structural calculations retaining wall at bldg. k maintenance … · 2018-12-07 · structural...

24
Structural Calculations Retaining Wall at Bldg. K Maintenance Yard L.W. Cross Middle School Amphitheater Public Schools Tucson, AZ Prepared for: Breckenridge Group SCI Project No. 18-196

Upload: others

Post on 23-Jan-2020

10 views

Category:

Documents


1 download

TRANSCRIPT

Structural Calculations

Retaining Wall at Bldg. K Maintenance Yard

L.W. Cross Middle School

Amphitheater Public Schools

Tucson, AZ

Prepared for:

Breckenridge Group

SCI Project No. 18-196

Jennifer
Typewriter
10/24/18

SCI Project No. 18-196

Table of Contents

Design Criteria ......................................................................................................... 1

Wind Load Analysis ................................................................................................. 2

Wind Loads Diagram ............................................................................................... 4

Retaining Wall Analysis .......................................................................................... 5

Fence’s Post Revision ............................................................................................. 9

Retaining Wall Section .......................................................................................... 11

Base Plate Design .................................................................................................. 12

Base Plate Anchorage Design .............................................................................. 15

Scope

These calculations pertain only to the design of a cast-in-place concrete retaining wall with maximum retained height of

approximately 5-feet and anchorage design for fence posts spaced at approximately 8-feet on center. A steel fence

(designed and detailed by others) is supported at the top of

wall which is even with the finished grade of the maintenance yard slab. Design of the slab is specifically excluded from the scope of work.

Jennifer
Typewriter
10/24/18

Structural Concepts Inc. Page 1

Consulting Engineers Project 18-196

Phone (520) 721-2324 Fax (520) 885-3507

8230 E. Broadway, Suite W-7, Tucson, Arizona 85710

Design Criteria

CONCRETE

Foundations, Retaining Walls f'c = 3,000 psi

STRUCTURAL STEEL

ASTM A36

Steel Pipe - ASTM A53B or A501

SOIL

soilthatverifytoresponsibleiscontractoranalysis,No soil information available during

properties meets the next design criteria.

Site Class ................................. B

Allowable Bearing Pressure .... 1,500 psf at 1'-6" Depth

Active Pressure ........................ 35 pcf

Passive Pressure ....................... 250 pcf

Coeff. of Friction ..................... 0.30

Lateral Loads

WIND LOADS

IBC 2012 / ASCE 7-10

Wind Load General Requirements (ASCE 7, Chapter 29)

Please refer to wind criteria data on page 2

PROJECT 18-196

Risk Category= II (Table 1.4-1)

Basic Wind Speed V= 115.00 mph (Fig. 26.5-1C)

Wind Loads Parameters

Wind Directionality Factor Kd= 0.85 (Table 26.6-1)

Exposure Category= B (Sec. 26.7)

Topographic Factor Kzt= 1.00 (Sec. 26.8)

Gust Effect Factor G= 0.85 (Sec. 26.9)

Velocity Preassure Exposure Kz= 0.57 (Table 29.3-1)

Velocity Preassure

qz=0.00256(kz)(kzt)(kd)V^2 = 16.40 psf (Eq 29.3-1)

TUCSON, AZ

AMPHI CRO BLDG. K HVAC YARD RETAINING WALL

10-Oct-18

COMMERCIAL

Chapter 29 - Wind Loads in Other Structures

Page 2

Page 3

SCI
Text Box
18-196
SCI
Text Box
MN
SCI
Text Box
10/12/18
Jennifer
Textbox
Retaining Wall Schematic Drawing

