strongly-correlated fermions in optical lattices - apparatus · 2020. 7. 15. · pc pid setpoint pd...

1
Apparatus and sequence overview Interferometer setup for superlattice Ultracold 40 K and 87 Rb Optical lattice with tuneable geometry Team members 2001-2016 AOM Ʒ+Ʒ c,X Ʒ+Ʒ ref Coherent Mephisto MOPA 36 NE Nd:YAG 1064 nm optical isolator beam dump thin film polarizer AOM AOM AOM Ʒ+Ʒ c,Z Ʒ Ʒ+Ʒ c,X double AR plate interference phase PD AOM Ʒ+Ʒ c,Y 30:70 plate mirror 50:50 plate fiber x axis fiber y axis fiber z axis Ƶ/2 plate x and y axis Ƶ/4 lattice y imaging x imaging y achromat f=400 mm f=400 mm Gradium f=100 mm f=100 mm intensity Y intensity intensity anamorphic prism pair fiber outcoupler lattice x deconf. x intensity X and X x y z X Y X f=400 mm FORT x f=400 mm f=400 mm f=400 mm CCD CCD cleaning plate RF source Q p,X PhaseTag X RF source Q c,X Carrier X RF source Q r,X Reference X AOM driver AOM X RF source Q p,Y PhaseTag Y RF source Q c,Y Carrier Y RF source Q r,Y Reference Y >> +90dB FM in Y monitor DC Y monitor RF feedback signal AOM driver AOM Y << +30dB Q c,Y Q c,Y Q p,Y Q p,Y PC << +30dB >> +90dB FM in X monitor DC X monitor RF RF source Q mix Mixing down feedback signal GPS 10 MHz Q c,X Q c,X Q p,X Q p,X PD Phase stabilization X Phase stabilization Y PC delay line Laser Intensity fixed intensity variable intensity Laser frequency Q c,X Q p,X Q p,X Q c,Y Q p,Y Q p,Y beat X beat Y Q ref a X beam Y beam 110 112 114 116 118 PD beat frequency (MHz) -90 -80 -70 -60 -50 -40 -30 -20 -10 0 signal power (dBm) beat X beat Y RF source Q i,X IntensityTag X RF source Q c,X Carrier X AOM driver AOM X AM in 0 1 2 3 4 5 beat frequency (MHz) -80 -60 -40 -20 0 20 signal power (dBm) << +30dB DC PID PC setpoint PD >> beat X intensity beat X intensity Intensity stabilisation Beat notes on photodiode Phase lock: RF electronics Superlattice: optical setup on laser table Optical setup on experiment table (old naming convention) (old naming convention) Experiment Theory I ~ 0 I ~ S/2 1.20 1.05 0.90 0.75 0.60 0.45 0.30 0.15 0.00 Density (a.u.) 2 k Superlattice phase calibration Raman-Nath/Kapitza-Dirac diffraction on 87 Rb BEC B x x y MOT QUIC FORT Sympathetic cooling of 40 K with 87 Rb in QUIC 0 9 19 23 time (s) 40 K Nʋ4ɛ10 6 Nʋ1ɛ10 9 Nʋ2ɛ10 6 N=0 87 Rb 2 mm Magnetic coils setup 3 Cloud position Quadrupole coils Ioffe coil Gradient coil Transport coils Glass cell Scale 1:2 4 18 52.5 59.5 4.1 x z y Feshbach coils 0 50 100 150 Position x (px) 0.0 0.5 1.0 OD (a.u.) 0.0 0.5 1.0 OD (a.u.) 0 50 100 150 Position z (px) 100 ɤm x z 400k 40 K 0.078 T/T F 21 nK 6.5 6.6 6.7 6.8 rf endpoint (MHz) 1.0 1.2 1.4 1.6 1.8 2.0 N K (10 6 ) 0 1 2 3 N Rb (10 6 ) 6.5 6.6 6.7 6.8 rf endpoint (MHz) 0.3 0.4 0.5 T K (T F ) 100 150 200 250 T Rb (nK) Degenerate Fermi gas Magnetic gradient for K-Rb mixture in FORT (Quadrupole-Ioffe configuration) (Far-offresonant trap = dipole trap) θ = ϕ = x z x z x z X Z X Cubic Hexagonal Checkerboard Dimers x y z B A B A Optical lattice: 1D bandstructure -1 0 1 0 5 10 15 -1 0 1 -1 0 1 -1 0 1 Quasimomentum q/k lat Energy/E rec V 0 = 0 E rec 2 E rec 20 E rec 6 E rec k x k y x y Brillouin zone Ƶʈ Ƶ k L =4ƺƵ unit cell ʈk L A B a a 1 2D unit cell and Brillouin zone Potential symmetry phase superlattice phase Thilo Stöferle, Henning Moritz, Michael Köhl, Christian Schori, Kenneth Günter, Niels Strohmaier, Robert Jördens, Leticia Tarruell, Daniel Greif, Thomas Uehlinger, Gregor Jotzu, Michael Messer, Rémi Desbuquois, Frederik Görg Rb source Differential pumping tube K source Ion pump Titanium sublimation pump MOT chamber Glass cell 20 cm Magnetic transport Magneto-optical trap (MOT) Microwave evaporation in magnetic trap (QUIC) State preparation Imaging Readout Optical lattice experiment Cooling in dipole trap Preparation of spin mixture Optical molasses Optical pumping time (s) 0 20 30 10 40 50 Ion pump MOT chamber Glass cell x z y Lattice team: Kilian Sandholzer, Joaquín Minguzzi, Anne-Sophie Walter, Konrad Viebahn, and Tilman Esslinger Institute for Quantum Electronics, ETH Zurich Strongly-correlated fermions in optical lattices - apparatus

