structure preserving schemes for conservation laws - tifr...

78
Structure preserving schemes for conservation laws Well-balanced schemes for Euler equations with gravity Praveen Chandrashekar [email protected] Center for Applicable Mathematics Tata Institute of Fundamental Research Bangalore 560065 International Conference on Advances in Scientific Computing IIT Madras, 28-30 November, 2016 Supported by Airbus Foundation Chair at TIFR-CAM, Bangalore 1 / 37

Upload: lekhanh

Post on 11-Nov-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Structure preserving schemes for conservation lawsWell-balanced schemes for Euler equations with gravity

Praveen [email protected]

Center for Applicable MathematicsTata Institute of Fundamental Research

Bangalore 560065

International Conference on Advances in Scientific ComputingIIT Madras, 28-30 November, 2016

Supported by Airbus Foundation Chair at TIFR-CAM, Bangalore

1 / 37

Page 2: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Structure preserving schemes

• Usual considerations: stability and accuracy

• Accuracy is an asymptotic property: ∆x→ 0

• Euler equations

I Density, temperature must be positiveI Smooth solutions: entropy is conservedI Steady solutions: enthalpy is constant along streamlinesI Incompressible: kinetic energy is conservedI With gravity: non-trivial stationary solutions

• Shallow water: energy and potential enstrophy conserved

• Desirable to have numerical solutions satisfy these additionalproperties

2 / 37

Page 3: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Acknowledgements

• Deep Ray, TIFR-CAM

• Dept. of Mathematics, Univ. of Wurzburg, GermanyI Jonas Berberich (master student)I Juan Pablo Gallego (PhD student)I Christian Klingenberg (professor)I Markus Zenk (PhD student)I Dominik Zoar (master student)

• Heidelberg Institute of Theoretical ScienceI Phillip Edelmann (post-doc)I Fritz Ropke (professor)

• DAADI Research stay programI Passage to India program

• Airbus Foundation Chair at TIFR-CAM

3 / 37

Page 4: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Euler equations with gravity

Flow propertiesρ = density, u = velocity

p = pressure, E = total energy = e+1

2ρu2

Gravitational potential φ; force per unit volume of fluid

−ρ∇φ

System of conservation laws

∂ρ

∂t+

∂x(ρu) = 0

∂t(ρu) +

∂x(p+ ρu2) = −ρ∂φ

∂x∂E

∂t+

∂x(E + p)u = −ρu∂φ

∂x

4 / 37

Page 5: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Euler equations with gravity

In compact notation

∂q

∂t+∂f

∂x= −

0ρρu

∂φ∂x

where

q =

ρρuE

, f =

ρup+ ρu2

(E + p)u

5 / 37

Page 6: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Hydrostatic solutions

• Fluid at rest

ue = 0

• Momentum equationdpedx

= −ρedφ

dx(1)

• Assume ideal gas and some temperature profile Te(x)

pe(x) = ρe(x)RTe(x), R = gas constant

integrate (1) to obtain

pe(x) exp

(−∫ x

x0

φ′(s)RTe(s)

ds

)= p0

6 / 37

Page 7: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Hydrostatic solutions

• Isothermal hydrostatic state, i.e., Te(x) = Te = const, then

pe(x) exp

(φ(x)

RTe

)= const (2)

Density ρe(x) =pe(x)

RTe• Polytropic hydrostatic state

peρ−νe = const, peT

− νν−1

e = const, ρeT− 1ν−1

e = const (3)

where ν > 1 is some constant. From (1) and (3), we obtain

νRTe(x)

ν − 1+ φ(x) = const

E.g., pressure is

pe(x) = C1 [C2 − φ(x)]ν−1ν

7 / 37

Page 8: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Well-balanced scheme

• General evolutionary PDE

∂q

∂t= R(q)

Stationary solution qe; scheme is well-balanced if

R(qe) = 0

• We are interested in computing small perturbations

q(x, 0) = qe(x) + εq(x, 0), ε� 1

• Perturbations are governed by linear equation

∂q

∂t= R′(qe)q

8 / 37

Page 9: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Well-balanced scheme

• Some numerical scheme

∂qh∂t

= Rh(qh)

• qh,e = interpolation of qe onto the mesh

Scheme is well balanced if

Rh(qh,e) = 0

• Suppose scheme is not well-balanced Rh(qh,e) 6= 0. Solution

qh(x, t) = qh,e(x) + εqh(x, t)

