

on fertilization comparable to that on germination in

distilled water remains to be tested. In the case of P.

radiata, storage at low humidity appears to depress germi-

nability whether the drop or the vapor method is used.

The drop method appears to give better germination with

pollen stored at low humidity, and, if significant, this

is an interesting reversal of the relations found in P. lam

bertiana and P. ponderosa. Finally, neither storage humi

dity nor germination method appears to affect the ger-

minability of P. canariensis pollen stored at 0° C. to nearly

the striking extent found with the other three species.

However, this difference may possibly be traced back to

conditions of extraction. To test this possibility an

experiment was set up with the same lots of pollen used

in the P. canariensis extraction humidity experiment.

Table 5

Germination of Pinus canariensis pollen tested by drop and by

vapor methods

Storage

Temp.

o°c.

22° C.

Humidity

10%

50%

10%

50%

Germination

method

Drop

Vapor

Drop

Vapor

Drop

Vapor

Drop

Vapor

Extraction humidity

10% 50%

Percent germination1)

72

78

72

79

67

74

34

22

51

72

69

79

9

77

0

0

J) Storage temperature 0° C. for each lot.

2) Each figure is based on 4 samples of 50 grains each.

*) Each figure is based on 4 samples of 50 grains each.

Results of this experiment (Table 5) suggest that low-

humidity extraction not only made P. canariensis pollen

more resistant to storage at high temperature and high

humidity, but made it indifferent to germination method

as well. Again, the question of which germination method

would lead to the correct evaluation of the pollen for use

in breeding must remain unanswered for the present.

However, the two experiments just reported leave little

doubt that as a laboratory procedure for revealing humi

dity treatment effects, the hanging drop method is far

more sensitive than the vapor method.

The findings of Duffield and Snow (1941), of Johnson

(1943) and of the present study suggest that pollen of some

conifer species is sensitive to low humidity storage. It

has been shown that extraction humidity may affect sto

rage responses of P. canariensis pollen, and now it appears

that the evaluation of these responses depends on germi

nation procedures. These results therefore indicate that

conclusions regarding species differences in storage

responses can be regarded as tentative and that their con

firmation awaits standardization not only of extraction

methods, but of germination techniques and probably, in

the end, of pollination tests as well. If hanging-drop or

other wet-medium tests are used, the problem of securing

a definite relation between the mass of the medium and

that of the pollen sown on it may be of great importance.

At present, the hanging drop method gives highly vari

able results — probably traceable to variations in density

of sowing. Some of these may be eliminated by increasing

42

Page 7: Studies of Extraction, Storage, and Testing of Pine Pollen

the precision of the suspension and pipetting method of

setting up hanging-drop cultures which has already been

developed by Righter (1939). Pohl (1937a) obtained quite

uniform results in pollen grain counts with the use of

water suspension methods.

d. Relation of testing methods to previous

work on moisture relations of pollen

Several investigators have reported beneficial effects

from humidifying pollen before placing it on a wet ger

mination medium (Ruttle and Nebel, 1937; Pfeiffer, 1939).

Duffield and Snow (1941) showed that this effect was more

marked in the case of pollen of Pinus strobus and P. rest-

nosa stored at low humidities. The vapor method used in

the present studies is a logical development in view of

these findings. Nevertheless, it is not clear that the higher

germinability revealed when pollen is humidified before

wetting is any more indicative of the value of the pollen

for breeding than is the somewhat lower value determined

by wet-medium tests without preliminary humidifica-

tion. It must be emphasized that laboratory germination

tests should as soon as possible be correlated with polli

nation tests of samples of pollen stored under various

conditions. Certain difficulties in running comprehensive

tests of this nature should be recognized at the outset. As

Duffield and Snow pointed out: "Tests of the ability of

pollen to function in vivo — conclusively demonstrate

pollen viability if the results are positive. Negative

results of pollination tests are fully significant only when

the reproductive behavior of the plants used is well

known." Such tests may be "confounded by biological fac

tors such as incompatibilities and abortions since little is

known concerning these factors" in the pines.