52'-8"ft long With Wall Return at both ends

h= ft

s= ft

B= ft

Lr= ft

Lr/s= >1 therefore use reduction factor of= applied to region 0 to S

s/h>0.8 therefore case C, may use reduction factor of (1.8-(s/h))=

B/s= psf

14'-6"ft long With Wall Return at one end

h= ft

s= ft

B= ft

Lr= ft

Lr/s= >2 therefore use reduction factor of= applied to region 0 to S

s/h>0.8 therefore case C, may use reduction factor of (1.8-(s/h))=

B/s= psf

19.64 11.78

0-S 1.409 0.8 - 1.13 1.409 19.64 11.78

0-S 1.409 0.8 0.6 0.68 1.409

0.85 ASD REDUCTION FACTOR= 0.6

LOAD CASE C FACTORS LOAD CASE

A&B

FACTORS

WIND PREASSURE LOADS PER ASD

Case C RED Return (psf)

1.813 qz= 16.4 G=

18.12 10.87

8

8

14.5

52.67

6.583 0.6

s/h= 1 0.8

3s-10s 1.05 0.8 - 0.84 1.3

8

8

52.67

14.5

1.813 0.62

s/h= 1 0.8

1.66 23.16 13.90

24.53 14.72

6.583 qz= 16.4 G= 0.85 ASD REDUCTION FACTOR= 0.6

LOAD CASE C FACTORS LOAD CASE

A&B

FACTORS

WIND PREASSURE LOADS PER ASD

Case C RED Return (psf)

PROJECT 18-196

Wind Loads - MWFRS OTHER STRUCTURES

TUCSON ARIZONA

18-196 AMPHI CRO BLDG. K HVAC Yard Ret. Wall

10-Oct-18

RETAINING WALLS AND FENCING

2S-3S 1.60 0.8 - 1.28 1.3 18.12 10.87

S-2S 2.20 0.8 - 1.76

0-S 3.35 0.8 0.62

� � ������ � �����

� � ������ � �����

Page 4

Page 5

Cantilevered Retaining WallLicensee : STRUCTURAL CONCEPTS INC.Lic. # : KW-06003019

Description : 18-196 CDO BK HVAC RETAINING WALL

18-196 CRO BLDG. K HVAC

Calculations per ACI 318-11, ACI 530-11, IBC 2012,CBC 2013, ASCE 7-105.00

8.000.006.00

1,500.0

35.0

0.035.0 psf/ft

250.0

Criteria Soil DataRetained Height = ftWall height above soil = ft

Heel Active Pressure = psf/ft: 1Slope Behind WallHeight of Soil over Toe

=

inWater height over heel = ft

pcfpcf= 115.00

=

115.00

=

Soil Density, Heel

Toe Active Pressure =Passive Pressure = psf/ft

Allow Soil Bearing = psf

Soil Density, Toe

Soil height to ignoreFriction Coeff btwn Ftg & Soil = 0.300

Vertical component of activeLateral soil pressure options:

NOT USED for Soil Pressure.NOT USED for Sliding Resistance.NOT USED for Overturning Resistance. for passive pressure = 6.00 in

Equivalent Fluid Pressure Method

Surcharge Loads Adjacent Footing Load0.0 Lateral Load = 0.0 plf

0.0

0.00.00.0

Axial Load Applied to StemWall to Ftg CL Dist = 0.00 ft

Wind on Exposed Stem psf14.7=

Lateral Load Applied to StemSurcharge Over Heel = psf Adjacent Footing Load = 0.0 lbs

Axial Dead Load = lbs

Footing Type Line Load

Surcharge Over Toe psfFooting Width = 0.00 ft...Height to Top = 0.00 ftEccentricity = 0.00 in...Height to Bottom = 0.00 ft

Used To Resist Sliding & Overturning

Used for Sliding & Overturning

== 0.0 ftAxial Live Load =

Base Above/Below Soil

lbs

=

Axial Load Eccentricity = =Poisson's Ratio 0.300at Back of Wall

inDesign SummaryWall Stability RatiosOverturning = 2.52 OKSliding = 1.52 OK

Total Bearing Load = 2,762 lbs...resultant ecc. = 8.55 in

Soil Pressure @ Toe = 1,385 psf OKSoil Pressure @ Heel = 0 psf OK

Allowable = 1,500 psfSoil Pressure Less Than Allowable

ACI Factored @ Toe = 1,662 psfACI Factored @ Heel = 0 psfFooting Shear @ Toe = 0.0 psi OKFooting Shear @ Heel = 19.7 psi OK