9 / 37

Page 10: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Well-balanced scheme

• Linearize the scheme around qh,e

∂t(qh,e + εqh) = Rh(qh,e + εqh) = Rh(qh,e) + εR′h(qh,e)qh

or∂qh∂t

=1

εRh(qh,e) +R′h(qh,e)qh

• Scheme is consistent of order r: Rh(qh,e) = Chr‖qh,e‖

∂qh∂t

=1

εChr‖qh,e‖+R′h(qh,e)qh

• ε� 1 then first term may dominate the second term; need h� 1and/or r � 1

10 / 37

Page 11: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Evolution of small perturbations

The initial condition is taken to be the following

φ =1

2x2, ue = 0, ρe(x) = pe(x) = exp(−φ(x))

Add small perturbation to equilibrium pressure

p(x) = exp(−φ(x)) + ε exp(−100(x− 1/2)2), 0 < ε� 1

Non-well-balanced scheme

∂φ

∂x(xi) ≈

φi+1 − φi−12∆x

, reconstruct ρ, u, p

Using exact derivative of potential does not improve results. In practice, φis only available at grid points.

11 / 37

Page 12: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Evolution of small perturbations

0 0.2 0.4 0.6 0.8 1−2

0

2

4

6

8

10x 10

−4

x

Pre

ssur

e pe

rtur

batio

n

InitialWell−balancedNon well−balanced

0 0.2 0.4 0.6 0.8 1−2

0

2

4

6

8

10x 10

−6

x

Pre

ssur

e pe

rtur

batio

n

InitialWell−balancedNon well−balanced

ε = 10−3, N = 100 cells ε = 10−5, N = 100 cells

12 / 37

Page 13: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Evolution of small perturbations

0 0.2 0.4 0.6 0.8 1−2

0

2

4

6

8

10x 10

−6

x

Pre

ssur

e pe

rtur

batio

n

InitialWell−balancedNon well−balanced

0 0.2 0.4 0.6 0.8 1−2

0

2

4

6

8

10x 10

−6

xP

ress

ure

pert

urba

tion

InitialWB, cells=100WB, cells=500

ε = 10−5, N = 500 cells ε = 10−5

13 / 37

Page 14: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

1-D finite volume scheme

Define (Xing & Shu, 2013)

ψ(x) = −∫ x

x0

φ′(s)RT (s)

ds, x0 is arbitrary

Euler equations

∂q

∂t+∂f

∂x= −

0ρρu

∂φ∂x

=

0ppu

exp(−ψ(x))

∂xexp(ψ(x))

• Divide domain into N finite volumes each of size ∆x

• i’th cell = (xi− 12, xi+ 1

2)

14 / 37

Page 15: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

1-D finite volume scheme

• semi-discrete finite volume scheme for the i’th cell

dqidt

+fi+ 1

2− fi− 1

2

∆x= e−ψi

(eψi+1

2 − eψi− 1

2

∆x

)

0pipiui

(4)

• ψi, ψi+ 12

etc. are consistent approximations to the function ψ(x)

• consistent numerical flux fi+ 12

= f(qLi+ 1

2

, qRi+ 1

2

)

15 / 37

Page 16: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

1-D finite volume scheme

16 / 37

Page 17: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

1-D finite volume scheme

Def: Property C

The numerical flux f is said to satisfy Property C if for any two states

qL = [ρL, 0, p/(γ − 1)] and qR = [ρR, 0, p/(γ − 1)]

we havef(qL, qR) = [0, p, 0]>

• New set of independent variables

w = w(q, x) :=[ρe−ψ, u, pe−ψ

]>

• We can compute q = q(w, x)

• States for computing numerical flux

qLi+ 1

2

= q(wLi+ 1

2

, xi+ 12), qR

i+ 12

= q(wRi+ 1

2

, xi+ 12)

17 / 37

Page 18: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

1-D finite volume scheme

• First order scheme

wLi+ 1

2

= wi, wRi+ 1

2

= wi+1

• Higher order scheme: Reconstruct w variables, e.g.,

wLi+ 1

2

= wi +1

2m(θ(wi −wi−1), (wi+1 −wi−1)/2, θ(wi+1 −wi))