e. Possible relations between moisture

history of pollen and r e spons e to growth

substances

Although laboratory tests of pollen germinability may

be of uncertain value for practical breeding operations,

they may prove to be powerful tools for increasing our

understanding of the physiology of pollen. Scattered bits

of evidence suggest that the great significance of moisture

history for the germination requirements of pollen may

be in some way related to auxins. Although pine pollen

has been shown to be a rich source of auxin (Gustafson,

1937), the work of Smith (1939), who found that pollen of

P. austriaca germinated in a 1 ppm. solution of indole-3

acetic acid but not in his controls, suggests that under cer

tain conditions the auxin in pine pollen may be inactiva

ted or unavailable. Many other investigators working with

pollen of many pine species have found it readily germin-

able under a wide range of conditions, and presumably,

in most cases, without externally supplied auxin. Thus it

seems possible that Smith's sample of pollen had been

treated in some manner which caused it to require auxin

for germination. Brink (1924) found that clumped pollen

grains put out tubes at a more rapid rate than grains iso

lated on the germination medium. This appears to be

consistent with the findings of Kuhn (1937), who discusses

at length the requirements of some pollens for specific

substances which may be secreted by the pistil or carried

by the pollen itself in minute quantities and shows that

pollens of this type may be germinated only on small

amounts of semi-solid media which will not, by leaching

and dilution, reduce the substance contributed by the pol

len below an effective concentration. Lidforss (1899) found

that the injury to pollen caused by wetting and sub

sequent drying was less if the grains were clumped. Smith

(1942) suggests that this may not have been so much an

effect of retarded drying as a matter of reduced aeration

possibly affecting oxidation and inactivation of auxins.

f . P o s sibilitie s of developing lab or at ory

criteria other than g er minab ility

So far, the whole discussion has dealt with germinabi

lity of pollen. As has been suggested, this property cannot

be considered to be, in itself, a reliable index of fertilizing

ability. Probably what germinability reveals is that a cer

tain percentage of grains is able to cross a certain func

tional threshold. No doubt, fertilization is some distance

beyond this threshold, but germination tests give little or

no information as to how much of this distance the germi

nated grains could cover in nature. In practice, at the

Institute, this lack has been recognized, and an effort

made to compensate for it by several means. These consist

of (1) noting the time elapsed between set-up of test and

germination counting, (2) noting length of pollen tubes as

a multiple of grain diameter, (3) estimating the percentage

of burst grains. It is probably fair to state that the latter

two types of data are the results of rapid ocular estimates

and that it would be unsound to base critical comparisons

of pollen lots on them except in cases of unusually large

differences. In such cases these differences would prob

ably be reflected in germination percentages.

For experiments designed to evaluate precisely extrac

tion and storage conditions, it should be possible to deve

lop measurements which would give more information on

the fertilizing potential of pollen than the enumerations

largely relied on up to present. It would seem that deter

mination of the rate of pollen-tube elongation should be

a relatively simple matter, and that once this rate is deter

mined, it might be shown to have a rather simple relation

to fertilizing potential. While the latter proposition is very

likely sound, the accurate determination of pollen-tube

elongation rates depends on refinements of technique

which have yet to be attained. One example of an attempt

to determine elongation rates will illustrate this. When

the germination percentages for P. radiata shown in

Table 2 were determined, measurements of pollen-tube

lengths were also made. These, together with germination

percentages, are shown in Table 6. In this table, the ger

mination percentage based on a sample of 50 grains is

given for each plate as is pollen-tube length, each value

being based on 10 measurements.

Table 6

Germination and pollen tube lengths1) of P. radiata pollen stored

391 days

Storage

temperature

o°c

5° C.

10° C.

Germ.Percent

Tube Length

Germ.Percent

Tube Length

Germ.Percent

Tube Length

Storage humidity

25%

Plate A

80

22.2

80

25.3

68

19.3

Plate B

76

33.2

66

32.4

70

34.8

Mean

78

Tin

73

28.9

69

27.1

50%

Plate A

66

19.2

48

17.4

8

21.4

PlateB

68

26.6

64

24.6

14

23.6

Mean

67

22.9

56

21.0

11

18.0

') Pollen tube lengths given in ocular micrometer units. One

unit equals 6.7 micra.

