strength calculation

87
No. DESCRIPTION PAGE 1. DESIGN DATA --------------------------------------------------------------- 3 2. SETTING SUMMARY ------------------------------------------------------------- 4 ~ 5 3. PRESSURE SUMMARY ------------------------------------------------------------ 6 ~ 7 4. HYDROSTATIC TEST PRESSURE --------------------------------------------------- 8 ~ 9 5. THICKNESS SUMMARY ----------------------------------------------------------- 10 6. NOZZLE SCHEDULE ------------------------------------------------------------- 11 7. NOZZLE SUMMARY -------------------------------------------------------------- 12 8. SHELL & HEAD ---------------------------------------------------------------- 13 ~ 23 9. NOZZLE NECK & REINFORCEMENT PAD & WRC107 ------------------------------------ 24 ~ 55 10. WEIGHT SUMMARY -------------------------------------------------------------- 56 11. SUPPORT SADDLE UNDER EXTERNAL LOAD (INCLUDED SEISMIC LOAD)------------------- 57 ~ 61 12. LIFTING LUG ----------------------------------------------------------------- 62 ~ 67 13. NOZZLE LOADS ---------------------------------------------------------------- 68 ~ 85 14. MANHOLE DAVIT --------------------------------------------------------------- 86 ~ 88 - CONTENTS - 2/88

Upload: anonymous-b1aoosmrmi

Post on 29-Jan-2016

99 views

Category:

Documents


3 download

DESCRIPTION

Strength Calculation

TRANSCRIPT

Page 1: Strength Calculation

No. DESCRIPTION PAGE

1. DESIGN DATA --------------------------------------------------------------- 3

2. SETTING SUMMARY ------------------------------------------------------------- 4 ~ 5

3. PRESSURE SUMMARY ------------------------------------------------------------ 6 ~ 7

4. HYDROSTATIC TEST PRESSURE --------------------------------------------------- 8 ~ 9

5. THICKNESS SUMMARY ----------------------------------------------------------- 10

6. NOZZLE SCHEDULE ------------------------------------------------------------- 11

7. NOZZLE SUMMARY -------------------------------------------------------------- 12

8. SHELL & HEAD ---------------------------------------------------------------- 13 ~ 23

9. NOZZLE NECK & REINFORCEMENT PAD & WRC107 ------------------------------------ 24 ~ 55

10. WEIGHT SUMMARY -------------------------------------------------------------- 56

11. SUPPORT SADDLE UNDER EXTERNAL LOAD (INCLUDED SEISMIC LOAD)------------------- 57 ~ 61

12. LIFTING LUG ----------------------------------------------------------------- 62 ~ 67

13. NOZZLE LOADS ---------------------------------------------------------------- 68 ~ 85

14. MANHOLE DAVIT --------------------------------------------------------------- 86 ~ 88

- CONTENTS -

2/88

Page 2: Strength Calculation

CODE YES (ASME U)

ITEM NO.

ITEM NAME H-SADDLE

UNIT

-

M3

-

INT. KG/CM2.G(Mpa)

EXT. KG/CM2.G(Mpa)

KG/CM2.G(Mpa)

KG/CM2.G(Mpa)

SHOP KG/CM2.G(Mpa)

FIELD KG/CM2.G(Mpa)

KG/CM2.G(Mpa)

-

KG/CM2.G(Mpa)

-

-

KG/CM2.G(Mpa)

MM

-

-

-

MM

MM

-

-

-

-

MM

-

- MATERIAL

SHELL SA516-65N

HEAD SA516-65N

TEST FULL WATER

1150 LIQUID LEVEL

OPERATING

SEISMIC DESIGN IBC 2009, (I=1.25, R=3, Sds:0.284, Sd1:0.075

TYPE OF HEAD 2 :1 ELLIP

FIRE PROOFING NO

WIND DESIGN N/A

STRESS RELIEF (HEAD) YES (BOOT HEAD ONLY)

INSULATION NO

RADIOGRAPHY (SHELL/HEAD) SOPT / FULL

JOINT EFFICIENCY (SHELL/HEAD) 0.85 / 1.0

P.W.H.T NO

CORROSION ALLOWANCE 3

M.A.E.P 2.64(0.259)

M.D.M.T 7

M.A.P NEW & COLD19.55 (1.917)

