strength of materials - summary of equations axial … · bending stresses in composite beams: (13)...

8
1 STRENGTH OF MATERIALS - SUMMARY OF EQUATIONS Axial (normal), shear, bearing stresses, and strains in bars, bolts: (1) A P / = σ , A V / = τ , , L / δ ε = , AE PL load = δ , ε σ / = E , s G ε τ / = (2) strain al Longitudin strain Lateral = u , ) 1 ( 2 u + = E G , L T temp * * = α δ Stresses on inclined planes of axially loaded rods. Rods can be of any shape. A = cross-sectional area of the end of the bar upon which P is applied, not the sloped area: (3) A P x = σ , θ σ σ θ 2 cos x = , A P 2 max = τ , θ θ σ τ θ cos sin x = where θ must be measured from the axis of the bar to θ σ . Strain energy stored in an axially loaded bar, or spring: (4) L EA EA L P U 2 2 2 2 δ = = 2 * 2 deflection k spring U = Stress concentrations: (5) o Kσ σ = max where o σ = P/A, Tc/J, Mc/I, etc. of the reduced section. Torsional stresses and deformations: (6) Circular only: J Tc = τ total TL GJ θ = rate T GJ θ = total rate total T K θ = 33, 000 ( ) 2 Hp T lbft RPM p = T(Nm) = 60*P watts /(2π*RPM) (7) Thin-walled hollow shaft: 2 m T tA τ = where t = thickness of shaft wall, A m = total mean area enclosed within a line drawn through the midpoint of the wall. (8) Moment in a bar bent to a radius ρ: ρ EI M = (9) Bending stresses in beams: S M I Mc = = σ (10) Centroids: ... ... 3 2 1 3 3 2 2 1 1 + + + + + + = A A A y A y A y A y Moments of Inertia: + = 2 0 Ad I I axis neutral (11) Shear stresses in beams: areas of line stress above y A Q where It VQ * = = τ For rolled steel shapes: web A V = max τ typical units - kips/inch 2 (12) Shear flow: I VQ f = typical units - kips/inch θ θ σ P τ θ

Upload: others

Post on 10-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: STRENGTH OF MATERIALS - SUMMARY OF EQUATIONS Axial … · Bending stresses in composite beams: (13) transformed Esoft. I Mc. σ = , transformed Estiff. I nMc. σ = where . Soft Material

1

STRENGTH OF MATERIALS - SUMMARY OF EQUATIONS Axial (normal), shear, bearing stresses, and strains in bars, bolts:

(1) AP /=σ , AV /=τ , 𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑃𝑑𝑑

, L/δε = , AEPL

load =δ , εσ /=E , sG ετ /=

(2) strainalLongitudin

strainLateral−=u ,

)1(2 u+=

EG , LTtemp ** ∆= αδ

Stresses on inclined planes of axially loaded rods. Rods can be of any shape. A = cross-sectional area of the end of the bar upon which P is applied, not the sloped area:

(3)AP

x =σ , θσσθ2cosx= ,

AP

2max =τ , θθστθ cossinx=

where θ must be measured from the axis of the bar to θσ . Strain energy stored in an axially loaded bar, or spring:

(4)L

EAEA

LPU22

22 δ==

2* 2deflectionkspringU =

Stress concentrations: (5) oKσσ =max where oσ = P/A, Tc/J, Mc/I, etc. of the reduced section. Torsional stresses and deformations:

(6) Circular only: J

Tc=τ total

TLGJ

θ = rateT

GJθ = total

ratetotal

TKθ

=

33,000( )2

HpT lbftRPMp

= T(Nm) = 60*Pwatts/(2π*RPM)

(7) Thin-walled hollow shaft: 2 m

TtA

τ = where t = thickness of shaft wall, Am = total mean area enclosed

within a line drawn through the midpoint of the wall.