Allowable = 82.2 psiSliding Calcs (Vertical Component NOT Used)

Lateral Sliding Force = 708.4 lbsless 100% Passive Forceless 100% Friction ForceAdded Force Req'd

....for 1.5 : 1 Stability =0.0=

828.50.0250.0

==

0.0

-lbslbslbs OKlbs OK

-

2ndStem OK

0.00Concrete

10.004#

12.00

0.383881.4

2,861.27,473.0

8.682.2

125.08.50

17.096.006.00

3,000.060,000.0 60,000.0

Stem Construction Top Stem

Design Height Above Ftg = 5.00ftWall Material Above "Ht" = FenceThickness = 0.00inRebar Size = # 7Rebar Spacing = 16.00inRebar Placed at = Edge

Design Datafb/FB + fa/Fa =Total Force @ Section = 117.8lbsMoment....Actual = 471.0ft-lMoment.....Allowable = 0.0ft-lShear.....Actual = 0.0psiShear.....Allowable = 0.0psi

Lap splice if above = 0.00in0.00in

Hook embed into footing 0.00=in

Wall Weight = 0.0

Lap splice if below =

psfRebar Depth 'd' = 0.00in

Concrete Dataf'c = 2,500.0psiFy =

Load FactorsDead Load 1.200Live Load 1.600Earth, H 1.600Wind, W 1.600Seismic, E 1.000

psi

Page 6

SCI
Text Box
Per ACI 318, Sec. 14.3.4, will provide reinf. each face
SCI
Snapshot

Cantilevered Retaining WallLicensee : STRUCTURAL CONCEPTS INC.Lic. # : KW-06003019

Description : 18-196 CDO BK HVAC RETAINING WALL

18-196 CRO BLDG. K HVAC

0.673.42

12.000.000.00

=Min. As % 0.0018

Footing Dimensions & Strengths

f'c = 3,000 psi

Toe Width = ftHeel Width =

Key Distance from ToeKey DepthKey Width = in

= in= 2.00

Footing Thickness = in4.08=

ft

Cover @ Top =2.00 in@ Btm.= 3.00 in

Total Footing Width

= 150.00 pcfFooting Concrete DensityFy = 60,000 psi

Footing Design Results

Key:

=

No key defined

Factored PressureMu' : UpwardMu' : DownwardMu: DesignActual 1-Way ShearAllow 1-Way Shear

Toe: Not req'd, Mu < S * FrNot req'd, Mu < S * Fr

= None Spec'd

==

===

1,66234955

2940.00

82.16

Heel:

000

2,86119.7282.16

HeelToepsfft-lbft-lbft-lbpsipsi

Heel Reinforcing = None Spec'd

Other Acceptable Sizes & SpacingsKey Reinforcing

Toe Reinforcing = None Spec'd

Summary of Overturning & Resisting Forces & Moments.....RESISTING..........OVERTURNING.....

Force Distance Moment Distance MomentItem

Force

Soil Over Heelft-lb

630.0 1,485.6lbs

1,260.0

-39.4Toe Active Pressure

2.00 2.79ftft

4,148.1=Heel Active Pressureft-lblbs

Sloped Soil Over Heel==Surcharge over Heel =

Surcharge Over Heel

=

=

Adjacent Footing Load=Adjacent Footing Load

Axial Dead Load on Stem ==* Axial Live Load on Stem

Soil Over ToeSurcharge Over Toe

Surcharge Over Toe

Load @ Stem Above Soil = 117.8 10.00 1,177.6

==

0.50 -19.7

38.4 0.33 12.8=

==

Stem Weight(s)=

625.0 1.08 677.3Earth @ Stem Transitions

=Footing Weight=

612.6 2.04 1,250.9Key Weight

=

2.00

Added Lateral Load

lbs

= 2,417.9

Vert. Component

Total

=2,761.6 6,089.1

* Axial live load NOT included in total displayed, or used for overturningresistance, but is included for soil pressure calculation.