1. Chandrashekar & Klingenberg, SIAM J. Sci. Comput., Vol. 37, No. 3, 2015

2. Dominik Zoar, Master Thesis, Dept. of Mathematics, Univ. of Wurzburg

18 / 37

Page 19: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Theorem

The finite volume scheme (4) together with a numerical flux whichsatisfies property C and reconstruction of w variables is well-balanced inthe sense that the initial condition given by

ui = 0, pi exp(−ψi) = const, ∀ i (5)

is preserved by the numerical scheme.

uLi+ 1

2

= uRi+ 1

2

= 0, pLi+ 1

2

= pRi+ 1

2

= pi+ 12

d

dt(ρu)i +

fi+ 12− fi− 1

2

∆x= e−ψi

(eψi+1

2 − eψi− 1

2

∆x

)pi

d

dt(ρu)i +

pi+ 12− pi− 1

2

∆x=pi+ 1

2− pi− 1

2

∆x

19 / 37

Page 20: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Approximation of source term

• How to approximate ψi, ψi+ 12

, etc. ? Need some quadrature

• To compute the source term in i’th cell, we define

ψ(x) = −∫ x

xi

φ′(s)RT (s)

ds

• piecewise constant temperature

T (x) = Ti+ 12, xi < x < xi+1 (6)

where Ti+ 12

is the logarithmic average given by

Ti+ 12

=Ti+1 − Ti

log Ti+1 − log Ti

20 / 37

Page 21: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Approximation of source term

• The integrals are evaluated using the approximation of thetemperature given in (6) leading to the following expressions for ψ.

ψi = 0

ψi− 12

= − 1

RTi− 12

∫ xi− 1

2

xi

φ′(s)ds =φi − φi− 1

2

RTi− 12

ψi+ 12

= − 1

RTi+ 12

∫ xi+1

2

xi

φ′(s)ds =φi − φi+ 1

2

RTi+ 12

• Gravitational potential required at faces φi+ 12

φi+ 12

= φ(xi+ 12), φi+ 1

2=

1

2(φi + φi+1)

21 / 37

Page 22: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Approximation of source term

Theorem

The source term discretization is second order accurate.

Theorem

Any hydrostatic solution which is isothermal or polytropic is exactlypreserved by the finite volume scheme (4).

22 / 37

Page 23: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Isothermal examples: well-balanced test

Density and pressure are given by

ρe(x) = pe(x) = exp(−φ(x))

N = 100, 1000, final time = 2

Potential 1 Potential 2 Potential 3

φ(x) x 12x

2 sin(2πx)

Table: Potential functions used for well-balanced tests

23 / 37

Page 24: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Isothermal examples: well-balanced test

Potential Cells Density Velocity Pressure

x 100 8.21676e-15 4.98682e-16 9.19209e-151000 8.00369e-14 1.51719e-14 9.15152e-14

12x

2 100 1.01874e-14 2.49332e-16 1.06837e-141000 1.05202e-13 4.10434e-16 1.11861e-13

sin(2πx) 100 1.12466e-14 5.79978e-16 1.74966e-141000 1.16191e-13 2.93729e-15 1.76361e-13

Table: Error in density, velocity and pressure for isothermal example

24 / 37

Page 25: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Shock tube under gravitational field

Gravitational field

φ(x) = x

The domain is [0, 1] and the initial conditions are given by

(ρ, u, p) =

{(1, 0, 1) x < 1

2

(0.125, 0, 0.1) x > 12

Solid wall boundary conditions. Final time t = 0.2, N = 100, 2000 cells

25 / 37

Page 26: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Shock tube under gravitational field

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1.2

1.4

x

Den

sity

cells = 100cells = 2000

0 0.2 0.4 0.6 0.8 1−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Vel

ocity

cells = 100cells = 2000

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1.2

1.4

x

Pre

ssur

e

cells = 100cells = 2000

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

3.5

x

Ene

rgy

cells = 100cells = 2000

26 / 37

Page 27: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

2-D Scheme

27 / 37

Page 28: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Polytropic hydrostatic solution

pressure perturbation with η = 0.1

well-balanced non well-balanced20 equally spaced contours between -0.03 and +0.03

28 / 37

Page 29: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Polytropic hydrostatic solution

pressure perturbation with η = 0.001

well-balanced non well-balanced20 contours in [-0.00025,+0.00025] 20 contours in [-0.015,+0.0003]

