structural diversity, reversible scsc transformations flexible ...yan-fang feng, qi tang, kai-liang...

12
Controllable assembly of Cu(II) coordination compounds based on a flexible zwitterionic benzimidazole-dicarboxylate ligand: Synthesis, structural diversity, reversible SCSC transformations and magnetic properties Yan-Fang Feng, Qi Tang, Kai-Liang Luo, Ji-Qing Wu, Zhong Zhang * , Yu-Ning Liang and Fu-Pei Liang * School of Chemistry and Pharmacy of Guangxi Normal University, Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guilin 541004, P. R. China Corresponding authors Zhong Zhang and Fu-Pei Liang E-mail address, telephone and fax numbers of the corresponding authors e-mail: [email protected] [email protected] telephone: +86-773-5854878 fax: +86-773-5832294 † Electronic supplementary information (ESI) available: PXRD patterns (Fig. S1–S4), IR spectra (Fig. S5), images of single crystals (Fig. S6), selected bond distances (Table S1) and selected hydrogen bond parameters (Table S2) for complexes 19. CCDC reference numbers 1551820–1551828 for 19. For ESI and crystallographic data in CIF or other electronic format see Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2017

Upload: others

Post on 01-Nov-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: structural diversity, reversible SCSC transformations flexible ...Yan-Fang Feng, Qi Tang, Kai-Liang Luo, Ji-Qing Wu, Zhong Zhang*, Yu-Ning Liang and Fu-Pei Liang* School of Chemistry

Controllable assembly of Cu(II) coordination compounds based on a

flexible zwitterionic benzimidazole-dicarboxylate ligand: Synthesis,

structural diversity, reversible SCSC transformations

and magnetic properties Yan-Fang Feng, Qi Tang, Kai-Liang Luo, Ji-Qing Wu, Zhong Zhang*, Yu-Ning Liang and

Fu-Pei Liang*

School of Chemistry and Pharmacy of Guangxi Normal University, Key Laboratory for the

Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China),

Guilin 541004, P. R. China

Corresponding authors

Zhong Zhang and Fu-Pei Liang

E-mail address, telephone and fax numbers of the corresponding authors

e-mail: [email protected]

[email protected]

telephone: +86-773-5854878

fax: +86-773-5832294

† Electronic supplementary information (ESI) available: PXRD patterns (Fig. S1–S4),

IR spectra (Fig. S5), images of single crystals (Fig. S6), selected bond distances

(Table S1) and selected hydrogen bond parameters (Table S2) for complexes 1–9.

CCDC reference numbers 1551820–1551828 for 1–9. For ESI and crystallographic

data in CIF or other electronic format see

Electronic Supplementary Material (ESI) for CrystEngComm.This journal is © The Royal Society of Chemistry 2017

Page 2: structural diversity, reversible SCSC transformations flexible ...Yan-Fang Feng, Qi Tang, Kai-Liang Luo, Ji-Qing Wu, Zhong Zhang*, Yu-Ning Liang and Fu-Pei Liang* School of Chemistry

Fig. S1 Powder X-ray diffraction patterns of (a) 3 obtained by recrystallizing 2 in

water at room temperature; (b) as-synthesized 3; (c) simulated 3 from single-crystal

data.

Page 3: structural diversity, reversible SCSC transformations flexible ...Yan-Fang Feng, Qi Tang, Kai-Liang Luo, Ji-Qing Wu, Zhong Zhang*, Yu-Ning Liang and Fu-Pei Liang* School of Chemistry

Fig. S2 Powder X-ray diffraction patterns of (a) 4 obtained by 4 obtained by

recrystallizing 2 in a mixture solution of H2O–CH3CN with its pH value being

adjusted to 5 by aqueous NaOH; (b) as-synthesized 4; (c) simulated 4 from single-

crystal data; (d) 2 obtained by recrystallizing 4 in a mixture solution of H2O–CH3OH

with its pH value being adjusted to 3 by aqueous HNO3; (d) as-synthesized 2; (e)

simulated 2 from single-crystal data.