Total = R.M.

=708.4 O.T.M.

=

Resisting/Overturning Ratio = 2.52Vertical Loads used for Soil Pressure = 2,761.6 lbs

Page 7

2"

3"

1 1/2"

Designer select

all horiz. reinf.

Fence

10.in Conc w/ #4 @ 12.in o/c

6"

1'-0"

8'-0"

5'-0" 5'-0"

8'-0"

13'-0"

8" 3'-5"

4'-1"

Page 8

SCI
Text Box
Both Faces

14.72psf

Pp= 250.#708.39#

1384.9psf

Page 9

Page 10

SCI
Text Box
MN
SCI
Text Box
18-196
SCI
Text Box
10/12/18
SCI
Text Box
Fence Post Review
Jennifer
Textbox
At 6.58' spacing

Page 11

SCI
Text Box
FOR 8FT SPACING USE HSS 4X3X3/16
SCI
Cloud

Structural Concepts Inc8230 E. Broadway

Suite W-7

Tucson, Arizona.

Project

CRO Bldg. K Retaining WallJob Ref.

18-196

Section Sheet no./rev.

1

Calc. by

MNDate

10/17/2018Chk'd by

JMDate App'd by Date

COLUMN BASE PLATE DESIGN

In accordance with AISC 360-10Tedds calculation version 2.1.01

2" 4" 2"

1.5

"5.

0"

1.5"

Plan on baseplate Elevation on baseplate

8.1 kips

1.27 ksi

45.2 kip_in0.9 kips

HSS 4x3x3/16

Bolt diameter - 0.6"Bolt embedment - 8.0"Flange/base weld - 0.1"Web/base weld - 0.1"

Design forces and moments

Axial force; Pu = 0.0 kips; (Compression)

Bending moment; Mu = 45.2 kip_in

Shear force; Fv = 0.9 kips

Eccentricity; e = N = 8.000 in

Anchor bolt to center of plate; f = N/2 - e1 = 2.000 in

Column details

Column section; HSS 4x3x3/16

Depth; d = 4.000 in

Breadth; bf = 3.000 in

Thickness; t = 0.174 in

Baseplate details

Depth; N = 8.000 in

Breadth; B = 8.000 in

Thickness; tp = 0.750 in

Design strength; Fy = 36.0 ksi

Foundation geometry

Member thickness; ha = 20.000 in

Dist center of baseplate to left edge foundation; xce1 = 5.000 in

Dist center of baseplate to right edge foundation; xce2 = 5.000 in

Dist center of baseplate to bot edge foundation; yce1 = 20.000 in

Dist center of baseplate to top edge foundation; yce2 = 20.000 in

Holding down bolt and anchor plate details

Total number of bolts; Nbolt = 4

Bolt diameter; do = 0.625 in

Bolt spacing; sbolt = 5.000 in

Edge distance; e1 = 2.000 in

Minimum tensile strength, base plate; Fy = 36 ksi

Page 12

Structural Concepts Inc8230 E. Broadway

Suite W-7

Tucson, Arizona.

Project

CRO Bldg. K Retaining WallJob Ref.

18-196

Section Sheet no./rev.

2

Calc. by

MNDate

10/17/2018Chk'd by

JMDate App'd by Date

Minimum tensile strength, column; FyCol = 46 ksi

Compressive strength of concrete; f’c = 3 ksi

Safety factors

Compression; c = 2.50

Flexure; b = 1.67

Weld shear; v = 2.00

Plate cantilever dimensions

Area of base plate; A1 = B N = 64.000 in2

Maximum area of supporting surface; A2 = (N + 2 lmin) (B + 2 lmin) = 100.000 in2

Nominal strength of concrete under base plate; Pp = 0.85 f'c A1 min((A2 / A1), 2) = 204.0 kips

