structural var modelsmatthieustigler.github.io/lectures/lect8svar.pdf · 2020. 7. 16. · 1...

34
Structural VAR models Matthieu Stigler [email protected] December 9, 2008 Matthieu Stigler [email protected] Structural VAR models December 9, 2008 1 / 33

Upload: others

Post on 17-Aug-2020

10 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Structural VAR models

Matthieu [email protected]

December 9, 2008

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 1 / 33

Page 2: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Lectures list

1 Stationarity

2 ARMA models for stationary variables

3 Some extensions of the ARMA model

4 Non-stationarity

5 Seasonality

6 Non-linearities

7 Multivariate models

8 Structural VAR models

9 Cointegration the Engle and Granger approach

10 Cointegration 2: The Johansen Methodology

11 Multivariate Nonlinearities in VAR models

12 Multivariate Nonlinearities in VECM models

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 2 / 33

Page 3: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

1 Lectures

2 Impulse response function

3 Structural VAR modelsStuctural vector autoregressive model (SVAR)

Choleski decompositionBlanchard-Quah decomposition

Impulse-response functionForecast variance decomposition

4 Impulse response functionStable VAR case

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 3 / 33

Page 4: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

VMA representation

VAR(1) to VMA(∞):

yt = A1yt−1 + εt (1)

= A0 +∞∑i=0

Ai1εt−i (2)

VAR(p) in VAR(1) to VMA(∞):

Yt = A1Yt−1 + Et (3)

=∞∑i=0

Ai1Et−i (4)

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 4 / 33

Page 5: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Interpretation of the VMA(∞) coefficient matrices

From the VMA(∞) of a VAR(1):

yt = A0 +∞∑i=0

Ai1εt−i

Elements of Ai represents effects of unit shocks in the variables after iperiods.Interpretation: the εt can be seen as 1 step-ahead forecast error so arecalled forecasr error impulse responses.

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 5 / 33

Page 6: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

> library(vars)

> data(Canada)

> var<- VAR(Canada[,c("e","rw")], p = 2, type = "const")

> imp<-irf(var, boot=FALSE, ortho=FALSE,n.ahead=200)

> plot(imp)

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 6 / 33

Page 7: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Scaling of the impulse:

rescale the axes with 1 =√σ2

y

Relation with Granger causality:IRF of y1 to yi i 6= 1 is zero if y1 does not Granger cause the othersvariables

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 7 / 33

Page 8: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Cumulated IRF

From MA representation:

yt = A0 +∞∑i=0

Φiεt−i

We now want to know the cumulated impact:Ψn =

∑ni=0 Φi accumulated responses over n periods

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 8 / 33

Page 9: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

problem with the interpretation

Previous assumption: schocks are independent (we force other shocks tobe zero).

But shocks may be correlated! See the var-cov matrix of the residuals.

So impulse is composite effect and interpretation is not direct.

Solution: Create independant (orthogonal) residuals.

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 9 / 33

Page 10: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Triangular and Choleski decomposition of matrices

Theorem (Triangular decomposition)

Any positive definite symmetric matrix A has a unique representation ofthe form:

A = BDB′

where:

B is lower triangle with 1 along the principal diagonal

D is a diagonal matrix

Theorem (Choleski decomposition)

Any positive definite symmetric matrix A has a unique representation:

A = PP′

P is lower triangle with squares roots of D along the diagonal

Choleski decomposition just let P = BD1/2

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 10 / 33

Page 11: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Choleski decomposition with R

> m <- matrix(c(5,1,1,3),2,2);m

[,1] [,2][1,] 5 1[2,] 1 3

> tP <- chol(m);tP

[,1] [,2][1,] 2.236068 0.4472136[2,] 0.000000 1.6733201

> #R gives P'P (and we saw PP')

> t(tP) %*% tP

[,1] [,2][1,] 5 1[2,] 1 3

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 11 / 33

Page 12: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Triangular decomposition with RIt is not available directly so we find it from Choleski by setting:

C has the diag of PB = PC−1

D = CC′

> C<-matrix(0,2,2)

> diag(C)<-diag(tP)