29 / 37

Page 30: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Rayleigh-Taylor instability

t = 0 t = 2.9

t = 3.8 t = 5.0

30 / 37

Page 31: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

More hydrostatic solutions

We will write the hydrostatic solution as

ρe(x) = ρ0α(x), pe(x) = p0β(x)

From hydrostatic condition

p′e(x) = −ρe(x)φ′(x), i.e., φ′(x) = −p0ρ0

β′(x)

α(x)(7)

Isothermal solution

α(x) = β(x) = exp

(−φ(x)

RT0

), ρ0 =

p0RT0

Polytropic solution

α(x) =

[1 +

ν − 1

sνρν−10

(φ0 − φ(x))

]1/(ν−1), β(x) = (α(x))ν

31 / 37

Page 32: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

More hydrostatic solutions

Constant potential temperatureModeling atmosphere: Exner pressure and potential temperature

π =

(p

p0

) γ−1γ

, θ =T

π

Taking the potential φ(x) = gx, we get

α(x) =

[1− (γ − 1)gx

γRθ0

] 1γ−1

, β(x) = (α(x))γ

Specified Brunt-Vaisala frequency (N)For potential φ(x) = gx and specified frequency N where

N2 = gd

dxln(θ) = const θ = θ0 exp(N2x/g)

32 / 37

Page 33: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

More hydrostatic solutions

The equilibrium functions are given by

α(x) = exp(−N2x/g)

[1 +

(γ − 1)g2

γRθ0N2

{exp(−N2x/g)− 1

}] 1γ−1

β(x) =

[1 +

(γ − 1)g2

γRθ0N2

{exp(−N2x/g)− 1

}] γγ−1

Radiation pressure

p = ρRT +1

3aT 4

Tabulated equation of state(ρi, Ti, pi), i = 1, 2, . . .

33 / 37

Page 34: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

1-D Finite Volume Scheme

See Berberich et al., Int. Conf. on Hyperbolic Problems, Aachen, 1-5 Aug., 2016

dqidt

+fi+ 1

2− fi− 1

2

∆x=

0siuisi

Consistent numerical flux

fi+ 12

= f(qLi+ 1

2

, qRi+ 1

2

)

Gravitational source

s(x, t) =p0ρ0

β′(x)

α(x)ρ(x, t)

Central difference discretization

si =p0ρ0

βi+ 12− βi− 1

2

∆x

ρiαi

34 / 37

Page 35: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

1-D Finite Volume Scheme

Define new set of independent variables

w = w(q, x) := [ρ/α, u, p/β]>

Reconstruct w variables and compute

qLi+ 1

2

= q(wLi+ 1

2

, xi+ 12), qR

i+ 12

= q(wRi+ 1

2

, xi+ 12)

Well-balanced property

The finite volume scheme (4) together with any consistent numerical fluxand reconstruction of w variables is well-balanced in the sense that theinitial condition given by

ui = 0, ρi/αi = const, pi/βi = const, ∀ i

is preserved by the numerical scheme.

35 / 37

Page 36: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Remarks

• We must know a priori the hydrostatic state (α(x), β(x))

• Well-balanced scheme for any equation of state

• Extended to curvilinear gridsI Seven-League Hydro Code (https://slh-code.org)

• Extended to unstructured gridsI UG3 code (https://bitbucket.org/cpraveen/ug3/wiki/Home)

36 / 37

Page 37: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Well-balanced DG schemes

37 / 37

Page 38: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Finite element method

Conservation law with source term stationary solution qe

qt + f(q)x = s(q) f(qe)x = s(qe)

Weak formulation: Find q(t) ∈ V such that

d

dt(q, ϕ) + a(q, ϕ) = (s(q), ϕ), ∀ϕ ∈ V

FEM with quadrature: Find qh(t) ∈ Vh such that

d

dt(qh, ϕh)h + ah(qh, ϕh) = (sh(qh), ϕh)h, ∀ϕh ∈ Vh

1 / 30

Page 39: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Finite element and well-balanced

Stationary solution is not a polynomial, qe /∈ Vh.

Let

qe,h = Πh(qe), Πh : V → Vh, interpolation or projection

FEM is well-balanced if

ah(qe,h, ϕh) = (sh(qe,h), ϕh)h, ∀ϕh ∈ Vh

How to construct ah, sh to achieve well-balancing ?