AT HAED

M.A.W.P HOT & CORRODED13.48 (1.322)

AT HAED

0 (0)

PNEUM. TEST -

HYDRO. TEST25.42 (2.493)

17.52 (1.718)

TEMPERATURE DESIGN (INT./EXT.) 87 / 87

OPERATING 45

DESIGN3.5 (0.343)

H.V

OPERATING

SPECIFIC GRAVITY 0.74

CAPACITY 5.5

SHELL SIDE

FLUID GASOLINE

D E S I G N D A T A

ASME SEC. VIII DIV.1 2007 ED. + 2009 ADD. CODE STAMP

1041-D-042

PRESSURE

GASOLIN 91/95/98 CLOSED DRAIN DRUM TYPE

SIZE(mmxmm) 1300 I.D x 4000 TL TO TL

STRENGTH CALCULATION SHEETFOR PRESSURE VESSEL

3/88

Page 3: Strength Calculation

Settings Summary COMPRESS Build 7010

Units: MKS Datum Line Location: -38.00 mm from right seam Design ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric Design or Rating: Get Thickness from PressureMinimum thickness: 6.0 mm + C.ADesign for cold shut down only: NoDesign for lethal service (full radiography required): NoDesign nozzles for: Larger of MAWP or MAPCorrosion weight loss: 100% of theoretical lossUG-23 Stress Increase: 1.00Skirt/legs stress increase: 1.0Minimum nozzle projection: 192 mmJuncture calculations for > 30 only:   YesPreheat P-No 1 Materials > 1.25" and <= 1.50" thick: NoUG-37(a) shell tr calculation considers longitudinal stress: NoButt welds are tapered per Figure UCS-66.3(a). Hydro/Pneumatic Test Shop Hydrotest at user defined pressure Test liquid specific gravity: 1.00Field Hydrotest Pressure: 1.3 times vessel MAWPWind load present @ field: 75% of design Maximum stress during test: 90% of yield Required Marking - UG-116 UG-116 (e) Radiography: RT4 UG-116 (f) Postweld heat treatment: None Code Cases\Interpretations Use Code Case 2547: No Apply interpretation VIII-1-83-66: Yes Apply interpretation VIII-1-86-175: Yes Apply interpretation VIII-1-83-115: Yes Apply interpretation VIII-1-01-37: Yes No UCS-66.1 MDMT reduction: No No UCS-68(c) MDMT reduction: No Disallow UG-20(f) exemptions: No UG-22 Loadings UG-22 (a) Internal or External Design Pressure : YesUG-22 (b) Weight of the vessel and normal contents under operating or test conditions: YesUG-22 (c) Superimposed static reactions from weight of attached equipment (external loads): YesUG-22 (d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs: YesUG-22 (f) Wind reactions: NoUG-22 (f) Seismic reactions: YesUG-22 (j) Test pressure and coincident static head acting during the test: YesNote: UG-22 (b),(c) and (f) loads only considered when supports are present.

4/88

Page 4: Strength Calculation

NOTES: 1.

TABLE OF LOADING CASES AND LODE COMBINNATIONS

5/88

Page 5: Strength Calculation

Pressure Summary Pressure Summary for Chamber bounded by RIGHT HEAD and LEFT HEAD

Identifier P

Design ( kg/cm2)

TDesign( °C)

MAWP( kg/cm2)

MAP ( kg/cm2)

MAEP( kg/cm2)