43

Page 8: Studies of Extraction, Storage, and Testing of Pine Pollen

It will be noted that germination percents of the A and

B plates do not differ consistently, and that the A and B

plate percents are rather close to their means (Table 6). In

the case of pollen-tube length, however, it is clear that for

every storage condition under which germination occurred

in both plates, the growth rate in plate B was higher than

in plate A. This no doubt means that temperature was

slightly higher in plate B than in plate A during germina

tion and tube growth. In this particular test, the plates

were placed side-by-side on the top shelf of a seed germi

nating incubator running at 25° C. The uniformity of

conditions within the incubator appears to have left

something to be desired, but sufficient uniformity could

probably be attained only in an aircirculating incubator

with very precise thermostatic controls. At any rate, it is

clear that tube elongation is more sensitive to incubation

conditions than is germination percent. Analysis of variance

of the pollen tube lengths shows that the superiority of the

B plate series is highly significant, and further, that sto

rage at 25 percent relative humidity results in more rapid

pollen-tube growth than storage at 50 percent relative hu

midity (high significance). There was no significant diffe

rence in the effect of the three rather low temperatures on

pollen-tube growth. Scanning Table 6, it appears that an

evaluation of the storage methods by pollen-tube growth

would differ little from one based on germination percent

— both measures indicate that storage at 25 percent rela

tive humidity is somewhat superior to storage at 50 per

cent relative humidity. So far, it seems that little gain in

information has been achieved after a considerable in

crease in labor. Perhaps germination percent and pollen-

tube growth are highly and positively correlated. This

possibility should be studied further for if it proves to be

fact, there would be little utility in estimating pollen-

tube growth, at least for routine testing.

Another aspect of pollen cultures which may be related

to the fertilizing potential of pollen is the amount of bur

sting or cytoplasmic extrusion by pollen-grains and pol

len-tubes. This is at present noted in routine tests. Bur

sting of pollen-tubes is a phenomenon which has been

shown to be related to a wide variety of conditions of pol

len extraction Ltdforss (1899) and of storage and germina

tion techniques Kuhlwein (1937).

In the extraction experiment with pollen of P. canarien-

sis (Table 1) each germination count was accompanied by

a rating as to the amount of bursting. Practically all samp

les extracted at 10 percent or 25 percent relative humidity

showed bursting regardless of subsequent storage, while

very few of the samples extracted at 50 percent relative

humidity showed bursting.

In the storage and germination test reported in Table 4,

similar notes were taken on amount of bursting. The most

striking result was that all samples of P. lambertiana pol

len stored at 0° C. and 10 percent relative humidity and

germinated by the vapor method showed a high percent

of bursting, while little bursting was found among samples

of this species stored at 10 percent relative humidity and

germinated in a drop or stored at 50 percent relative humi

dity and germinated by either method.

It therefore appears that bursting is influenced by a

number of factors not yet understood or not controlled by

our present techniques. Perhaps when our pollen hand

ling techniques are further standardized, studies of bur

sting will be of some value.

Two other morphological observations were made du

ring the present study. Pollen which has been stored at

75 percent relative humidity appears to float differently

from pollen stored at lower humidities. Generally, pollen

stored at 10 percent to 50 percent relative humidity (ex

cept that stored at 22° C. and 50 percent relative humidity)

floats with the bladders more or less to one side, while

that stored at 75 percent relative humidity floats with

the bladders up so that when viewed from above, each

grain is symmetrical along two axes. One is immediately

struck by the symmetrical and uniform appearance of such

a lot of pollen when one views it under the microscope in

a hanging drop. In the extraction experiment reported in

Table 1, it was noted that all pollen extracted at 75 percent

relative humidity, regardless of subsequent storage, sho

wed a very high percentage of grains which floated with

bladders up, and in addition had two or three large va-

cuoles in the central part of the grain between the blad

ders. These two visible criteria may be of some value in

detecting promptly lots of pollen which have been subjec

ted to unfavorable extraction or storage conditions. How

soon pollen takes on these aspects after being placed in a

drop has not yet been determined.

During the storage experiments reported in Table 2 it

was noted, especially when making the tests of P. ponde-

rosa and P. lambertiana, that pollen stored at 75 percent

relative humidity and at 50 percent relative humidity and

22° C. took up water from the saturated atmosphere of the

culture dish very much more rapidly than did the other

samples of pollen. In this particular test, the incubation

temperature was between 20° C. and 25° C. and no conden

sation occurred in the tops of the dishes. The low humidity

samples appeared quite dry to the naked eye after two

days, at which time condensation was quite noticeable on

the high humidity samples. None of this latter pollen ger

minated, but uniformly presented the symmetrical ,,blad-

ders up" appearance.