Upload: others

Post on 19-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Strongly-correlated fermions in optical lattices - apparatus · 2020. 7. 15. · PC PID setpoint PD >> a b beat X intensity beat X intensity Intensity stabilisation Superlattice:

Apparatus and sequence overview

Interferometer setup for superlattice

Ultracold 40K and 87Rb Optical lattice with tuneable geometry

Team members 2001-2016

AOM

+ c,X+ ref

Coherent Mephisto MOPA 36 NE

Nd:YAG 1064 nm

optical isolator

beam dump

thin filmpolarizer

AOM AOM AOM

+ c,Z + c,X

double AR plate

interference phase PD

AOM

+ c,Y

30:70 plate

mirror

50:50 plate

fiberx axis

fiber y axis

fiber z axis

/2 plate

x and y axis

/4

lattice y

imaging x imaging y

achromatf=400 mm

f=400 mm

Gradiumf=100 mm

f=100 mm

intensity Y

intensity

intensity

anamorphicprism pair

fiberoutcoupler

lattice x

deconf. x

intensityX and X

x

yz

XYX

f=400 mm

FORT x

f=400 mm

f=400 mm

f=400 mm

CC

D

CCD

cleaning plate

RF source p,XPhaseTag X

RF source c,XCarrier X

RF source r,XReference X

AOM driver

AOM X

RF source p,YPhaseTag Y

RF source c,YCarrier Y

RF source r,YReference Y

>> +90dB

FM in

Y monitor DC

Y monitor RF

feedback signal

AOM driver

AOM Y

<< +30dB

c,Y

c,Y

p,Y

p,Y

PC

<< +30dB

>> +90dB

FM in

X monitor DC

X monitor RF

RF source mixMixing down

feed

back

si

gnal

GPS 10 MHz

c,X

c,X

p,X

p,X

PD

Phase stabilization X Phase stabilization Y

PC

delayline

Lase

r In

tens

ity

fixed intensityvariable intensity

Laser frequency

c,X

p,X

p,X

c,Y

p,Y

p,Y

beat X

beat Y

ref

a bX beam

Y beam110 112 114 116 118

PD beat frequency (MHz)