(8) Moment in a bar bent to a radius ρ: ρEIM =

(9) Bending stresses in beams: SM

IMc

==σ

(10) Centroids: ...

...

321

332211

++++++

=AAA

yAyAyAy Moments of Inertia: ∑ ∑+= 2

0 AdII axisneutral

(11) Shear stresses in beams: areasoflinestressabove yAQwhereIt

VQ *∑==τ

For rolled steel shapes: webAV

=maxτ typical units - kips/inch2

(12) Shear flow: I

VQf = typical units - kips/inch

θ

θσ

Pτθ

lowery
Typewritten Text
J = ( )*d^4 for circular shapes
lowery
Typewritten Text
lowery
Typewritten Text
p/32
lowery
Typewritten Text
lowery
Typewritten Text
lowery
Typewritten Text
lowery
Typewritten Text
lowery
Typewritten Text
lowery
Typewritten Text
lowery
Typewritten Text
lowery
Typewritten Text
Power(Watts) = 2*pi*frequency(cycles/s)*torque(Nm)
lowery
Typewritten Text
lowery
Typewritten Text
lowery
Typewritten Text
Page 2: STRENGTH OF MATERIALS - SUMMARY OF EQUATIONS Axial … · Bending stresses in composite beams: (13) transformed Esoft. I Mc. σ = , transformed Estiff. I nMc. σ = where . Soft Material

2

Bending stresses in composite beams:

(13) dtransforme

Esoft IMc

=σ , dtransforme

Estiff InMc

=σ where MaterialSoft

MaterialStiff

EE

n =

Stress transformation equations. Tension, and shear down, on the left face stresses are positive. Positive angle “theta” must be measured from the left vertical face counterclockwise to the normal stress face.

(14) )2sin()2cos(22

θτθσσσσ

σ xyyxyx

n +−

++

= , )2cos()2sin(2

θτθσσ

τ xyyx

n +−

−=

(15) ( )22

2,1max 22 xyyxyx τ

σσσσσ +

−±

+=

yx

xyprinciple σσ

τθ

−=

2)2tan( ,

xy

yxshear τ

σσθ

2)2tan(

−−=

(16) ( )22

max 2 xyyx τ

σστ +

−±= or

21max

max

στ = or

22max

max

στ =

(17) Mohr’s circle positive sign convention: (18) Stresses in thin-walled cylindrical pressure vessels:

tpr

hoop =σ , t

prallongitudin 2

=σ , t

pr2max =τ

(19) Stresses in thin-walled spherical pressure vessels: t

prallongitudinandhoop 2

=σ , t

pr4max =τ

(20) Beam deflections: Direct integration: Mdx

ydEI =2

2

, ∫=EI

Mmdxδ , or use superposition and

tables. M = moment equation due to the real loading, m = moment equation due to a unit load.

(21) Column buckling: 2

2

effLEIPcr p

= 2

2

)/( rLE

effcritical

pσ =

+=

EAP

rL

rec

AP

2sec1 2maxσ

AIr =

Pinned-pinned Leff = 1.0, Fixed-free = 2.0, Fixed-pinned = 0.7 (22) Irectangle = bh3/12, Icircle = pr4/4, Jcircle = pr4/2, (23) Esteel = 29,000 ksi, Ebrass = 15,000 ksi, Econcrete = 4,000 ksi 𝛔 = normal stress, 𝛆 = normal strain, 𝛅 = deflection, 𝛔bearing = bearing stress, 𝛕 = shear stress, P and V = normal and shear loads, A = cross sectional area, E = modulus of elasticity, G = shear modulus of elasticity, μ = Poisson’s ratio, α = coefficient of thermal expansion, ∆T = change in temperature, T = torque, θ = angle of rotation (radians), ρ = radius of curvature, I = moment of inertia, J = polar moment of inertia, c = distance from centroid to an outer fiber, S = section modulus = I/c, ybar = distance from a reference axis to the neutral axis, r = radius of gyration, Pcr = critical buckling load, Leff = effective length of the column, p = internal tank pressure, r = mean radius of tank, t = tank wall thickness.