Conclusions

The principal conclusion which can be drawn from these

studies is that pine pollen, although notoriously more long-

lived than many angiosperm pollens, is quite sensitive to

its temperature and moisture environment. This implies,

for further studies, that temperature and humidity should

be under control during extraction in order to obtain pol

len which will give reproducible results in storage studies.

Recent studies of conifer seeds have pointed to the same

conclusion as regards seed storage.

Aside from the purely technical implications for future

empirical studies of pollen handling, the present report

indicates that many basic aspects of pollen physiology and

biochemistry need exploration.

Zusammenfassung

Titel der Arbeit: Untersuchungen ilber Extraktion, Auf

bewahrung und Priifung von Kiefernpollen. — Ergebnisse

mehrerer Einzeluntersuchungen, die die Extraktion, die

Aufbewahrung und die Priifung der Lebensfahigkeit von

Pollen verschiedener Kiefernarten zum Gegenstand hat-

ten, werden zusammengefai3t. Sie sollen zugleich den Aus-

gangspunkt fur spatere Arbeiten uber die Pollenphysiolo-

gie bilden.

Den Einflufi der Feuchtigkeit wahrend der Pollen-Ex-

traktion behandeln die ersten Versuche mit Pinus cana-

44

Page 9: Studies of Extraction, Storage, and Testing of Pine Pollen

riensis. Im Verlauf einer lOtagigen Extraktionsperiode bei

50% Luftfeuchtigkeit erbringen die Katzchen den hochsten

Pollenertrag, gleichzeitig verlangern sich ihre Achsen um

50%. Bei 10%iger Luftfeuchtigkeit verschlechtert sich das

Ergebnis, und die Achse verkiirzt sich um 10%. Die Katz

chen in 75%iger Luftfeuchtigkeit schiitten den grofiten Teil

des Pollens erst nach Abbruch des Versuches im trockenen

Labor-Klima. Zwei Erscheinungen lassen sich beim Polli-

nierungsvorgang trennen: 1. der biologische Prozefi der

Katzchenverlangerung und 2. der physikalische Prozefi

des Reifiens der Mikrosporangien. — Die Abhangigkeit

der Lebensfahigkeit des Pollens von der Hone der Extrak-

tionsfeuchtigkeit beurteilt ein Pollenaufbewahrungsver-

such von 229 Tagen mit variierten Feuchtigkeits- und

Temperaturverhaltnissen in jeweils 2 Wiederholungen.

Jede Probenahme umfaBt dabei 50 Pollenkorner, also 100

bei jedem Aufbewahrungsbeispiel (s. Tab. 1). 75%ige rela

tive Luftfeuchtigkeit bei der Extraktion des Pollens scha-

det der Keimfahigkeit bei jedem Aufbewahrungsklima.

Hohere Keimfahigkeit wird in alien Fallen bei geringerer

Extraktionsfeuchtigkeit erzielt. Die Nachpriifung der er-

haltenen Zahlen im Befruchtungsexperiment muB spater

erfolgen. Ebenso muB eine weitere Vervollkommnung der

Extraktionstechnik erreicht werden.

Der Klarung von Zusammenhangen zwischen den Auf-

bewahrungsbedingungen und der Keimfahigkeit des Pol

lens dienen andere Experimente mit 7 verschiedenen Kie-

fernarten (Aufbewahrungszeit etwa 1 Jahr und mehr).

Vier Temperatur-Varianten (0°, 5°, 10°, 22° C) mit je vier

verschiedenen Graden relativer Feuchtigkeit (10%, 25%,

50%, 75%) werden bei alien Arten verglichen (Tab. 2).