-90-80-70-60-50-40-30-20-10

0

sign

alpow

er(d

Bm

)

beat X

beat Y

RF source i,XIntensityTag X

RF source c,XCarrier X

AOM driver

AOM X

AM in

0 1 2 3 4 5

beat frequency (MHz)

-80

-60

-40

-20

0

20

sign

alpow

er(d

Bm

)

<< +30dB

DC

PIDPCsetpoint

PD>>

a b

beat X intensitybeat X intensity

Intensity stabilisation

Beat notes on photodiodePhase lock: RF electronicsSuperlattice: optical setup on laser table Optical setup on experiment table

(old naming convention)

(old naming convention)

Experiment Theory

~ 0

~ /2

1.20

1.05

0.90

0.75

0.60

0.45

0.30

0.15

0.00

Density (a.u.)

2 k�

Superlattice phase calibration

Raman-Nath/Kapitza-Dirac diffraction on 87Rb BEC

Bx

x y

MOT QUIC FORT

Sympathetic cooling of 40K with 87Rb in QUIC

0 9 19 23time (s)

40K

N 4 106

N 1 109

N 2 106

N=0

87Rb

2 mm

Magnetic coils setup

3

Cloud position

Quadrupole coils

Ioffe

coi

l

Gra

dien

t coi

l

Transportcoils

Glasscell

Scale 1:2

4

18

52.5 59.5

4.1

x

z

y

Fesh

bach

coi

ls

0 50 100 150Position x (px)

0.0

0.5

1.0

OD

(a.u

.)

0.0 0.5 1.0OD (a.u.)

0

50

100

150

Posi

tion

z(p

x)

100 m

xz

400k 40K

0.078 T/TF

21 nK

6.5 6.6 6.7 6.8rf endpoint (MHz)

1.0

1.2

1.4

1.6

1.8

2.0N

K(1

06)

0

1

2

3

NRb

(106

)6.5 6.6 6.7 6.8

rf endpoint (MHz)

0.3

0.4

0.5

T K(T

F)

100

150

200

250

T Rb

(nK)

(a) (b)

Degenerate Fermi gas

Magnetic gradient for K-Rb mixture in FORT

(Quadrupole-Ioffe configuration) (Far-offresonant trap = dipole trap)

θ =

ϕ =

x

z

x

z

x

z

X

ZX

Cubic Hexagonal

Checkerboard Dimers

a

b

c

xy

z

BA

BA

Optical lattice: 1D bandstructure

-1 0 10

5

10

15

-1 0 1 -1 0 1 -1 0 1Quasimomentum q/klat

Ener

gy/E

rec

V0 = 0Erec 2 Erec 20 Erec6 Erec

kx

ky

x

y

Brillouin zone kL=4unit cell

kLA Ba

a1

2D unit cell and Brillouin zone

Potential symmetry phase

superlattice phase

Thilo Stöferle, Henning Moritz, Michael Köhl, Christian Schori, Kenneth Günter, Niels Strohmaier, Robert Jördens, Leticia Tarruell, Daniel Greif, Thomas Uehlinger, Gregor Jotzu, Michael Messer, Rémi Desbuquois, Frederik Görg

Rb source

Differential pumping tube

K source

Ion pump

Titanium sublimationpump

MOTchamber

Glass cell20 cm

Mag

netic

tran

spor

t

Mag

neto

-opt

ical

trap

(MO

T)

Mic

rowa

ve e

vapo

ratio

nin

mag

netic

trap

(QU

IC)

Stat

e pr

epar

atio

n

Imag

ing

Read

out

Opt

ical

latti

ce e

xper

imen

t

Coo

ling

in d

ipol

e tra

pPr

epar

atio

n of

spi

n m

ixtu

re

Opt

ical

mol

asse

sO

ptic

al p

umpi

ng

time (s)

0 20 3010 40 50

Ion pump

MOT chamber Glass cell

x

z

y

Lattice team: Kilian Sandholzer, Joaquín Minguzzi, Anne-Sophie Walter, Konrad Viebahn, and Tilman EsslingerInstitute for Quantum Electronics, ETH Zurich

Strongly-correlated fermions in optical lattices - apparatus