2 / 30

Page 40: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Mesh and basis functions

• Partition domain into disjoint cells

Ci = (xi− 12, xi+ 1

2), ∆xi = xi+ 1

2− xi− 1

2

• Approximate solution inside each cell by a polynomial of degree N

Ii−1 Ii Ii−1

3 / 30

Page 41: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Discontinuous Galerkin Scheme

Consider the single conservation law with source term

∂q

∂t+∂f

∂x= s(q, x)

Solution inside cell Ci is polynomial of degree N

qh(x, t) =

N∑

j=0

qj(t)ϕj(x), qj(t) = qh(xj , t)

Approximate the flux

f(qh) ≈ fh(x, t) =

N∑

j=0

f(qh(xj , t))ϕj(x) =

N∑

j=0

fj(t)ϕj(x)

4 / 30

Page 42: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Discontinuous Galerkin Scheme

Gauss-Lobatto-Legendre quadrature

Ci

φ(x)ψ(x)dx ≈ (φ, ψ)h = ∆xi

N∑

q=0

ωqφ(xq)ψ(xq)

Semi-discrete DG: For 0 ≤ j ≤ N

d

dt(qh, ϕj)h + (∂xfh, ϕj)h +[fi+ 1

2− fh(x−

i+ 12

)]ϕj(x−i+ 1

2

)

−[fi− 12− fh(x+

i− 12

)]ϕj(x+i− 1

2

) = (sh, ϕj)h

(1)

where fi+ 12

= f(q−i+ 1

2

, q+i+ 1

2

) is a numerical flux function. This is also

called a DG Spectral Element Method1.

1See arXiv:1511.08739 for more details.5 / 30

Page 43: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Approximation of source term: isothermal case

Let

Ti = temperature corresponding to the cell average value in cell Ci

Rewrite the source term in the momentum equation as (Xing & Shu)

s = −ρ∂Φ

∂x= ρRTi exp

RTi

)∂

∂xexp

(− Φ

RTi

)

Source term approximation: For x ∈ Ci

sh(x) = ρh(x)RTi exp

(Φ(x)

RTi

)∂

∂x

N∑

j=0

exp

(−Φ(xj)

RTi

)ϕj(x) (2)

Source term in the energy equation

1

ρh(ρu)hsh

6 / 30

Page 44: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Approximation of source term: polytropic case2

Define H(x) inside each cell Ci as

H(x) =ν

ν − 1ln

[ν − 1

ναi(βi − Φ(x))

], x ∈ Ci

αi, βi: constants to be chosen. Rewrite source term

s(x) = −ρ∂Φ

∂x=ν − 1

νρ(βi − Φ(x)) exp(−H(x))

∂xexp(H(x)), x ∈ Ci

Source term approximation: For x ∈ Ci

sh(x) =ν − 1

νρh(x)(βi − Φ(x)) exp(−H(x))

∂x

N∑

j=0

exp(H(xj))ϕj(x)

βi = max0≤j≤N

ν − 1

pjρj

+ Φ(xj)

], αi = pj∗ρ

−νj∗

2with Markus Zenk 7 / 30

Page 45: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Well-balanced property

Well-balanced property

Let the initial condition to the DG scheme (1), (2) be obtained byinterpolating the isothermal/polytropic hydrostatic solutioncorresponding to a continuous gravitational potential Φ. Then thescheme (1), (2) preserves the initial condition under any time integrationscheme.

Proof: For continuous hydrostatic solution, qh(0) is continuous. By fluxconsistency

fi+ 12− fh(x−

i+ 12

) = 0, fi− 12− fh(x+

i− 12

) = 0

Above is true even if density is discontinuous, provided flux satisfiescontact property.

=⇒ density and energy equations are well-balanced

8 / 30

Page 46: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Well-balanced property

Momentum eqn: flux fh has the form

fh(x, t) =

N∑

j=0

pj(t)ϕj(x), pj = pressure at the GLL point xj

Isothermal initial condition, Ti = Te = const. The source term evaluated

9 / 30

Page 47: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Well-balanced property

at any GLL node xk is given by

sh(xk) = ρh(xk)RTe︸ ︷︷ ︸pk

exp

(Φ(xk)

RTe

) N∑

j=0

exp

(−Φ(xj)

RTe

)∂

∂xϕj(xk)

= pk exp

(Φ(xk)

RTe

) N∑

j=0

exp

(−Φ(xj)

RTe

)∂

∂xϕj(xk)

=N∑

j=0

pk exp

(Φ(xk)

RTe

)exp

(−Φ(xj)

RTe

)∂

∂xϕj(xk)

=N∑

j=0

pj exp

(Φ(xj)

RTe

)exp

(−Φ(xj)

RTe

)∂

∂xϕj(xk)

=N∑

j=0

pj∂

∂xϕj(xk) =

∂xfh(xk)

10 / 30

Page 48: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Well-balanced property

Since

∂xfh(xk) = sh(xk) at all the GLL nodes xk

we can conclude that

(∂xfh, ϕj)h = (sh, ϕj)h , 0 ≤ j ≤ N

=⇒ scheme is well-balanced for the momentum equation

The proof for polytropic case is similar.