Page 4: structural diversity, reversible SCSC transformations flexible ...Yan-Fang Feng, Qi Tang, Kai-Liang Luo, Ji-Qing Wu, Zhong Zhang*, Yu-Ning Liang and Fu-Pei Liang* School of Chemistry

Fig. S3 Powder X-ray diffraction patterns of (a) 4 obtained by recrystallizing 3 in a

mixture solution of H2O–CH3CN with its pH value being adjusted to 5 by aqueous

NaOH; (b) as-synthesized 4; (c) simulated 4 from single-crystal data.

Page 5: structural diversity, reversible SCSC transformations flexible ...Yan-Fang Feng, Qi Tang, Kai-Liang Luo, Ji-Qing Wu, Zhong Zhang*, Yu-Ning Liang and Fu-Pei Liang* School of Chemistry

Fig. S4 Powder X-ray diffraction patterns of (a) 6 obtained by dispersing the crystals

of 2 in a mixed solvent of H2O–CH3OH at 80 °C in the presence of SO42–; (b) as-

synthesized 6; (c) simulated 6 from single-crystal data.

Page 6: structural diversity, reversible SCSC transformations flexible ...Yan-Fang Feng, Qi Tang, Kai-Liang Luo, Ji-Qing Wu, Zhong Zhang*, Yu-Ning Liang and Fu-Pei Liang* School of Chemistry

Fig. S5 FT-IR spectra of compounds 1–9.

Page 7: structural diversity, reversible SCSC transformations flexible ...Yan-Fang Feng, Qi Tang, Kai-Liang Luo, Ji-Qing Wu, Zhong Zhang*, Yu-Ning Liang and Fu-Pei Liang* School of Chemistry

Fig. S6 Photograph of the single crystals of compounds 1 and 3 and the single crystal

image of 1 after exposure to water vapor for ten minutes.

1 3 3 from 1

Page 8: structural diversity, reversible SCSC transformations flexible ...Yan-Fang Feng, Qi Tang, Kai-Liang Luo, Ji-Qing Wu, Zhong Zhang*, Yu-Ning Liang and Fu-Pei Liang* School of Chemistry

Table S1. Selected bond lengths (Å) and angles (º) for compounds 1–9.Compound 1Cu1–O1#1 1.972(3) Cu1–O2 1.970(3)Cu1–O3 1.969(3) Cu1–O4#1 1.987(3)Cu1–O5 2.146(3)O1#1–Cu1–O2 167.15(13) O1#1–Cu1–O3 88.93(14)O1#1–Cu1–O4#1 88.54(14) O1#1–Cu1–O5 97.07(14)O2–Cu1–O3 90.44(14) O2–Cu1–O4#1 89.26(14)O2–Cu1–O5 95.58(14) O3–Cu1–O4#1 167.27(13)O3–Cu1–O5 103.06(14) O4#1–Cu1–O5 89.64(14)

Compound 2Cu1–O1 1.969(4) Cu1–O2 1.969(3)Cu1–O3 2.149(6)O1–Cu1–O1#1 89.1(2) O1–Cu1–O2 89.69(15)O1–Cu1–O2#2 168.76(16) O1–Cu1–O3 98.50(18)O2–Cu1–O2#2 89.3(2) O2–Cu1–O3 92.73(18)

Compound 3Cu1–O2 1.968(2) Cu1–O3 1.952(2)Cu1–O5 2.491(2) Cu2–O2#1 2.564(2)Cu2–O4 1.946(2) Cu2–O5 1.932(2)O2–Cu1–O3 89.97(8) O2–Cu1–O5 95.63(8)O2–Cu1–O3#1 90.03(8) O2–Cu1–O5#1 84.37(8)O3–Cu1–O5 92.73(8) O3–Cu1–O5#1 87.27(8)O2#1–Cu1–O4 89.90(8) O2#1–Cu1–O5 83.11(8)O2#2–Cu1–O4 90.10(8) O2#1–Cu1–O5 96.89(8)O4–Cu1–O5 93.16(8) O4–Cu1–O5#3 86.84(8)