Teexternal

( °C) MDMT

( °C) MDMT

Exemption ImpactTested

LEFT HEAD 3.5 87 13.48 19.55 4.22 87 -48 Note 1 No

Straight Flange on LEFT HEAD 3.5 87 19.72 25.8 2.64 87 -48 Note 2 No

SHELL 3.5 87 16.75 21.93 2.64 87 -48 Note 3 No

Straight Flange on RIGHT HEAD 3.5 87 19.72 25.8 2.64 87 -48 Note 2 No

RIGHT HEAD 3.5 87 13.48 19.55 4.22 87 -48 Note 1 No

BOOT SHELL 3.5 87 42.65 55.95 23.27 87 -105 Note 19 No

Straight Flange on BOOT HEAD 3.5 87 50.21 65.82 23.27 87 -105 Note 20 No

BOOT HEAD 3.5 87 41.86 57.44 19.19 87 -105 Note 11 No

SADDLE 3.5 87 13.48 N/A N/A N/A N/A N/A N/A

INLET (A) 3.5 87 13.48 19.55 2.64 87 -48 Nozzle Note 4 No

Pad Note 5 No

OUTLET TO ATM (B2) 3.5 87 13.48 19.55 2.64 87 -48 Nozzle Note 6 No

Pad Note 7 No

PUMP OUT CONNECTION (B3) 3.5 87 13.48 19.55 2.64 87 -49 Note 8 No

BOOT SHELL (BOOT) 3.5 87 13.48 19.55 2.64 87 -48 Nozzle Note 9 No

Pad Note 10 No

DRAIN (D) 3.5 87 13.48 19.55 19.19 87 -49 Note 12 No

LEVEL TRANSMITTER (L1) 3.5 87 13.48 19.55 2.64 87 -48 Nozzle Note

13 No

Pad Note 7 No

LEVEL TRANSMITTER (L2) 3.5 87 13.48 19.55 2.64 87 -48 Nozzle Note

13 No

Pad Note 7 No

MANWAY (M1) 3.5 87 13.48 19.55 2.64 87 -47.83 Nozzle Note

14 No

Pad Note 15 No

PUMP CONNECTION NOZZLE (M2) 3.5 87 13.48 19.55 2.64 87 -48

Nozzle Note 16 No

Pad Note 7 No

NITROGEN CONNECTION (N1) 3.5 87 13.48 19.55 2.64 87 -49 Note 8 No

PRESSURE TRANSMITTER (P) 3.5 87 13.48 19.55 2.64 87 -49 Note 8 No

STEAM OUT (S) 3.5 87 13.48 19.55 2.64 87 -49 Note 17 No

TEMPERATURE TRANSMITTER (T) 3.5 87 13.48 19.55 2.64 87 -49 Note 8 No

UTILITY CONNECTION (UC) 3.5 87 13.48 19.55 2.64 87 -48 Nozzle Note

18 No

Pad Note 7 No

VESSEL VENT (V) 3.5 87 13.48 19.55 2.64 87 -49 Note 8 NoChamber design MDMT is 7 °C Chamber rated MDMT is -47.83 °C @ 13.48 kg/cm2 Chamber MAWP hot & corroded is 13.48 kg/cm2 @ 87 °C Chamber MAP cold & new is 19.55 kg/cm2 @ 21 °C Chamber MAEP is 2.64 kg/cm2 @ 87 °C Vacuum rings did not govern the external pressure rating.

6/88

Page 6: Strength Calculation

Notes for MDMT Rating: Note # Exemption Details

1. Material impact test exemption temperature from Fig UCS-66M Curve D = -48 °C UCS-66 governing thickness = 9.75 mm

2. Material impact test exemption temperature from Fig UCS-66M Curve D = -47.63 °CFig UCS-66.1M MDMT reduction = 17.8 °C, (coincident ratio = 0.68269) Rated MDMT is governed by UCS-66(b)(2)

UCS-66 governing thickness = 13 mm

3. Material impact test exemption temperature from Fig UCS-66M Curve D = -47.63 °CFig UCS-66.1M MDMT reduction = 17.7 °C, (coincident ratio = 0.6834465) Rated MDMT is governed by UCS-66(b)(2)

UCS-66 governing thickness = 13 mm

4. Nozzle is impact tested to -48 °C (UCS-66(g)) UCS-66 governing thickness = 11.11 mm.

5. Pad impact test exemption temperature from Fig UCS-66M Curve D = -48 °CFig UCS-66.1M MDMT reduction = 0.3 °C, (coincident ratio = 0.99425) Rated MDMT is governed by UCS-66(b)(2)

UCS-66 governing thickness = 11.11 mm.

6. Nozzle is impact tested to -48 °C (UCS-66(g)) UCS-66 governing thickness = 13 mm.

7. Pad impact test exemption temperature from Fig UCS-66M Curve D = -47.63 °CFig UCS-66.1M MDMT reduction = 18 °C, (coincident ratio = 0.67837) Rated MDMT is governed by UCS-66(b)(2)

UCS-66 governing thickness = 13 mm.