11 / 30

Page 49: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

2-D Euler equations with gravity

∂q

∂t+∂f

∂x+∂g

∂y= s

q = vector of conserved variables, (f , g) = flux vector and s = sourceterm, given by

q =

ρρuρvE

, f =

ρup+ ρu2

ρuv(E + p)u

, g =

ρvρuv

p+ ρv2

(E + p)v

s =

0

−ρ∂Φ∂x

−ρ∂Φ∂y

−(u∂Φ∂x + v ∂Φ

∂y

)

12 / 30

Page 50: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Mesh and basis functions

A quadrilateral cell K and reference cell K = [0, 1]× [0, 1]

12

3

4

K

x

y

ξ

η

1 2

34

K

TK

1-D GLL points: ξr ∈ [0, 1], 0 ≤ r ≤ NTensor product of GLL points

N = 1 N = 2 N = 3

13 / 30

Page 51: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Numerical Results

14 / 30

Page 52: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

1-D hydrostatic test: Well-balanced property

Potential

Φ = x, Φ = sin(2πx)

Initial state

u = 0, ρ = p = exp(−Φ(x))

Mesh ρu ρ E

25x25 1.03822e-13 2.72604e-14 9.53913e-1450x50 1.04783e-13 2.67559e-14 9.36725e-14

100x100 1.05019e-13 2.66323e-14 9.34503e-14200x200 1.05088e-13 2.66601e-14 9.33861e-14

Table: Well-balanced test on Cartesian mesh using Q1 and potential Φ = y

15 / 30

Page 53: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

1-D hydrostatic test: Well-balanced property

Mesh ρu ρ E

25x25 1.04518e-13 2.7548e-14 9.64205e-1450x50 1.04983e-13 2.69317e-14 9.43158e-14

100x100 1.05069e-13 2.69998e-14 9.39126e-14200x200 1.05089e-13 2.68828e-14 9.462e-14

Table: Well-balanced test on Cartesian mesh using Q2 and potential Φ = x

Mesh ρu ρ E

25x25 9.23424e-13 2.31405e-13 8.16645e-1350x50 9.36459e-13 2.28315e-13 8.04602e-13

100x100 9.39613e-13 2.28001e-13 8.03005e-13200x200 9.40422e-13 2.2792e-13 8.02653e-13

Table: Well-balanced test on Cartesian mesh using Q1 and Φ = sin(2πx)

16 / 30

Page 54: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

1-D hydrostatic test: Well-balanced property

Mesh ρu ρ E

25x25 9.34536e-13 2.35173e-13 8.30316e-1350x50 9.39556e-13 2.29908e-13 8.10055e-13

100x100 9.40442e-13 2.28538e-13 8.04638e-13200x200 9.40668e-13 2.28051e-13 8.0357e-13

Table: Well-balanced test on Cartesian mesh using Q2 and Φ = sin(2πx)

17 / 30

Page 55: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

1-D hydrostatic test: Evolution of perturbations

Potential

Φ(x) = x

Initial condition

u = 0, ρ = exp(−x), p = exp(−x) + η exp(−100(x− 1/2)2)

18 / 30

Page 56: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

1-D hydrostatic test: Evolution of perturbations

0.0 0.2 0.4 0.6 0.8 1.0

x

−0.002

0.000

0.002

0.004

0.006

0.008

0.010

Pre

ssu

rep

ert

urb

ati

on

Initial

100 cells

1000 cells

0.0 0.2 0.4 0.6 0.8 1.0

x

−0.002

0.000

0.002

0.004

0.006

0.008

0.010

Pre

ssu

rep

ert

urb

ati

on

Initial

50 cells

500 cells

(a) (b)