Bending line cantilever distance m; m = (N - 0.95 d) / 2 = 2.100 in

Bending line cantilever distance n; n = (B - 0.95 bf) / 2 = 2.575 in

Maximum bending line cantilever; l = max(m, n) = 2.575 in

Check eccentricity

Maximum bearing stress; fp,max = 0.85 f'c / c min((A2 / A1), 2) = 1.27 ksi

Maximum bearing pressure; qmax = fp,max B = 10.2 kips/in

Critical eccentricity; ecrit = N / 2 - Pu / (2 qmax) = 4.000 in

e > ecrit so loads cannot be resisted by bearing alone. Therefore consider as a large moment

Plate dimensions adequate as (f + N/2)2 >= (2 Pu (e + f))/qmax and a real solution for bearing length exists

Bearing length - quadratic solution 1; Y1 = (f + N/2) + ((f + N/2)2 - (2 Mu / qmax)) = 11.209 in

Bearing length - quadratic solution 2; Y2 = (f + N/2) - ((f + N/2)2 - (2 Mu / qmax)) = 0.791 in

Bearing length; Y = min(Y1, Y2) = 0.791 in

Tension force in bolts; Tu = qmax Y - Pu = 8.1 kips

Max tension in single bolt; Trod = Tu / (Nbolt/2) = 4.0 kips

Base plate yielding limit at bearing interface

Required plate thickness; tp,req = ((4 fp,max Y (l - Y/2))/(Fy / b)) = 0.639 in

PASS - Thickness of plate exceeds required thickness

Base plate yielding limit at tension interface

Distance from bolt CL to plate bending lines; x = abs(m - e1) = 0.100 in

Plate thickness required; tp,req = 2.58 ((Tu x)/(B Fy)) = 0.137 in

PASS - Thickness of plate exceeds required thickness

Tension weld

Tension flange weld leg length; twf = 0.1250 in

Effective flange weld width; lTweld,eff = lTweld,eff_ud = 2 in

Tensile load per inch; Rwf = Trod / lTweld,eff = 2.0 kips/in

Electrode classification number; FEXX = 70.0 ksi

Design weld stress; Fnwon = 0.60 FEXX (1.0 + 0.5 (sin(90deg))1.5) / v = 31.500ksi

Design strength of weld per in; Rnfon = Fnwon twf / (2) = 2.8 kips/in

PASS - Available strength of weld exceeds force in tension weld

Local stress on flange; fT,local = (Trod) / (lTweld,eff tf) = 11.590 ksi

Column flange allowable stress; 0.9 FyCol = 41.400 ksi

PASS - Local column capacity exceeds local column stress

Page 13

Structural Concepts Inc8230 E. Broadway

Suite W-7

Tucson, Arizona.

Project

CRO Bldg. K Retaining WallJob Ref.

18-196

Section Sheet no./rev.

3

Calc. by

MNDate

10/17/2018Chk'd by

JMDate App'd by Date

Shear weld

Shear web weld leg length; tww = 0.1250 in

Shear web weld force per in; Rwl = Fv / (2 (d - 2 t)) = 0.128 kips/in

Electrode classification number; FEXX = 70.0 ksi

Design weld stress; Fnwon = 0.60 FEXX (1.0 + 0.5 (sin(0deg))1.5) / v = 21.000ksi

Design strength of weld per in; Rnlon = Fnwon tww / (2) = 1.9 kips/in

PASS - Available strength of shear weld exceeds force in shear weld

Page 14

www.hilti.us Profis Anchor 2.7.9

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

Structural Concepts, Inc.Manuel Naves8230 E. Broadway Blvd, Suite W-75207212324 | [email protected]

Page:Project:Sub-Project I Pos. No.:Date:

1CRO Bldg. K Ret. Wall18-19610/17/2018

Specifier's comments:

1 Input dataAnchor type and diameter: AWS D1.1 GR. B 5/8

Effective embedment depth: hef = 10.000 in.

Material:

Proof: Design method ACI 318-08 / CIP

Stand-off installation: eb = 0.000 in. (no stand-off); t = 0.750 in.

