student conceptions of the bernoulli principle: a particle...

1
Student Conceptions of the Bernoulli Principle: A Particle Approach Katherine Misaiko and James Vesenka Department of Chemistry and Physics University of New England, Biddeford, Maine 04005 Objec&ves We seek to iden+fy life science students misconcep+ons of the Bernoulli principle. Results are used to inform instruc+on and develop lab interven+ons. Hypothesis A par+cle model, based on simple kine+c theory, is an important tool for conceptual understanding of fluid dynamics and Bernoulli’s principle. Interview Process Students are asked to: Make a predic+on about an experiment, observe then explain. Two experiments involving pressure change, either as a func+on of temperature or speed, are examined Interviews: Typical Groups During the preinterview: Mathema+cally weak students could not draw the graph of an inverse rela+onship Incorrectly used the ideal gas law Made no men+on of a vacuum By the post interview: Some students transi+oned to using a par+cle model Changed explana+on from pulling the water up the tube to pushing the water from the other side Stated that the air molecules “move around the vacuum” Weak Groups During the preinterview: Areas of low concentra+on move to areas of higher concentra+on Vacuum “sucks” the air up as opposed to pushing from the other side Pressure = Density By the post interview: Required promp+ng to use a par+cle model Clueless about inverse rela+onship Most Common Misconcep&ons 1. Lack of ability to employ par+cle models 2. Par+cles move from areas of low concentra+on to areas of high concentra+on 3. Behavior of molecules verses the number of molecules 4. Concept of a vacuum 5. Pulling versus pushing Sta&s&cs Pressure vs. Temperature Decreased temperature reduces molecular ac+vity, therefore decreasing the pressure on the leV side. The right side is s+ll at atmospheric pressure and has greater molecular ac+vity. The higher pressure will push the water up the leV side of the tube in order to equilibrate. Pressure vs Velocity A stream of air is blown across the opening of the end of the tube crea+ng a par+al vacuum, decreasing the pressure in the leV side of the tube. The right side is s+ll at atmospheric pressure and will push the water up the leV side of the tube in order to equilibrate. The Venturi Tube Conserva+on of mass Greater area slower speed higher pressure Smaller area faster speed lower pressure The faster the speed the lower the pressure and therefore the lower the fluid will be pushed up into the ports. There is less chance for water molecules to interact with the opening of the ports. Related Research Recktenwald et al. iden+fied two common misconcep+ons with engineering students associated with the Bernoulli equa+on: “fluid pressure must always decrease in the direc+on of flow,” and “the Bernoulli equa+on can always be applied.” 1 Conclusions A par+cle approach improves predic+ons and understanding of Bernoulli Principle When par+cle models are not men+oned, students ability to predict and explain Bernoulli Principle decreased. Acknowledgements This research has been supported by NSF DUE 0737458 and 1044154 grants to JV. Reference Recktenwald et al., “A Simple Experiment to Expose Misconcep+ons about the Bernoulli Equa+on”, Proceedings of IMECE 2009, November 1319, 2009 IMECE200910964 Interven&ons Quan+ta+ve lab ac+vity. Plot P vs. v to show that pressure was dependent on the square of speed with slope of half the density of air. Conceptual hard sphere par+cle model or beach ball model. P vs. T P vs. v Unequal Sides (Pressure) Equal Sides (Pressure) Hard Sphere Model Radius “r” Barometer pressure “P” v out =0 v in Strong Groups Correct predic+ons of all experiments Unprompted use of par+cle model both pre and post Good understanding of how par+cles interact with each other and at the water level Strong mathema+cal skills Proper use of Ideal Gas Law ΔP = 1 2 ρΔ( v 2 )

Upload: others

Post on 05-Nov-2019

6 views

Category:

Documents


0 download

TRANSCRIPT

Student Conceptions of the Bernoulli Principle: A Particle Approach

Katherine Misaiko and James Vesenka Department of Chemistry and Physics

University of New England, Biddeford, Maine 04005  

Objec&ves    We   seek   to   iden+fy   life   science   students  misconcep+ons   of   the   Bernoulli   principle.   Results  are   used   to   inform   instruc+on   and   develop   lab  interven+ons.      

Hypothesis  A  par+cle  model,  based  on  simple  kine+c   theory,   is  an   important   tool   for   conceptual   understanding   of  fluid  dynamics  and  Bernoulli’s  principle.    