Figure: Evolution of perturbations for η = 10−2: (a) Q1 (b) Q2

19 / 30

Page 57: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

1-D hydrostatic test: Evolution of perturbations

0.0 0.2 0.4 0.6 0.8 1.0

x

−0.00002

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Pre

ssu

rep

ert

urb

ati

on

Initial

100 cells

1000 cells

0.0 0.2 0.4 0.6 0.8 1.0

x

−0.00002

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Pre

ssu

rep

ert

urb

ati

on

Initial

50 cells

500 cells

(a) (b)

Figure: Evolution of perturbations for η = 10−4: (a) Q1 (b) Q2

20 / 30

Page 58: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Shock tube problem

Potential Φ(x) = x and initial condition

(ρ, u, p) =

{(1, 0, 1) x < 1

2

(0.125, 0, 0.1) x > 12

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Den

sity

Q1, 100 cells

Q2, 100 cells

FVM, 2000 cells

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Den

sity

Q1, 200 cells

Q2, 200 cells

FVM, 2000 cells

21 / 30

Page 59: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

2-D hydrostatic test: Well-balanced test

PotentialΦ = x+ y

Hydrostatic solution is given by

ρ = ρ0 exp

(−ρ0g

p0(x+ y)

), p = p0 exp

(−ρ0g

p0(x+ y)

), u = v = 0

ρu ρv ρ E

Q1, 25× 25 9.85926e-14 9.85855e-14 5.32357e-14 1.55361e-13Q1, 50× 50 9.94493e-14 9.94451e-14 5.37084e-14 1.56669e-13Q1, 100× 100 9.96481e-14 9.96474e-14 5.38404e-14 1.57062e-13

Q2, 25× 25 9.9256e-14 9.92682e-14 5.39863e-14 1.57435e-13Q2, 50× 50 9.961e-14 9.96538e-14 5.41091e-14 1.57521e-13Q2, 100× 100 9.95889e-14 9.97907e-14 5.43145e-14 1.57728e-13

22 / 30

Page 60: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

2-D hydrostatic test: Evolution of perturbation

p = p0 exp

(−ρ0g

p0(x+ y)

)+ η exp

(−100

ρ0g

p0[(x− 0.3)2 + (y − 0.3)2]

)

23 / 30

Page 61: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

2-D hydrostatic test: Evolution of perturbation

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

xy

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

(a) (b)

Figure: Pressure perturbation on 50× 50 mesh at time t = 0.15 (a) Q1 (b) Q2.Showing 20 contours lines between −0.0002 to +0.0002

24 / 30

Page 62: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

2-D hydrostatic test: Evolution of perturbation

x

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

xy

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

(a) (b)

Figure: Pressure perturbation on 200× 200 mesh at time t = 0.15 (a) Q1 (b) Q2.Showing 20 contours lines between −0.0002 to +0.0002

25 / 30

Page 63: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

2-D hydrostatic test: Discontinuous density

Ligther fluid on top

26 / 30

Page 64: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

2-D hydrostatic test: Discontinuous density

Heavier fluid on top

27 / 30

Page 65: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Radial Rayleigh-Taylor problem

30× 30 cells 956 cells

28 / 30

Page 66: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Radial Rayleigh-Taylor problem: PerturbationsCartesian mesh of 240× 240 and Q1 basis

29 / 30

Page 67: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Well-balanced versus non well-balanced

(a) (b) (c)Well balanced test for radial Rayleigh-Taylor problem on 50× 50 mesh.(a) Initial density, (b) well-balanced scheme, density at t = 1.5, (c) non

well-balanced scheme, density at t = 1.5

30 / 30

Page 68: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Kinetic energy and entropy consitency

Page 69: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Kinetic energy

Kinetic energy per unit volume

K =1

2⇢u2

satisfies the following equation

d

dt

Z

Kdx =

Z

p@u

@xdx�4

3

Z

µ

✓@u

@x

◆2

dx Z

p@u

@xdx

Work done by pressure forces, absent in incompressible flowsIrreversible destruction due to molecular di↵usion

Note: Convection contributes to only flux of KE across @⌦

Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 10 May 2013 10 / 51

Page 70: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Entropy conditionEntropy-Entropy flux pair: U(u), F (u)

U(u) is strictly convex and U 0(u)f 0(u) = F 0(u)

Then, for hyperbolic problem (Euler equation)

@u

@t+@f

@x= 0 =) U 0(u)

@u

@t+U 0(u)f 0(u)