> A<-t(tP)%*%solve(C);A #lower triangle

[,1] [,2][1,] 1.0 0[2,] 0.2 1

> D<-C%*%t(C);D #diagonal

[,1] [,2][1,] 5 0.0[2,] 0 2.8

> A%*%D%*%t(A) #original matrix

[,1] [,2][1,] 5 1[2,] 1 3

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 12 / 33

Page 13: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Orthogonal IRFFrom the VMA:

yt = A0 +∞∑i=0

Φεt−i

Decompose Σε = PP′

where P is lower triangular matrix.Insert PP−1 into the VMA:

yt = A0 +∞∑i=0

ΦiPP−1εt−i

And let:

Θi ≡ ΦiP

wt ≡ P−1εt

So we have:

yt = A0 +∞∑i=0

Θwt−i

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 13 / 33

Page 14: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Orthogonal IRF 2We rewrote

yt = A0 +∞∑i=0

Θwt−i

Proposition

The residuals wt are independant to each other: Var(wt) = I

Proof.

Var(wt) ≡ Σw = Var(P−1εt) = P−1ΣεP−1′= P−1PP

′P−1′

= I

Hence:

Innovations are independant

Variance is one

So unit innovation is just an innovation of size one standard deviation.

The (j,k) element of Θj is assumed to represent the effect on variable j ofa unit innovation of variable k thats has occured i period ago.

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 14 / 33

Page 15: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Orthogonal IRF 3

This orthogonalization is called sometimes Wold

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 15 / 33

Page 16: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Outline

1 Lectures

2 Impulse response function

3 Structural VAR modelsStuctural vector autoregressive model (SVAR)

Choleski decompositionBlanchard-Quah decomposition

Impulse-response functionForecast variance decomposition

4 Impulse response functionStable VAR case

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 16 / 33

Page 17: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

SVAR model

We now study a full system:

yt = δ1 + b12zt + γ11yt−1 + γ12zt−1 + ε1t

zt = δ2 + b21yt + γ21yt−1 + γ22zt−1 + ε2t

In matrix notation:[1 −b12

−b21 1

] [yt

zt

]=

[δ1δ2

]+

[γ11 γ12

γ21 γ22

] [yt−1

zt−1

]+

[ε1tε2t

]Compactly:

Bxt = ∆ + Γxt−1 + εt

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 17 / 33

Page 18: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

From SVAR to VARThis SVAR can be rewritten in a VAR by premultiplicating by B−1:

xt = A0 + A1xt−1 + ut

ut = B−1εt

A0 = B−1∆

A1 = B−1Γ

Under the assumption that the εt from SVAR are white noise, the ut fromVAR have:

Zero mean

fixed variance

individually not autocorelated

Correlated to each other if b12, b21 6= 0

Examine: ut = B−1εt =

u1t = (ε1t − b12ε2t)/(1− b12b21)

u2t = (ε2t − b21ε1t)/(1− b12b21)

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 18 / 33

Page 19: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Problems with the estimation

SVAR: endogeneity problem

VAR to SVAR: unidentification of the structural parameters. Needrestrictions

Example

VAR: 9=2+4+3 parameters (intercept+slope+var/cov)

SVAR: 10=2+2+4+2 parameters (contemp+intercept+slope+var)

We have to make 1 restriction on the structural parameters

Proposition

We need k2−k2 restrictions to identify the SVAR from the VAR.

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 19 / 33

Page 20: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Types of restrictions

Choleski

Triangular

Economic a priori

Blanchard-Quah

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 20 / 33

Page 21: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Choleski restrictions

Remember, by setting:

wt ≡ P−1εt where Σε = PP′

we could go from a VMA with correlated residuals to a VMA with Σw = I :

yt = A0 +∞∑i=0

Θwt−i

This is implicitly a SVAR where B = P:

SVAR: Pxt = ∆ + Γxt−1 + εtVAR: xt = P−1∆ + P−1Γxt−1 + P−1εt = A∗ + A∗xt−1 + ut

The residuals are Σu = Var(P−1ε) = P−1ΣεP−1′= I

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 21 / 33

Page 22: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Triangular restrictions