Anchor plate: lx x ly x t = 8.000 in. x 8.000 in. x 0.750 in.; (Recommended plate thickness: not calculated

Profile: Rectangular HSS (AISC); (L x W x T) = 4.000 in. x 3.000 in. x 0.188 in.

Base material: cracked concrete, 3000, fc' = 3,000 psi; h = 48.000 in.

Reinforcement: tension: condition B, shear: condition B;

edge reinforcement: none or < No. 4 barSeismic loads (cat. C, D, E, or F) no

R - user is responsible to ensure a rigid base plate for the entered thickness with appropriate solutions (stiffeners,...)

Geometry [in.] & Loading [lb, in.lb]

Page 15

www.hilti.us Profis Anchor 2.7.9

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

Structural Concepts, Inc.Manuel Naves8230 E. Broadway Blvd, Suite W-75207212324 | [email protected]

Page:Project:Sub-Project I Pos. No.:Date:

2CRO Bldg. K Ret. Wall18-19610/17/2018

2 Load case/Resulting anchor forcesLoad case: Design loads

Anchor reactions [lb]Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y1 4,244 234 234 0

2 0 234 234 03 4,244 234 234 04 0 234 234 0

max. concrete compressive strain: 0.24 [‰] max. concrete compressive stress: 1,051 [psi]resulting tension force in (x/y)=(-2.000/0.000): 8,489 [lb]resulting compression force in (x/y)=(3.327/0.000): 8,489 [lb] Anchor forces based on a rigid base plate assumption!

Tension Compression

1 2

3 4

x

y

3 Tension load Load Nua [lb] Capacity f f f f Nn [lb] Utilization bbbbN = Nua/f f f f Nn Status

Steel Strength* 4,244 14,966 29 OK

Pullout Strength* 4,244 15,456 28 OK

Concrete Breakout Strength** 8,489 8,600 99 OK

Concrete Side-Face Blowout, direction x-** 8,489 22,555 38 OK

* anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength Nsa = Ase,N futa ACI 318-08 Eq. (D-3)f Nsa ≥ Nua ACI 318-08 Eq. (D-1)

Variables

Ase,N [in.2] futa [psi] 0.31 65,000

Calculations

Nsa [lb] 19,955

Results

Nsa [lb] f steel f Nsa [lb] Nua [lb] 19,955 0.750 14,966 4,244

Page 16

www.hilti.us Profis Anchor 2.7.9

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

Structural Concepts, Inc.Manuel Naves8230 E. Broadway Blvd, Suite W-75207212324 | [email protected]

Page:Project:Sub-Project I Pos. No.:Date:

3CRO Bldg. K Ret. Wall18-19610/17/2018

3.2 Pullout Strength NpN = y c,p Np ACI 318-08 Eq. (D-14)Np = 8 Abrg f'c ACI 318-08 Eq. (D-15)f NpN ≥ Nua ACI 318-08 Eq. (D-1)

Variables

y c,p Abrg [in.2] f'c [psi] 1.000 0.92 3,000

Calculations

Np [lb] 22,080

Results

Npn [lb] f concrete f Npn [lb] Nua [lb] 22,080 0.700 15,456 4,244

3.3 Concrete Breakout Strength

Ncbg = (ANcANc0

) y ec,N y ed,N y c,N y cp,N Nb ACI 318-08 Eq. (D-5)

f Ncbg ≥ Nua ACI 318-08 Eq. (D-1)ANc see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b) ANc0 = 9 h2

ef ACI 318-08 Eq. (D-6)

y ec,N = ( 1

1 + 2 e'N

3 hef) ≤ 1.0 ACI 318-08 Eq. (D-9)

y ed,N = 0.7 + 0.3 ( ca,min1.5hef

) ≤ 1.0 ACI 318-08 Eq. (D-11)

y cp,N = MAX(ca,mincac

, 1.5hefcac

) ≤ 1.0 ACI 318-08 Eq. (D-13)