@u

@x= 0

+@U(u)

@t+@F (u)

@x= 0

For discontinuous solutions, only inequality

@U(u)

@t+@F (u)

@x 0

R⌦

U(u)dx for an isolated system decreases with time

Second law of thermodynamics

Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 10 May 2013 13 / 51

Page 71: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

• Jameson: KE consistent

• Ismail & Roe: Entropy consistent

• KEPEC: Both KE and entropy consistent

• Ch., CICP, vol. 14, no. 5, 2013

• Ray et al., CICP, vol. 19, no. 5, 2016

Euler equations

Page 72: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

FVM for NS equationThe semi-discrete finite volume method for NS equations using thecentered KEP and entropy conservative flux is stable for the kineticenergy and entropy, i.e.,

X

j

�xdKj

dt=

X

j

"�uj+ 1

2

�xpj+ 1

2� 4

✓�uj+ 1

2

�x

◆2#�x

X

j

�uj+ 1

2

�xpj+ 1

2

��x

and

X

j

�xdUj

dt= �

X

j

"8µ�j+ 1

2

3

✓�uj+ 1

2

�x

◆2

+

RTjTj+1

✓�Tj+ 1

2

�x

◆2#�x 0

• Expect good stability property

• No control of density/pressure

Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 10 May 2013 20 / 51

Page 73: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

DNS of 3-D Taylor-Green vortex: central scheme

fj+ 12

= 12(fj + fj+1)

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20

Enst

roph

y

Time

Enstrophy

spectralcentral avg (256x256x256)

0

0.005

0.01

0.015

0.02

0.025

0.03

0 2 4 6 8 10 12 14 16 18 20

Dis

sipa

tion

Rat

e

Time

Dissipation Rate

spectralcentral avg (256x256x256)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10 12 14 16 18 20

KE

Time

Kinetic Energy

spectralcentral avg (256x256x256)

Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 10 May 2013 42 / 1

Page 74: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

DNS of 3-D Taylor-Green vortex

0

1

2

3

4

5

6

7

8

9

10

11

0 5 10 15 20En

stro

phy

Time

Enstrophy

spectralKEPES (128x128x128)KEPES (256x256x256)

Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 10 May 2013 46 / 1

Page 75: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

DNS of 3-D Taylor-Green vortex

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 5 10 15 20

Dis

sipa

tion

Rat

e

Time

Dissipation Rate

spectralKEPES (128x128x128)KEPES (256x256x256)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20KE

Time

Kinetic Energy

spectralKEPES (128x128x128)KEPES (256x256x256)

Praveen. C (TIFR-CAM) KEP/Entropy stable schemes 10 May 2013 47 / 1

Page 76: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Isentropic vortex advection: Density contours

(KEP, 50 ⇥ 50, T=57) (KEP, 100 ⇥ 100, T=87) (KEP4, 50 ⇥ 50, T=100)

(KEP4, 100 ⇥ 100, T=100) (ROE-EC, 100 ⇥ 100, T=100) (Others configs, T=100)

Page 77: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Ideal compressible MHD

w =⇥⇢, ⇢u1, ⇢u2, ⇢u3, E, B1, B2, B3

⇤>

f1 =

266666666664

⇢u1

p + ⇢u21 + 1

2|B|2 � B2

1

⇢u1u2 � B1B2

⇢u1u3 � B1B3

(E + p + 12|B|2)u1 � (u · B)B1

0u1B2 � u2B1

u1B3 � u3B1

377777777775

, f2 =

266666666664

⇢u2

⇢u1u2 � B1B2

p + ⇢u22 + 1

2|B|2 � B2

2

⇢u2u3 � B2B3

(E + p + 12|B|2)u2 � (u · B)B2

u2B1 � u1B2

0u2B3 � u3B2

377777777775

Magnetic field must be divergence free: r · B = 0, an intrinsic property

@

@tr · B = 0

Entropy pair

U = � ⇢s

� � 1, F↵ = � ⇢su↵

� � 1, s = ln(p⇢��) (3)

7 / 28Ch. & Klingenberg, SINUM, vol. 54, issue 2, 2016 Yee & Sjogreen, ICOSAHOM, Rio, June, 2016

Page 78: Structure preserving schemes for conservation laws - TIFR …math.tifrbng.res.in/~praveen/slides/icasc30Nov2016.pdf · Structure preserving schemes for conservation laws Well-balanced

Thank You