75%ige relative Feuchtigkeit bei der Aufbewahrung ist auf

jeder Temperaturstufe unerwiinscht; 50% ist ebenso un-

zweckmafMg, wenn bei 22° C aufbewahrt wird; bei den

meisten Arten auch 25% bei 22° C. Eine andere Tendenz

zeigen dagegen P. radiata und P. lambertiana, die bei 10%

und 0° bzw. 5° C die schlechtesten Keimergebnisse brin-

gen. Offen bleibt dabei, ob fur dieses entgegengesetzte

Verhalten womoglich die niedrige Extraktionsfeuchtigkeit

bei der Pollengewinnung verantwortlich sein kann. — Als

allgemeines Ergebnis ist feststellbar, dafi der Pollen aller

Kiefernarten bei 25% relativer Feuchtigkeit und niedri-

gen Temperaturen ohne Schaden aufbewahrt werden

kann und dafi dieses Verfahren einer Aufbewahrung bei

50% und Zimmertemperatur vorzuziehen ist.

Die Pollenpriifung mit Hilfe kunstlicher Keimteste wird

kritisch beurteilt. In ihrer bisherigen Form sagen sie nicht

ohne Einschrankung iiber die Befruchtungsfahigkeit des

Pollens aus, und sie miissen kiinftig mit Ergebnissen von

kontrollierten Bestaubungsversuchen verglichen werden.

Zur Pollenkeimung im Laboratorium wird eine Dampf-

methode (vapor method) angewendet. Die gewunschte

Dampfspannung erzeugt man durch Zusatz von destillier-

tem Wasser auf den Boden der Kulturschale. Die Keimung

erfolgt bei 26° bis 28° C. Die Methode selbst ist von Righter

(1939) beschrieben worden. In der Tab. 4 stehen die mit

dieser Methode erzielten Keimerfolge den Ergebnissen

der Pollenkeimung im ,,hangenden Tropfen" gegenliber.

Die dortigen Zahlengruppen unterscheiden sich je nach

Objekt voneinander und lassen keine allgemeine Bezie-

hung zum Aufbewahrungsklima des Pollens erkennen. U.

a. hat eine niedrige Extraktionsfeuchtigkeit bei dem Pol

len von P. canariensis eine hohe Resistenz gegen die Ein-

fliisse hoher Temperatur und Feuchtigkeit bei der Pol-

lenaufbewahrung zur Folge, unabhangig von der verwen-

deten Keimmethode. Die wichtige Frage nach der besten

Keimmethodik fur Ziichtungszwecke kann durch den Ver-

gleich beider Versuche nicht beantwortet werden. Wo

moglich scheint in manchen Fallen die Tropfen-Methode

vorteilhafter zu sein. Die Ergebnisse aller Einzeluntersu-

chungen lassen es ganz allgemein zweifelhaft erscheinen,

daB den Laboratoriumspriifungen der Pollenkeimfahig-

keit fur Ziichtungszwecke iiberhaupt ein Wert beizumes-

sen ist. Dagegen konnen sie aber den Ansatzpunkt fur eine

weitere Erforschung der Pollenphysiologie darstellen. In

diesem Zusammenhang werden einige Literaturdaten be-

sprochen. — AuBer der Pollenkeimfahigkeit lassen sich

auch andere Kriteria zur laboratoriumsmaBigen Pollen-

beurteilung heranziehen. Die Messung der Pollenschlauch-

langen erweist sich dazu als mogliche Grundlage. Nach

der Aufbewahrungszeit von 391 Tagen variieren z. B. die

mittleren Pollenschlauchlangen von P. radiata in positiver

Korrelation mit den Keimprozenten der Versuchsglieder

(Tab. 6). Als weitere Beurteilungsmomente konnen auch

Beobachtungen uber den Umfang des Platzens von Pollen-

schlauchen oder des Austrittes von Plasma aus den Pollen-

kornern Verwendung finden. Versuche mit P. canariensis

und P. lambertiana zeigen allerdings, daB das Platzen der

Pollenschlauche von mehreren, heute noch unbekannten

Faktoren abhangt.

Die Erfahrungen mit dem von Natur aus langlebigen

Kiefernpollen verdeutlichen in alien Fallen andererseits

seine groBe Empfindlichkeit gegen Temperatur und Feuch

tigkeit. Beiden Faktoren muB deshalb besonders bei der

Pollenextraktion groBe Beachtung geschenkt werden. Nur

solche Aufbewahrungsversuche haben einen Wert, deren

Ergebnisse sich reproduzieren lassen. Dies ist jedoch erst

dann erreichbar, wenn das Gebiet der Pollen-Physiologie

und der Pollen-Biochemie neu bearbeitet wird.