Nb = kc l √f'c h1.5ef ACI 318-08 Eq. (D-7)

Variables

hef [in.] ec1,N [in.] ec2,N [in.] ca,min [in.] y c,N 10.000 0.000 0.000 3.000 1.000

cac [in.] kc l f'c [psi] 0.000 24 1 3,000

Calculations

ANc [in.2] ANc0 [in.2] y ec1,N y ec2,N y ed,N y cp,N Nb [lb] 350.00 900.00 1.000 1.000 0.760 1.000 41,569

Results

Ncbg [lb] f concrete f Ncbg [lb] Nua [lb] 12,286 0.700 8,600 8,489

Page 17

www.hilti.us Profis Anchor 2.7.9

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

Structural Concepts, Inc.Manuel Naves8230 E. Broadway Blvd, Suite W-75207212324 | [email protected]

Page:Project:Sub-Project I Pos. No.:Date:

4CRO Bldg. K Ret. Wall18-19610/17/2018

3.4 Concrete Side-Face Blowout, direction x-

Nsb = 160 ca1 √Abrg l √f'c ACI 318-08 Eq. (D-17)Nsbg = agroup Nsb ACI 318-08 Eq. (D-18)f Nsbg ≥ Nua ACI 318-08 Eq. (D-1)

agroup = (1 + s6 ca1) see ACI 318-08, Part D.5.4.2 Eq. (D-18)

Variables

ca1 [in.] ca2 [in.] Abrg [in.2] l f'c [psi] s [in.] 3.000 - 0.92 1.000 3,000 5.000

Calculations

agroup Nsb [lb] 1.278 25,217

Results

Nsbg [lb] f concrete f Nsbg [lb] Nua,edge [lb] 32,222 0.700 22,555 8,489

Page 18

www.hilti.us Profis Anchor 2.7.9

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

Structural Concepts, Inc.Manuel Naves8230 E. Broadway Blvd, Suite W-75207212324 | [email protected]

Page:Project:Sub-Project I Pos. No.:Date:

5CRO Bldg. K Ret. Wall18-19610/17/2018

4 Shear load Load Vua [lb] Capacity f f f f Vn [lb] Utilization bbbbV = Vua/f f f f Vn Status

Steel Strength* 234 12,971 2 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 936 17,200 6 OK

Concrete edge failure in direction x+** 936 8,428 12 OK

* anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength Vsa = Ase,V futa ACI 318-08 Eq. (D-19)f Vsteel ≥ Vua ACI 318-08 Eq. (D-2)

Variables

Ase,V [in.2] futa [psi] 0.31 65,000

Calculations

Vsa [lb] 19,955

Results

Vsa [lb] f steel f Vsa [lb] Vua [lb] 19,955 0.650 12,971 234

4.2 Pryout Strength

Vcpg = kcp [(ANcANc0

) y ec,N y ed,N y c,N y cp,N Nb] ACI 318-08 Eq. (D-31)

f Vcpg ≥ Vua ACI 318-08 Eq. (D-2)ANc see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b) ANc0 = 9 h2

ef ACI 318-08 Eq. (D-6)

y ec,N = ( 1

1 + 2 e'N

3 hef) ≤ 1.0 ACI 318-08 Eq. (D-9)

y ed,N = 0.7 + 0.3 ( ca,min1.5hef

) ≤ 1.0 ACI 318-08 Eq. (D-11)

y cp,N = MAX(ca,mincac

, 1.5hefcac

) ≤ 1.0 ACI 318-08 Eq. (D-13)

Nb = kc l √f'c h1.5ef ACI 318-08 Eq. (D-7)

Variables

kcp hef [in.] ec1,N [in.] ec2,N [in.] ca,min [in.] 2 10.000 0.000 0.000 3.000

y c,N cac [in.] kc l f'c [psi] 1.000 - 24 1 3,000

Calculations

ANc [in.2] ANc0 [in.2] y ec1,N y ec2,N y ed,N y cp,N Nb [lb] 350.00 900.00 1.000 1.000 0.760 1.000 41,569