Compound 4Cu1–O2 1.954(3) Cu1–O3 2.312(4)Cu1–O7 1.983(4) Cu1–O9 1.972(4)Cu1–O10 1.928(3) Cu2–O4#1 1.973(4)Cu2–O6#1 1.932(3) Cu2–O8 2.282(4)Cu2–O10 1.987(3) Cu2–O10#1 1.973(3)O2–Cu1–O3 91.69(15) O2–Cu1–O7 172.08(14)O2–Cu1–O9 86.30(15) O2–Cu1–O10 94.65(14)O3–Cu1–O7 84.38(15) O3–Cu1–O9 87.65(14)O3–Cu1–O10 97.60(13) O7–Cu1–O9 86.67(16)O7–Cu1–O10 92.69(14) O9–Cu1–O10 174.63(13)

Page 9: structural diversity, reversible SCSC transformations flexible ...Yan-Fang Feng, Qi Tang, Kai-Liang Luo, Ji-Qing Wu, Zhong Zhang*, Yu-Ning Liang and Fu-Pei Liang* School of Chemistry

O4#1–Cu2–O6#1 86.44(15) O4#1–Cu2–O8 84.64(15)O4#1–Cu2–O10 177.02(14) O4#1–Cu2–O10#1 99.69(14)O6#1–Cu2–O8 106.91(15) O6#1–Cu2–O10 93.75(14)O6#1–Cu2–O10#1 156.70(14) O8–Cu2–O10 98.14(13)O8–Cu2–O10#1 96.07(14) O10–Cu2–O10#1 78.99(14)

Compound 5Cu1–O1 1.959(2) Cu1–O2#1 1.968(2)Cu1–O3#1 1.971(2) Cu1–O4 1.972(2)Cu1–O5 2.197(3)O1–Cu1–O2#1 169.02(10) O1–Cu1–O3#1 89.16(11)O1–Cu1–O4 89.73(11) O1–Cu1–O5 98.17(11)O2#1–Cu1–O3#1 89.49(11) O2#1–Cu1–O4 89.55(11)O2#1–Cu1–O5 92.78(11) O3#1–Cu1–O4 169.19(10)O3#1–Cu1–O5 93.13(10) O4–Cu1–O5 97.67(10)

Compound 6Cu1–O2 1.941(2) Cu1–O3 1.958(2)Cu1–O9 1.958(2) Cu1–O10 1.958(2)Cu1–O11 2.407(2) Cu2–O6 1.954(2)Cu2–O7 1.949(2) Cu2–O12 1.954(2)Cu2–O13 1.959(2) Cu2–O14 2.268(2)O2–Cu1–O3 88.36(8) O2–Cu1–O9 87.09(8)O2–Cu1–O10 178.24(8) O2–Cu1–O11 93.25(8)O3–Cu1–O9 175.30(8) O3–Cu1–O10 92.49(8)O3–Cu1–O11 86.73(8) O9–Cu1–O10 92.02(8)O9–Cu1–O11 94.71(8) O10–Cu1–O11 88.33(8)O6–Cu2–O7 88.65(9) O6–Cu2–O12 87.99(8)O6–Cu2–O13 176.05(9) O6–Cu2–O14 90.97(9)O7–Cu2–O12 176.49(9) O7–Cu2–O13 93.45(9)O7–Cu2–O14 90.25(9) O12–Cu2–O13 89.84(9)O12–Cu2–O14 90.83(9) O13–Cu2–O14 92.36(9)