8. Nozzle is impact tested to -49 °C (UCS-66(g)) UCS-66 governing thickness = 13 mm.

9. Nozzle is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.26452).

10. Pad impact test exemption temperature from Fig UCS-66M Curve D = -47.63 °CFig UCS-66.1M MDMT reduction = 17.8 °C, (coincident ratio = 0.68273) Rated MDMT is governed by UCS-66(b)(2)

UCS-66 governing thickness = 13 mm.

11. Material is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.32442)

12. Flange rating governs: Flange impact tested to -49°C (UCS-66(g)) UG-84 provisions apply

13. Nozzle is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.08208).

14. Nozzle impact test exemption temperature from Fig UCS-66M Curve D = -47.63 °CFig UCS-66.1M MDMT reduction = 0.2 °C, (coincident ratio = 0.99643) UCS-66 governing thickness = 13 mm.

15. Pad impact test exemption temperature from Fig UCS-66M Curve D = -47.63 °CFig UCS-66.1M MDMT reduction = 0.2 °C, (coincident ratio = 0.99643) UCS-66 governing thickness = 13 mm.

16. Nozzle is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.2271).

17. Nozzle is impact tested to -49 °C (UCS-66(g)) UCS-66 governing thickness = 9.75 mm.

18. Nozzle is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.2314).

19. Nozzle is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.26681).

20. Nozzle is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.26657).Design notes are available on the Settings Summary page.

7/88

Page 7: Strength Calculation

Hydrostatic Test

Shop test pressure determination for Chamber bounded by RIGHT HEAD and LEFT HEAD based on user defined pressure Shop test gauge pressure is 25.42 kgf/cm2 at 21 °C The shop test is performed with the vessel in the horizontal position.

Identifier Local test pressure kgf/cm2

Test liquidstatic head

kgf/cm2

Stressduring test

kgf/cm2

Allowabletest stresskgf/cm2

Stress excessive?

LEFT HEAD 25.61 0.19 1,536.589 2,211.763 No

Straight Flange on LEFT HEAD 25.61 0.19 1,293.253 2,211.763 No

SHELL 25.61 0.19 1,293.253 2,211.763 No

Straight Flange on RIGHT HEAD 25.61 0.19 1,293.253 2,211.763 No

RIGHT HEAD 25.61 0.19 1,536.589 2,211.763 No

BOOT SHELL 25.63 0.31 507.424 2,211.763 No

Straight Flange on BOOT HEAD 25.75 0.33 507.897 2,211.763 No

BOOT HEAD 25.76 0.34 524.513 2,211.763 No

BOOT SHELL (BOOT) 25.74 0.33 2,091.871 3,303.878 No

DRAIN (D) 25.78 0.36 535.158 3,303.878 No

INLET (A) 25.51 0.1 1,094.875 3,303.878 No

LEVEL TRANSMITTER (L1) 25.48 0.06 704.465 3,303.878 No

LEVEL TRANSMITTER (L2) 25.48 0.06 704.465 3,303.878 No

MANWAY (M1) 25.57 0.16 2,302.517 3,303.878 No

NITROGEN CONNECTION (N1) 25.48 0.06 1,385.442 3,303.878 No

OUTLET TO ATM (B2) 25.48 0.06 883.144 3,303.878 No

PRESSURE TRANSMITTER (P) 25.48 0.06 1,273.931 3,303.878 No

PUMP CONNECTION NOZZLE (M2) 25.48 0.06 1,625.341 3,303.878 No

PUMP OUT CONNECTION (B3) 25.48 0.06 1,273.931 3,303.878 No

STEAM OUT (S) 25.61 0.19 1,712.213 3,303.878 No

TEMPERATURE TRANSMITTER (T) 25.48 0.06 1,273.931 3,303.878 No

UTILITY CONNECTION (UC) 25.48 0.06 1,009.842 3,303.878 No

VESSEL VENT (V) 25.48 0.06 1,385.442 3,303.878 No Notes: (1) PL stresses at nozzle openings have been estimated using the method described in PVP-Vol. 399, pages 77-82. (2) 1.5*0.9*Sy used as the basis for the maximum local primary membrane stress at the nozzle intersection PL. (3) The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-most flange. The test temperature of 21 °C is warmer than the minimum recommended temperature of -30.83 °C so the brittle fracture provision of UG-99(h) has been met.