Literature Cited

Brink, R. A.: The physiology of pollen. IV. Amer. Journ. Bot. 11,

417—436 (1924). — Cumming, W. C, and Rihgter, F. I.: Methods used

to control pollination of pines in the Sierra Nevada of California.

U. S. Dept. Agric. Circular No. 792, 18 pp. (1948). — Duffield, J. W.,

and Snow, A. G., Jr.: Pollen longevity of Pinus strobus and Pinus

resinosa as controlled by temperature and humidity. Amer. Journ.

Bot. 28, 175—177 (1941). — Gustafson, F. G.: Parthenocarpy induced

by pollen extracts. Amer. Journ. Bot. 24, 102—107 (1937). — Johnson,

L. P. V.: The storage and artificial germination of forest tree

pollen. Canad. Journ. Res. 21, C, 332—342 (1943). — Kuhlwein, H.:

Zur Physiologie der Pollenkeimung, insbesondere der Frage nach

dem Befruchtungsverzug bei Gymnospermen. Beih. Bot. Cen-

tralbl. 57, A, 37—104 (1937). — Kuhn, E.: Zur Physiologie der Pollen

keimung bei Matthiola. Planta 27, 304—333 (1937). — Lidforss, B.:

Weitere BeitrSge zur Biologie des Pollens. Jahrb. wiss. Bot. 33,

232—312 (1899). — Pfeiffer, N. E.: Life of Gladiolus pollen prolon

ged by controlled conditions of storage. Contrib. Boyce Thompson

Inst. 10, 429—440 (1939). — Pohl, F.: Die Pollenerzeugung der Wind-

bltiter. Beih. Bot. Centralbl. 56, A, 365—470 (1937 a). — Pohl, F.:

Die Pollenkorngewichte einiger windbliitiger Pflanzen und ihre

okologische Bedeutung. Beih. Bot. Centralbl. 57, A, 112—172

(1937 b). — Righter, F. I.: A simple method of making germination

tests of pine pollen. Journ. Forestry 37, 574—576 (1939). — Ruttle,

M. L., and Nebel, B. R.: Storage experiments with pollen of cul

tivated fruit trees. Journ. Pomol. and Hort. Sci. 14, 347—359 (1937).

— Scamoni, A.: Uber Eintritt und Verlauf der mSnnlichen Kiefern-

bltite. Zeitschr. Forst- u. Jagdwesen 70, 289—315 (1938). — Smith, P.

F.: The influence of 3-indole acetic acid on pollen germination.

Science 90, 165—164 (1939). — Smith, P. F.: Studies of the growth of

pollen with respect to temperature, auxine, colchicine and vita

min Bi. Amer. Journ. Bot. 29, 56—66 (1942). — Walderdorff, M. v.:

Uber die Kultur der PollenschlMuche und Pilzmyzelien auf festem

Substrat bei verschiedener Luftfeuchtigkeit. Bot. Archiv 6, 84—110

(1924).

45

Page 10: Studies of Extraction, Storage, and Testing of Pine Pollen

RUNDHOLZEsche - Eiche - Nufibaum

Kirschbaum - Ruster - Ahorn

zu kaufen gesucht

CH.LANGNER-MINDEN

Ruf 3497 Prinzenstr.

lm Sommer 1953 erschien:

Die Schaden

des LarchenblasenfuOes(Taeniothrips laridvorus KRAT.)

und ihre VerbreitungVon Dr. jean Pierre Vite

(Aus dem Forstzoologischen Institut der Universitat

Gottingen in Hann. Munden)

IV und 65 Seiten mil 34 Abb. und 3 Tabellen

Preis: kart. 8,40 DM

). D. Sauerldnder's Verlag, Frankfurt am Main I

Die

beginnt!

Llberpriifen und erganzen Sie recht*

zeitig Ihren Bestand an (Culture

gerSten

Wirberaten Sie dabei fachgeredit

und liefern alle bewahrten und gepruften

Masdiinen und Gerate

fur Bestandsbegriindung

Fordern Sie bitte unsere nGriine Liste"

1 -2/1/1954 Kultursonderangebot an!

Forstliche Bezugsgenossensdiaft e. G. m. b. H.