σn

σy

τxy

σx

τn

o

τxy

lowery
Typewritten Text
Fixed-Fixed = 0.5
Page 3: STRENGTH OF MATERIALS - SUMMARY OF EQUATIONS Axial … · Bending stresses in composite beams: (13) transformed Esoft. I Mc. σ = , transformed Estiff. I nMc. σ = where . Soft Material
Page 4: STRENGTH OF MATERIALS - SUMMARY OF EQUATIONS Axial … · Bending stresses in composite beams: (13) transformed Esoft. I Mc. σ = , transformed Estiff. I nMc. σ = where . Soft Material

W Shapes Dimensions and Properties 

   Area  Depth  Web  Flange  Flange  Axis X‐X  Axis Y‐Y 

   A   d   tw  bf  tf  I  S  r  Z  I  r 

Shape  in^2  In  In  In  In  In^4  In^3  In  In^3  In^4  In 

W24X68  20.1  23.7  0.415  8.97  0.585  1830  154  9.55  177  70.4  1.87 

W24X62  18.2  23.7  0.43  7.04  0.59  1550  131  9.23  153  34.5  1.38 

W24X55  16.3  23.6  0.395  7.01  0.505  1350  114  9.11  134  29.1  1.34 

W21X73  21.5  21.2  0.455  8.3  0.74  1600  151  8.64  172  70.6  1.81 

W21X68  20  21.1  0.43  8.27  0.685  1480  140  8.6  160  64.7  1.8 

W21X62  18.3  21  0.4  8.24  0.615  1330  127  8.54  144  57.5  1.77 

W21X55  16.2  20.8  0.375  8.22  0.522  1140  110  8.4  126  48.4  1.73 

W21X57  16.7  21.1  0.405  6.56  0.65  1170  111  8.36  129  30.6  1.35 

W21X50  14.7  20.8  0.38  6.53  0.535  984  94.5  8.18  110  24.9  1.3 

W21X48  14.1  20.6  0.35  8.14  0.43  959  93  8.24  107  38.7  1.66 

W21X44  13  20.7  0.35  6.5  0.45  843  81.6  8.06  95.4  20.7  1.26 

W18X71  20.8  18.5  0.495  7.64  0.81  1170  127  7.5  146  60.3  1.7 

W18X65  19.1  18.4  0.45  7.59  0.75  1070  117  7.49  133  54.8  1.69 

W18X60  17.6  18.2  0.415  7.56  0.695  984  108  7.47  123  50.1  1.68 

W18X55  16.2  18.1  0.39  7.53  0.63  890  98.3  7.41  112  44.9  1.67 

W18X50  14.7  18  0.355  7.5  0.57  800  88.9  7.38  101  40.1  1.65 

W18X46  13.5  18.1  0.36  6.06  0.605  712  78.8  7.25  90.7  22.5  1.29 

W18X40  11.8  17.9  0.315  6.02  0.525  612  68.4  7.21  78.4  19.1  1.27 

W16X67  19.7  16.3  0.395  10.2  0.67  954  117  6.96  130  119  2.46 

W16X57  16.8  16.4  0.43  7.12  0.715  758  92.2  6.72  105  43.1  1.6 

W16X50  14.7  16.3  0.38  7.07  0.63  659  81  6.68  92  37.2  1.59 

W16X45  13.3  16.1  0.345  7.04  0.565  586  72.7  6.65  82.3  32.8  1.57 

W16X40  11.8  16  0.305  7  0.505  518  64.7  6.63  73  28.9  1.57 

W16X36  10.6  15.9  0.295  6.99  0.43  448  56.5  6.51  64  24.5  1.52 

W14X74  21.8  14.2  0.45  10.1  0.785  795  112  6.04  126  134  2.48 

W14X68  20  14  0.415  10  0.72  722  103  6.01  115  121  2.46 