8/88

Page 8: Strength Calculation

Corroded Hydrostatic Test

The shop test condition has not been investigated for the Chamber bounded by RIGHT HEAD and LEFT HEAD. Field test pressure determination for Chamber bounded by RIGHT HEAD and LEFT HEAD based on MAWP per UG-99(b) Field hydrostatic test gauge pressure is 17.52 kgf/cm2 at 21 °C (the chamber MAWP = 13.48 kgf/cm2) The field test is performed with the vessel in the horizontal position.

Identifier Local test pressure kgf/cm2

Test liquidstatic head

kgf/cm2

UG-99stressratio

UG-99pressure

factor

Stressduring test

kgf/cm2

Allowable test stress kgf/cm2

Stress excessive?

LEFT HEAD (1) 17.71 0.2 1 1.30 1,542.216 2,211.763 No

Straight Flange on LEFT HEAD 17.71 0.2 1 1.30 1,165.511 2,211.763 No

SHELL 17.71 0.2 1 1.30 1,165.511 2,211.763 No

Straight Flange on RIGHT HEAD 17.71 0.2 1 1.30 1,165.511 2,211.763 No

RIGHT HEAD 17.71 0.2 1 1.30 1,542.216 2,211.763 No

BOOT SHELL 17.73 0.31 1 1.30 459.855 2,211.763 No

Straight Flange on BOOT HEAD 17.85 0.33 1 1.30 460.474 2,211.763 No

BOOT HEAD 17.86 0.34 1 1.30 505.26 2,211.763 No

BOOT SHELL (BOOT) 17.85 0.33 1 1.30 1,845.631 3,303.878 No

DRAIN (D) 17.88 0.36 1 1.30 533.717 3,303.878 No

INLET (A) 17.62 0.1 1 1.30 748.192 3,303.878 No

LEVEL TRANSMITTER (L1) 17.58 0.06 1 1.30 503.61 3,303.878 No

LEVEL TRANSMITTER (L2) 17.58 0.06 1 1.30 503.61 3,303.878 No

MANWAY (M1) 17.68 0.16 1 1.30 2,086.204 3,303.878 No

NITROGEN CONNECTION (N1) 17.58 0.06 1 1.30 1,269.584 3,303.878 No

OUTLET TO ATM (B2) 17.58 0.06 1 1.30 708.054 3,303.878 No

PRESSURE TRANSMITTER (P) 17.58 0.06 1 1.30 1,148.091 3,303.878 No

PUMP CONNECTION NOZZLE (M2) 17.58 0.06 1 1.30 1,632.783 3,303.878 No

PUMP OUT CONNECTION (B3) 17.58 0.06 1 1.30 1,148.091 3,303.878 No

STEAM OUT (S) 17.71 0.19 1 1.30 1,840.56 3,303.878 No

TEMPERATURE TRANSMITTER (T) 17.58 0.06 1 1.30 1,148.091 3,303.878 No

UTILITY CONNECTION (UC) 17.58 0.06 1 1.30 717.463 3,303.878 No

VESSEL VENT (V) 17.58 0.06 1 1.30 1,269.584 3,303.878 No Notes: (1) LEFT HEAD limits the UG-99 stress ratio. (2) PL stresses at nozzle openings have been estimated using the method described in PVP-Vol. 399, pages 77-82. (3) 1.5*0.9*Sy used as the basis for the maximum local primary membrane stress at the nozzle intersection PL. (4) The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-most flange. The test temperature of 21 °C is warmer than the minimum recommended temperature of -30.83 °C so the brittle fracture provision of UG-99(h) has been met.

9/88

Page 9: Strength Calculation

Thickness Summary

Component Identifier Material Diameter

(mm) Length(mm)

Nominal t(mm)

Design t(mm)

Total Corrosion (mm)