Compound 7Cu1–O1 2.722(2) Cu1–O2 1.971(2)Cu1–Cl1 2.284(1)O1–Cu1–O2 53.39(6) O1–Cu1–Cl 84.19(4)O1–Cu1–O2#1 126.61(6) O1–Cu1–Cl#1 95.81(4)O2–Cu1–Cl1 90.55(6) O2–Cu1–Cl1#1 89.45(6)

Page 10: structural diversity, reversible SCSC transformations flexible ...Yan-Fang Feng, Qi Tang, Kai-Liang Luo, Ji-Qing Wu, Zhong Zhang*, Yu-Ning Liang and Fu-Pei Liang* School of Chemistry

Compound 8Cu1–O1 1.990(1) Cu1–O2#1 1.980(2)Cu1–O3#1 1.981(1) Cu1–O4 1.983(1)Cu1–Cl1 2.450(1)O1–Cu1–O2#1 165.72(6) O1–Cu1–O3#1 89.53(7)O1–Cu1–O4 89.13(6) O2#1–Cu1–O3#1 89.69(7)O2#1–Cu1–O4 88.14(7) O3#1–Cu1–O4 165.82(6)O1–Cu1–Cl1 97.34(4) O2#1–Cu1–Cl1 96.94(5)O3#1–Cu1–Cl1 94.18(5) O4–Cu1–Cl1 100.00(5)

Compound 9Cu1–O1 1.962(3) Cu1–O2#1 1.967(4)Cu1–O3#2 1.966(4) Cu1–O4#3 1.976(3)Cu1–Cl1 2.418(2)O1–Cu1–O2#1 166.26(12) O1–Cu1–O3#2 87.87(17)O1–Cu1–O4#3 89.39(15) O2#1–Cu1–O3#2 89.70(20)O2#1–Cu1–O4#3 87.77(18) O3#2–Cu1–O4#3 166.33(13)O1–Cu1–Cl1 99.85(10) O2#1–Cu1–Cl1 93.88(11)O3#2–Cu1–Cl1 93.55(11) O4#3–Cu1–Cl1 100.03(11)

Symmetry codes for 1: #1 2 −x, 2 − y, 1 − z. for 2: #1 x, y, 1 – z; #1 −x, −y, 1 – z. for 3: #1 1 − x, 1 − y, −z; #2 −x, 1 − y, −z; #3 −1 + x, y, z. for 4: #1 2 − x, 1 − y, 2 − z. for 5: #1 1 − x, 2 − y, 2 − z. for 7: #1 −1 − x, 2 − y, −z. for 8: #1 −x, −y + 1, −z + 1. for 9: #1 −x, 1 − y, 1 − z; #2 x, 1 + y, z; #3 1 − x, −y, 2 − z.

Page 11: structural diversity, reversible SCSC transformations flexible ...Yan-Fang Feng, Qi Tang, Kai-Liang Luo, Ji-Qing Wu, Zhong Zhang*, Yu-Ning Liang and Fu-Pei Liang* School of Chemistry

Table S2. Hydrogen bond distances (Å) and angles (º) for compounds 1–9.D–H∙∙∙A d(D–H) d(H∙∙∙A) d(D∙∙∙A) D–H∙∙∙A