We can also use the triangular decomposition:

Σε = ADA′

and set B = A so:

SVAR: Axt = ∆ + Γxt−1 + εtVAR: xt = A−1∆ + A−1Γxt−1 + A−1εt = A∗ + A∗xt−1 + ut

The residuals are Σu = Var(Aε) = AΣεA′

= D

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 22 / 33

Page 23: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

IRF

Both triangular or Choleski imply that B is lower triangular:

B =

(1 0

b21 1

)That means that in the SVAR we have set b12 = 0:

yt = δ1 +

=0︷︸︸︷b12 zt + γ11yt−1 + γ12zt−1 + ε1t

zt = δ2 + b21yt + γ21yt−1 + γ22zt−1 + ε2t

This is a kind of exogeneity: we assume that there is nocontemporaneous impact (or Wold causality)of zt to yt

This operation is called ordering of the variables and is made witheconomic arguments.

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 23 / 33

Page 24: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

IRF

With the Choleski decomposition we can now compute the ImpulseResponse Function and interpret it as the impact of shocks of xi to xj .

Problem

The results differ when the ordering is changed!

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 24 / 33

Page 25: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Choleski

Remember the relation between the SVAR residuals ut and the VARresiduals εt :

εt = But

u1t = (ε1t −=0︷︸︸︷b12 ε2t)/(1−

=0︷︸︸︷b12 b21) = ε1t

u2t = (ε2t − b21ε1t)(1−=0︷︸︸︷b12 b21) = ε2t − b21ε1t

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 25 / 33

Page 26: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Other restrictions:

Coefficient: b12 = 0

Variance: Var(ε1t) = 1

Symmetry: b12 = b21

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 26 / 33

Page 27: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Cho decomposition

How do we obtain the B?

Var(ut) = Ω from reduced VAR (estimated)

Define Var(uεt) ≡ Σ in the SVAR (not observed)

Theoretical relationship: ut = B−1εt

So we obtain: Ω = B−1ΣB−1′

If we make further the assumption that Σ = I we have:Ω = B−1B−1′

Under the assumption that P = B−1 is lower triangular matrix, we havethe unique decomposition (Choleski): Ω = PP

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 27 / 33

Page 28: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

SVAR

B0yt = c0 + B1yt−1 + B2yt−2 + · · ·+ Bpyt−p + εt[1 B0;1,2

B0;2,1 1

] [y1,t

y2,t

]=

[c0;1

c0;2

]+

[B1;1,1 B1;1,2

B1;2,1 B1;2,2

] [y1,t−1

y2,t−1

]+

[ε1,t

ε2,t

]

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 28 / 33

Page 29: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Problem: results depend on the ordering of the variables! See sensitivityanalysis during conference: tested for many different variables and obtain

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 29 / 33

Page 30: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

same result. Here same variables but different output.

Outline

1 Lectures

2 Impulse response function

3 Structural VAR modelsStuctural vector autoregressive model (SVAR)

Choleski decompositionBlanchard-Quah decomposition

Impulse-response functionForecast variance decomposition

4 Impulse response functionStable VAR case

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 29 / 33

Page 31: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 30 / 33

Page 32: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Outline

1 Lectures

2 Impulse response function

3 Structural VAR modelsStuctural vector autoregressive model (SVAR)

Choleski decompositionBlanchard-Quah decomposition

Impulse-response functionForecast variance decomposition

4 Impulse response functionStable VAR case

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 31 / 33

Page 33: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Forecast of a VAR(1)

Take the VAR(1):

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 32 / 33

Page 34: Structural VAR modelsmatthieustigler.github.io/Lectures/Lect8SVAR.pdf · 2020. 7. 16. · 1 Lectures 2 Impulse response function 3 Structural VAR models Stuctural vector autoregressive

Outline

1 Lectures

2 Impulse response function

3 Structural VAR modelsStuctural vector autoregressive model (SVAR)

Choleski decompositionBlanchard-Quah decomposition

Impulse-response functionForecast variance decomposition

4 Impulse response functionStable VAR case

Matthieu Stigler [email protected] () Structural VAR models December 9, 2008 33 / 33