Interview  Process  Students  are  asked  to:  -­‐  Make  a  predic+on  about  an  experiment,  observe  

then  explain.  -­‐  Two  experiments  involving  pressure  change,  

either  as  a  func+on  of  temperature  or  speed,  are  examined  

Interviews:  Typical  Groups  During  the  pre-­‐interview:  -­‐  Mathema+cally   weak   students   could   not   draw  

the  graph  of  an  inverse  rela+onship    

-­‐  Incorrectly  used  the  ideal  gas  law  -­‐  Made  no  men+on  of  a  vacuum  By  the  post  interview:  

-­‐  Some   students   transi+oned   to   using   a   par+cle  model  

-­‐  Changed   explana+on   from   pulling   the   water   up  the  tube  to  pushing  the  water  from  the  other  side  

-­‐  Stated   that   the   air  molecules   “move   around   the  vacuum”  

             

Weak  Groups  During  the  pre-­‐interview:  

-­‐  Areas   of   low   concentra+on   move   to   areas   of  higher  concentra+on  

-­‐  Vacuum  “sucks”  the  air  up  as  opposed  to  pushing  from  the  other  side  

-­‐  Pressure  =  Density  

By  the  post  interview:  -­‐  Required  promp+ng  to  use  a  par+cle  model  

-­‐  Clueless  about  inverse  rela+onship  

Most  Common  Misconcep&ons  1.  Lack  of  ability  to  employ  par+cle  models  2.  Par+cles  move  from  areas  of  low  concentra+on  to  

areas  of  high  concentra+on  3.  Behavior   of   molecules   verses   the   number   of  

molecules  4.  Concept  of  a  vacuum  5.  Pulling  versus  pushing  

Sta&s&cs      Pressure  vs.  Temperature  

Decreased   temperature   reduces   molecular   ac+vity,  therefore   decreasing   the   pressure   on   the   leV   side.  The  right  side  is  s+ll  at  atmospheric  pressure  and  has  greater  molecular   ac+vity.   The   higher   pressure  will  push  the  water  up  the  leV  side  of  the  tube  in  order  to  equilibrate.    

Pressure  vs  Velocity  

A   stream  of   air   is   blown   across   the   opening   of   the  end   of   the   tube   crea+ng   a   par+al   vacuum,  decreasing  the  pressure   in  the  leV  side  of  the  tube.  The  right  side  is  s+ll  at  atmospheric  pressure  and  will  push  the  water  up  the  leV  side  of  the  tube  in  order  to  equilibrate.    

The  Venturi  Tube  

-­‐  Conserva+on  of  mass  -­‐  Greater  area  à  slower  speed  à  higher  pressure  -­‐  Smaller  area  à    faster  speed  à  lower  pressure  

-­‐  The   faster   the  speed  the   lower   the  pressure  and  therefore   the   lower   the   fluid   will   be   pushed   up  into   the   ports.   There   is   less   chance   for   water  molecules   to   interact   with   the   opening   of   the  ports.    

Related  Research  Recktenwald   et   al.   iden+fied   two   common  misconcep+ons   with   engineering   students  associated   with   the   Bernoulli   equa+on:   “fluid  pressure   must   always   decrease   in   the   direc+on   of  flow,”   and   “the   Bernoulli   equa+on   can   always   be  applied.”1  

Conclusions  -­‐  A   par+cle   approach   improves   predic+ons   and  

understanding  of  Bernoulli  Principle  

-­‐  When   par+cle   models   are   not   men+oned,  students   ability   to   predict   and   explain   Bernoulli  Principle  decreased.  

Acknowledgements  This  research  has  been  supported  by  NSF  DUE  0737458  and  1044154  

grants  to  JV.  Reference  

Recktenwald   et   al.,   “A   Simple   Experiment   to   Expose  Misconcep+ons  about  the  Bernoulli  Equa+on”,  Proceedings  of  IMECE  2009,  November  13-­‐19,  2009  IMECE2009-­‐10964  

Interven&ons  -­‐  Quan+ta+ve  lab  ac+vity.  Plot  P  vs.  v  to  show  that  

pressure  was  dependent  on   the   square  of   speed  with  slope  of  half  the  density  of  air.  

-­‐  Conceptual  hard  sphere  par+cle  model  or  beach  ball  model.  

P  vs.  T  

P  vs.  v  

Unequal  Sides  (Pressure)  

Equal  Sides  (Pressure)  

Hard  Sphere  Model  

Radius  “r”  

Barometer  pressure  

“P”  vout  =  0  

vin  

!

Strong  Groups  -­‐  Correct  predic+ons  of  all  experiments  -­‐  Unprompted  use  of  par+cle  model  both  pre  and  

post  

-­‐  Good   understanding   of   how   par+cles   interact  with  each  other  and  at  the  water  level  

-­‐  Strong  mathema+cal  skills    

-­‐  Proper  use  of  Ideal  Gas  Law  

ΔP =−12ρΔ(v2)