HamburgoBahrenfeid

GriegstraOe 100

Frankfurt a. M.*Niederrad

PostsdilieGfach 84

Mttndien 42

Aindorfer StraCe 93

Die japanische LarcheEine biologisdvertragskundliche Untersuchung

Von Dr. Reinhard S c h o b e r

o. Professor der Forstwissenschaft aa der Forstlidien Fakultdt der Universitat GOttingen und Leiter der NiedersSdisisdien Forstlidien Versudisanstalt

XII und 212 Seiten mit 82 Abb. und 55 Tabellen im Text und einem 46seitigen Tabellenanhang

kart. 15,— DM, Leinen 16,80 DM -

Die guten Erfahrungen mit den ersten Versuchsanbauten der

Japanlarche um 1890 fuhrten zu einer standigen Vermeh*

rung der Anbauflache dieser Holzart, die heute allein in

Westdeutschland schon auf 11000 ha vertreten bt.

Der Verfasser gibt in einer Monographic der Japanlarche

den ersten eingehenderen Beridit uber das biologisdie und

ertragskundlidie Verhalten dieser Holzart in Peutschland.

DieGrundlage dieser Beurteilung bilden umfassende Unter^

sudiungen in alien westdeutsdien Landern, deren Ergebnisse

jeweils den bisherigen Erfahrungen in Japan, in Deutsdi;

land und anderen europaisdien Landern gegeniibergestellt

werden.

lm einzelnen wurden unter anderem untersudit: die Stand'

ortsanspruche im naturlidien Areal und im kunstlidien

Anbaugebiet Nordeuropas, die Anfalligkeit gegen Krank^

heiten und Schadenswirkungen, insbesondere gegen den

Lardienkrebs, das waldbauliche Verhalten im Rein**

und Misdibestand, die Fragen der Begrundung und Durdv

forstung, die Sdiaftform, Astigkeit, Verkernung und der

Rindengehalt. In einem besonderen Absdinitt wurden die

japanische und europaische Larche in ihren Eigen^

schaften gegenubergestellt, wobei die friiheren Untersus»

chungen des Verfassers iiber Larix europaea Verwendung

finden. Dieser Vergleidi vermittelt wesentlidie Gesidits<»

punkte zu der Frage: japanisdie oder europaisdie Larche?

Die Beurteilung der Zuwachso und Ertragsleistung

wurde auf Erhebungen an Probestammen, einmalige Be^

standsaufnahmen und die langfristige Beobaditung von

Versuchsflachen gegrundet. Hierbei wurden der Zuwachs<»

gang des Einzelstammes untersudit und Massentafeln,

Formzahltafeln und Ausbaudiungsreihen gewonnen. Die

frtragsleistung der Japanlarche im Reinbestand wurde

durch Ableitung von Ertragstafeln fur 2 Ertragsklassen beimaGiger und starker Durdiforstung defuiiert, wahrend be*'

sondere Untersuchungen der Erkundung des Zuwachses im

lapanlarchen^Mischbestande dienten. Den AbsdiluG

bilden Erhebungen uber den Sortiments* und Wert^

ertrag der japanischen und europaisdien Larche.

Das vielseitige Forschungsergebnis diirfte ein guter Ratgeber

sein fur einen erfolgreichen weiteren Anbau der Japanlarche.

Zu beziehen durch jede Budihandlung

J. D. Sauerlander's Verlag, Frankfurt a. M. I

Page 11: Studies of Extraction, Storage, and Testing of Pine Pollen

Allgemeine Forst? und Jagdzeitung125. Jahrgang

Unter Mitwirkung der Mitglieder der Lehrkorper von Freiburg i. Br. und Hann. Miinden und

Prof. Dr. G. B a a d e r und Oberforstmeister Dr. F.E. Eidmann .

herausgegeben von

Dr. E. Zentgraf,

o. Prof, der Forstwissenschaft an der

Universitat Freiburg i. Br.

Dr. H. Lemmel,

o. Prof, der Forstwissenschaft an der

Universitat Gottingen

Erscheinungsweise: Zweimal im Vierteljahr

Erscheinen des Jubilaums-Jahrgangs: Der Jubilaums-Jahrgang erscheint in 10 Heften in der Zeit

vom 1. Oktober 1953 bis 31. Dezember 1954

Bezugspreis: 7,20 DM im Vierteljahr zuzuglich V ersandspesen

Im Jubilaums-Jahrgang sind bis jetzt erschienen:

Heft 1: JubilSumsheft Herausgeber: Prof. Dr. E.