Results

Vcpg [lb] f concrete f Vcpg [lb] Vua [lb] 24,572 0.700 17,200 936

Page 19

www.hilti.us Profis Anchor 2.7.9

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

Structural Concepts, Inc.Manuel Naves8230 E. Broadway Blvd, Suite W-75207212324 | [email protected]

Page:Project:Sub-Project I Pos. No.:Date:

6CRO Bldg. K Ret. Wall18-19610/17/2018

4.3 Concrete edge failure in direction x+

Vcbg = (AVcAVc0

) y ec,V y ed,V y c,V y h,V y parallel,V Vb ACI 318-08 Eq. (D-22)

f Vcbg ≥ Vua ACI 318-08 Eq. (D-2)AVc see ACI 318-08, Part D.6.2.1, Fig. RD.6.2.1(b) AVc0 = 4.5 c2

a1 ACI 318-08 Eq. (D-23)

y ec,V = ( 1

1 + 2e'v

3ca1) ≤ 1.0 ACI 318-08 Eq. (D-26)

y ed,V = 0.7 + 0.3( ca21.5ca1

) ≤ 1.0 ACI 318-08 Eq. (D-28)

y h,V = √1.5ca1ha

≥ 1.0 ACI 318-08 Eq. (D-29)

Vb = (8 ( leda)0.2

√da) l √f'c c1.5a1 ACI 318-08 Eq. (D-25)

Variables

ca1 [in.] ca2 [in.] ecV [in.] y c,V ha [in.] 7.000 - 0.000 1.000 48.000

le [in.] l da [in.] f'c [psi] y parallel,V 5.000 1.000 0.625 3,000 1.000

Calculations

AVc [in.2] AVc0 [in.2] y ec,V y ed,V y h,V Vb [lb] 273.00 220.50 1.000 1.000 1.000 9,724

Results

Vcbg [lb] f concrete f Vcbg [lb] Vua [lb] 12,040 0.700 8,428 936

5 Combined tension and shear loads bN bV z Utilization bN,V [%] Status

0.987 0.111 1.000 92 OK

bNV = (bN + bV) / 1.2 <= 1

6 Warnings• The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This

means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility! 

• Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.

• Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!

Fastening meets the design criteria!

Page 20

www.hilti.us Profis Anchor 2.7.9

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

Structural Concepts, Inc.Manuel Naves8230 E. Broadway Blvd, Suite W-75207212324 | [email protected]

Page:Project:Sub-Project I Pos. No.:Date:

7CRO Bldg. K Ret. Wall18-19610/17/2018

Coordinates Anchor in.

Anchor x y c-x c+x c-y c+y

1 -2.000 -2.500 3.000 7.000 - -

2 2.000 -2.500 7.000 3.000 - -3 -2.000 2.500 3.000 7.000 - -4 2.000 2.500 7.000 3.000 - -

7 Installation dataAnchor plate, steel: - Anchor type and diameter: AWS D1.1 GR. B 5/8

Profile: Rectangular HSS (AISC); 4.000 x 3.000 x 0.188 in. Installation torque: -Hole diameter in the fixture: df = 0.688 in. Hole diameter in the base material: - in.Plate thickness (input): 0.750 in. Hole depth in the base material: 10.000 in.Recommended plate thickness: not calculated Minimum thickness of the base material: 10.813 in.

R - user is responsible to ensure a rigid base plate for the entered thickness with appropriate

solutions (stiffeners,...)

1 2

3 4

2.000 4.000 2.000

1.50

05.

000

1.50

0x

y

4.000 4.000

4.00

04.

000

Page 21

www.hilti.us Profis Anchor 2.7.9

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

Structural Concepts, Inc.Manuel Naves8230 E. Broadway Blvd, Suite W-75207212324 | [email protected]

Page:Project:Sub-Project I Pos. No.:Date:

8CRO Bldg. K Ret. Wall18-19610/17/2018

8 Remarks; Your Cooperation Duties• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and

security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

Page 22