Compound 2

O3–H3A∙∙∙O5#1 0.85 2.40 2.832(17) 112

O6–H6C∙∙∙O7 0.85 2.60 3.03(2) 113

Compound 3

O5–H5C∙∙∙O6#1 0.85 2.22 3.033(5) 159

O5–H5C∙∙∙O8#1 0.85 2.05 2.780(4) 143

O5–H5D∙∙∙O1 0.85 1.73 2.565(3) 167

Compound 4

O9–H9C∙∙∙O8#1 0.85 2.11 2.776(6) 135

O9–H9D∙∙∙O5#2 0.85 1.80 2.633(6) 165

O10–H10∙∙∙O1 0.85 1.78 2.611(6) 164

O15–H15C∙∙∙O17 0.85 2.53 2.611(6) 164

O15–H15D∙∙∙O16#3 0.85 2.11 2.782(18) 136

O17–H17C∙∙∙O12#4 0.85 2.24 3.06(3) 163

O17–H17D∙∙∙O18#3 0.85 2.54 3.22(4) 138

Compound 5

O5–H5C∙∙∙O6#1 0.85 2.00 2.840(6) 171

O5–H5D∙∙∙O9#2 0.85 2.09 2.908(6) 162

Compound 6

O9–H9C∙∙∙O1#1 0.85 2.02 2.844(3) 164

O9–H9D∙∙∙O24#2 0.85 1.79 2.613(3) 162

O10–H10C∙∙∙O19#1 0.85 1.95 2.728(3) 151

O10–H10D∙∙∙O22#2 0.85 1.78 2.623(3) 171

O11–H11C∙∙∙O20 0.85 2.05 2.891(3) 168

O11–H11D∙∙∙O17#2 0.85 2.09 2.765(3) 136

O12–H12C∙∙∙O5#3 0.85 1.89 2.735(3) 176

O12–H12D∙∙∙O21#4 0.85 1.82 2.667(3) 170

Page 12: structural diversity, reversible SCSC transformations flexible ...Yan-Fang Feng, Qi Tang, Kai-Liang Luo, Ji-Qing Wu, Zhong Zhang*, Yu-Ning Liang and Fu-Pei Liang* School of Chemistry

O13–H13C∙∙∙O15#4 0.85 1.95 2.698(3) 147

O13–H13D∙∙∙O25#4 0.85 1.85 2.672(3) 163

O14–H14C∙∙∙O16#5 0.85 2.10 2.841(3) 145

O14–H14D∙∙∙O23#4 0.85 1.93 2.775(3) 174

O15–H15C∙∙∙O8 0.85 2.06 2.912(3) 176

O15–H15D∙∙∙O23#6 0.85 2.11 2.926(3) 162

O17–H17C∙∙∙O23#6 0.85 2.59 3.314(3) 144

O17–H17C∙∙∙O24#6 0.85 2.34 3.109(3) 152

O17–H17D∙∙∙O25 0.85 2.21 2.991(3) 152

O18–H18C∙∙∙O23#6 0.85 2.45 3.029(4) 126

O18–H18D∙∙∙O19 0.85 2.30 2.934(4) 132

O19–H19C∙∙∙O11#2 0.85 2.11 2.894(3) 154

O21–H21C∙∙∙O18 0.85 1.95 2.765(4) 160

O21–H21D∙∙∙O22 0.85 1.95 2.794(3) 174

Compound 7

O3–H3∙∙∙O1#1 0.85 1.76 2.574(2) 160

Compound 8

O5–H5C∙∙∙Cl1#1 0.85 2.38 3.2206(18) 169

O5–H5D∙∙∙Cl1#2 0.85 2.56 3.382(2) 163

Compound 9

O5–H5C∙∙∙O4#1 0.85 2.33 3.036(8) 141

O5–H5D∙∙∙Cl1#2 0.85 2.43 3.008(7) 126

Symmetry codes for 2: #1 y, – x, 1/2 – z. for 3: #1 x, y, –1 + z. for 4: #1 1 – x, 1 – y, 2 – z; #2 – 1 + x, y,

z; #3 x, 1 + y, z; #4 1 – x, 1 – y, 1 – z. for 5: #1 –1 + x, 2/3 – y, 1/2 + z; #2 –1 + x, 1 + y, z. for 6: #1 –x,

1 – y, –z; #2 1 – x, 1 – y, –z; #3 1 – x, 2 – y, 1 – z; #4 1 – x, 1 – y, 1 – z; #5 –x, 1 – y, 1 – z; #6 –1 + x, y,

z. for 7: #1 1 + x, 1 + y, z. for 8: #1 1 – x, – y, 1 – z; #2 1 + x, y, z. for 9: #1 x, 1 + y, z; #2 1 + x, –1 +

y, z.