EntwicMungslinien und Gegenwartsprobleme der

deutschen Forstpolitik. Von Prof. Dr. Dr. Kurt

Mantel. — 12 Jahre Waldbauseminar an der

Universitat Freiburg i. Br. Von Prof. Dr. E.

Zentgraf. — Carl Philipp Arnsperger. Zu sei-

nem 100. Todestag. Von Dozent Dr. R. B. Hilf.

— Der Wald in der Landesgeschichte. Von Dozent

Dr. R. B. Hilf. — Die Bedeutung der Baum-

Heft 2, Sonderheft, Waldbau Hefausgeber: Prof.

Notwendigkeit der Mitberucksichtigung geschicht-

licher Methoden in der vegetationskundlichen

Forschung. Von Prof. Dr. Leo Tschermak. —

Die Rolle der Nebenbaumarten im Wirtschafts-

wald. Von Prof. Dr. H. L e i b u n d g u t. — tlberdie Kennzeichnung der Durchforstungsweise. Von

Prof. Dr. K. Olberg. — Umwandlung hiebs-

Heft 3, Sonderheft, Forstpolitik Herausgeber: Prof. Dr.ELemmel:

Zentgraf und Prof. Dr. H. Lemmel:

morphologie fiir .die Holzartenwahl in Trocken-

gebieten. Von Dr. Jofg Barner. — Arbeitenaus der Freiburger Schule. Von Dozent Dr. M.

P r o d a n. — Unterlagen fiir den Anbau west-

amerikanischer Nadelholzarten in Deutschland.

Von Prof. Dr. F. K. Hartmann, Landforst-

meister F. Querengasser und Dr. G. Jahn.

Dr. E. Zentgraf:

reifer Fichten- (Kiefern-) Bestande in Mischbe-

stande. Ein Versuch. Von Prof. Dr. K. VanBe

it o w . — Die Snoqualmie-Douglasie, die Dougla-

sie der Zukunft. Von Forstassessor Roland Boi-

s e 11 e. — Bildliche Darstellung des Bestands-

gefiiges. Von Prof. Dr. Dr. J. N. Kostler.

H a s e 1. — Die Bereicherung einheimischer Wal-

der mit fremdlandischen Holzarten. Von Forst-

meister W. Fabricius. — Der deiitsche Wald

in der Bodenreform. Von Prof. Dr. H. L e m m e 1.

neuzeitliche Aufgaben und Arbeitsmetho-

den der forstwirtschaftspolitischen Wissenschaft.

Von Prof. Dr. V. Dieterich. — Volkswirt-

schaftliche Leistungen und Leistungsmoglichkei-

ten im Kleinprivatwald. Von Dozent Dr. K.

Heft 4, Sonderheft, Forstliche Betriebswirtschaft und ForsteinriditungGast-Herausgeber: Prof. Dr. K. Abetz:

Betriebswirtschaftliche-Betriebstechnische Ein-

heiten und Zielsetzungen. Von Prof. Dr. V. D i e -

t e r i c h. — Probleme der Gewinnermittlung in

forstwirtschaftlichen Betrieben fiir Zwecke der

Einkommensteuer. Von Prof. Dr. J. S p e e r. —

Forsteinrichtung als Schule des Denkens. Von

Oberregierungsrat Dr. Wilhelm Mantel. —

Die Kontrollidee in der Schweizer Forstwirt-

schaft Von Prof. Dr. A. Kurth. — Die Wald-

standsaufnahme in Osterreich. Von Ministerial-rat Dr. Anton Horky. — Der ertragsgeschicht-

liche Zuwachs und seine Bedeutung. Von Prof.

Dr. K. A b e t z .

Es erscheinen ferner folgende weitere Sonderhefte:

Ertragskunde, Gast-Herausgeber: Prof. Dr. G. Mitscherlich

Forstschutz, Gast-Herausgeber: Prof. Dr. E. Merker

Bodenkunde, Standortslehre, Gast-Herausgeber: Prof. Dr. W. Wittich

Forstbenutzung, Gast-Herausgeber: Prof. Dr. H. Mayer-Wegelin

J. D. Sauerlander's Verlag, Frankfurt am Main I