JointE Load

LEFT HEAD SA-516 65 1,300 ID 334.75 9.75* 5.33 3 1.00 External

Straight Flange on LEFT HEAD SA-516 65 1,300 ID 38 13 8.14 3 1.00 External

SHELL SA-516 65 1,300 ID 3,924 13 8.14 3 0.85 External

Straight Flange on RIGHT HEAD SA-516 65 1,300 ID 38 13 8.14 3 1.00 External

RIGHT HEAD SA-516 65 1,300 ID 334.75 9.75* 5.33 3 1.00 External

BOOT SHELL SA-516 65 500 ID 1,321 13 4.89 3 0.85 External

BOOT HEAD SA-516 65 500 ID 136.05 11.05* 3.9 3 1.00 External

Straight Flange on BOOT HEAD SA-516 65 500 ID 38 13 4.89 3 1.00 External

Nominal t: Vessel wall nominal thickness Design t: Required vessel thickness due to governing loading + corrosionJoint E: Longitudinal seam joint efficiency * Head minimum thickness after forming Load internal: Circumferential stress due to internal pressure governsexternal: External pressure governs Wind: Combined longitudinal stress of pressure + weight + wind governsSeismic: Combined longitudinal stress of pressure + weight + seismic governs

10/88

Page 10: Strength Calculation

Nozzle Schedule

Nozzle mark Service Size

Materials

Nozzle Impact Norm Fine Grain Pad Impact Norm Fine

Grain Flange

A(DN200) INLET 8" Sch 80 (XS) DN 200

SA-333 6 Wld & smls pipe

No No No SA-516 65

No Yes Yes WN A350 LF2 Cl.1 Class 150

B1(DN50) (BY OTHERS)

PUMP OUTLET 2" Sch 160 DN 50

SA-333 6 Wld & smls pipe

No No No SA-516 65

No Yes Yes WN A350 LF2 Cl.1 Class 300

B2(DN 250) OUTLET TO ATM 10" Sch 80 DN 250

SA-333 6 Wld & smls pipe

No No No SA-516 65

No Yes Yes WN A350 LF2 Cl.1 Class 150

B3(DN50) PUMP OUT CONNECTION

42.90 IDx17.55

SA-350 LF2 Cl 1 No Yes Yes N/A N/A N/A N/A

LWN A350 LF2 Cl.1 Class 150

BOOT BOOT SHELL 500.00 IDx13.00 SA-516 65 No Yes Yes

SA-516 65

No Yes Yes N/A

D(DN50) DRAIN 50.80 IDx13.60

SA-350 LF2 Cl 1 No Yes Yes N/A N/A N/A N/A

LWN A350 LF2 Cl.1 Class 150

L1(DN100) LEVEL TRANSMITTER

4" Sch 120 DN 100

SA-333 6 Wld & smls pipe

No No No SA-516 65

No Yes Yes WN A350 LF2 Cl.1 Class 300

L2(DN100) LEVEL TRANSMITTER

4" Sch 120 DN 100

SA-333 6 Wld & smls pipe

No No No SA-516 65

No Yes Yes WN A350 LF2 Cl.1 Class 300

M1(DN600) MANWAY 583.60 IDx13.00 SA-516 65 No Yes Yes

SA-516 65

No Yes Yes WN A350 LF2 Cl.1 Class 150

M2(DN450) PUMP CONNECTION NOZZLE

431.20 IDx13.00 SA-516 65 No Yes Yes

SA-516 65

No Yes Yes WN A350 LF2 Cl.1 Class 150

N1(DN50) NITROGEN CONNECTION

50.80 IDx13.60

SA-350 LF2 Cl 1 No Yes Yes N/A N/A N/A N/A

LWN A350 LF2 Cl.1 Class 150

P(DN50) PRESSURE TRANSMITTER

50.80 IDx16.65

SA-350 LF2 Cl 1 No Yes Yes N/A N/A N/A N/A

LWN A350 LF2 Cl.1 Class 300

S(DN50) STEAM OUT 42.90 IDx17.55

SA-350 LF2 Cl 1 No Yes Yes N/A N/A N/A N/A

LWN A350 LF2 Cl.1 Class 150

T(DN50) TEMPERATURE TRANSMITTER

42.90 IDx20.60

SA-350 LF2 Cl 1 No Yes Yes N/A N/A N/A N/A

LWN A350 LF2 Cl.1 Class 300

UC(DN150) UTILITY CONNECTION

6" Sch 80 (XS) DN 150

SA-333 6 Wld & smls pipe

No No No SA-516 65

No Yes Yes WN A350 LF2 Cl.1 Class 150

V(DN50) VESSEL VENT 50.80 IDx13.60

SA-350 LF2 Cl 1 No Yes Yes N/A N/A N/A N/A

LWN A350 LF2 Cl.1 Class 150

11/88

Page 11: Strength Calculation

Nozzle Summary

Nozzle mark

OD(mm)

tn (mm)

Req tn (mm) A1? A2?