W14X61  17.9  13.9  0.375  9.99  0.645  640  92.1  5.98  102  107  2.45 

W14X53  15.6  13.9  0.37  8.06  0.66  541  77.8  5.89  87.1  57.7  1.92 

W14X48  14.1  13.8  0.34  8.03  0.595  484  70.2  5.85  78.4  51.4  1.91 

W12X79  23.2  12.4  0.47  12.1  0.735  662  107  5.34  119  216  3.05 

W12X72  21.1  12.3  0.43  12  0.67  597  97.4  5.31  108  195  3.04 

W12X65  19.1  12.1  0.39  12  0.605  533  87.9  5.28  96.8  174  3.02 

W12X58  17  12.2  0.36  10  0.64  475  78  5.28  86.4  107  2.51 

W12X53  15.6  12.1  0.345  9.99  0.575  425  70.6  5.23  77.9  95.8  2.48 

W12X50  14.6  12.2  0.37  8.08  0.64  391  64.2  5.18  71.9  56.3  1.96 

W12X45  13.1  12.1  0.335  8.05  0.575  348  57.7  5.15  64.2  50  1.95 

W12X40  11.7  11.9  0.295  8.01  0.515  307  51.5  5.13  57  44.1  1.94 

W10x60  17.6  10.2  0.42  10.1  0.68  341  66.7  4.39  74.6  116  2.57 

W10x54  15.8  10.1  0.37  10  0.615  303  60  4.37  66.6  103  2.56 

W10x49  14.4  10  0.34  10  0.56  272  54.6  4.35  60.4  93.4  2.54 

W10x45  13.3  10.1  0.35  8.02  0.62  248  49.1  4.32  54.9  53.4  2.01 

W10x39  11.5  9.92  0.315  7.99  0.53  209  42.1  4.27  46.8  45  1.98 

Page 5: STRENGTH OF MATERIALS - SUMMARY OF EQUATIONS Axial … · Bending stresses in composite beams: (13) transformed Esoft. I Mc. σ = , transformed Estiff. I nMc. σ = where . Soft Material
lowery
Typewritten Text
If given a range of numbers, use largest.
Page 6: STRENGTH OF MATERIALS - SUMMARY OF EQUATIONS Axial … · Bending stresses in composite beams: (13) transformed Esoft. I Mc. σ = , transformed Estiff. I nMc. σ = where . Soft Material
lowery
Typewritten Text
If given a range of numbers, use largest listed.
Page 7: STRENGTH OF MATERIALS - SUMMARY OF EQUATIONS Axial … · Bending stresses in composite beams: (13) transformed Esoft. I Mc. σ = , transformed Estiff. I nMc. σ = where . Soft Material
lowery
Typewritten Text
If given a range of numbers, use largest.
Page 8: STRENGTH OF MATERIALS - SUMMARY OF EQUATIONS Axial … · Bending stresses in composite beams: (13) transformed Esoft. I Mc. σ = , transformed Estiff. I nMc. σ = where . Soft Material

(a)

0.5

BUCKLED SHAPE OF COLUMN ISSHOWN BY DASHED LINE.

TABLE C-A-7.1APPROXIMATE VALUES OF EFFECTIVE LENGTH FACTOR, K

THEORETICAL K VALUE

END CONDITION CODE

RECOMMENDED DESIGNVALUE WHEN IDEAL CONDITIONSARE APPROXIMATED

0.7 1.0 1.0 2.0 2.0

0.65 0.80 1.2 1.0 2.10 2.0

(b) (c)

ROTATION FIXED AND TRANSLATION FIXED

ROTATION FREE AND TRANSLATION FIXED

ROTATION FIXED AND TRANSLATION FREE

ROTATION FREE AND TRANSLATION FREE

(d) (e) ( f )