Shell Reinforcement Pad Corr

(mm) Aa/Ar(%) Nom t

(mm) Design t

(mm) User t(mm)

Width (mm)

tpad (mm)

A(DN200) 219.08 12.7 11.1 Yes Yes 9.75* 9.75 82.21 13 3 136.9

B2(DN 250) 273.05 15.09 11.18 Yes Yes 13 9.82 118.48 13 3 182.2

B3(DN50) 78 17.55 7.8 Yes Yes 13 N/A N/A N/A 3 Exempt

BOOT 526 13 9.83 Yes Yes 13 9.82 222 13 3 165.7

D(DN50) 78 13.6 6.66 Yes Yes 11.05* N/A N/A N/A 3 Exempt

L1(DN100) 114.3 11.13 9.45 Yes Yes 13 9.82 47.85 13 3 275.2

L2(DN100) 114.3 11.13 9.45 Yes Yes 13 9.82 47.85 13 3 275.2

M1(DN600) 609.6 13 9.73 Yes Yes 9.75* 9.75 220.2 13 3 111.2

M2(DN450) 457.2 13 9.78 Yes Yes 13 9.82 206.4 13 3 173.5

N1(DN50) 78 13.6 7.8 Yes Yes 13 N/A N/A N/A 3 Exempt

P(DN50) 84.1 16.65 7.8 Yes Yes 13 9.78 N/A N/A 3 242.0

S(DN50) 78 17.55 7.8 Yes Yes 9.75* N/A N/A N/A 3 Exempt

T(DN50) 84.1 20.6 7.8 Yes Yes 13 N/A N/A N/A 3 Exempt

UC(DN150) 168.28 10.97 10.54 Yes Yes 13 9.82 65.86 13 3 188.2

V(DN50) 78 13.6 7.8 Yes Yes 13 N/A N/A N/A 3 Exempt

tn: Nozzle thickness Req tn: Nozzle thickness required per UG-45/UG-16Nom t: Vessel wall thickness Design t: Required vessel wall thickness due to pressure + corrosion allowance per UG-37User t: Local vessel wall thickness (near opening) Aa: Area available per UG-37, governing conditionAr: Area required per UG-37, governing conditionCorr: Corrosion allowance on nozzle wall * Head minimum thickness after forming

12/88

Page 12: Strength Calculation

LEFT HEAD ASME Section VIII, Division 1, 2007 Edition, A09 Addenda Metric Component: Ellipsoidal Head Material Specification: SA-516 65 (II-D Metric p.14, ln. 35)Material impact test exemption temperature from Fig UCS-66M Curve D = -48 °C UCS-66 governing thickness = 9.75 mm Internal design pressure: P = 3.5 kgf/cm2 @ 87 °C External design pressure: Pe = 0.5 kgf/cm2 @ 87 °C Static liquid head: Ps= 0.0853 kgf/cm2 (SG=0.74, Hs=1153 mm Operating head) Pth= 0.1948 kgf/cm2 (SG=1, Hs=1950 mm Horizontal test head) Corrosion allowance: Inner C = 3 mm Outer C = 0 mmDesign MDMT = 7°C No impact test performed Rated MDMT = -48°C Material is normalized Material is produced to fine grain practice PWHT is not performed Do not Optimize MDMT / Find MAWP Radiography: Category A joints - Full UW-11(a) Type 1 Head to shell seam - Spot UW-11(a)(5)(b) Type 1 Estimated weight*: new = 145.2 kg corr = 102.3 kg Capacity*: new = 338 liters corr = 343.8 liters* includes straight flange Inner diameter = 1300 mmMinimum head thickness = 9.75 mm Head ratio D/2h = 2 (new) Head ratio D/2h = 1.9909 (corroded)Straight flange length Lsf = 38 mm Nominal straight flange thickness tsf = 13 mm Results Summary The governing condition is external pressure. Minimum thickness per UG-16 = 1.5 mm + 3 mm = 4.5 mmDesign thickness due to internal pressure (t) = 4.79 mmDesign thickness due to external pressure (te) = 5.33 mmMaximum allowable working pressure (MAWP) = 13.48 kgf/cm2

Maximum allowable pressure (MAP) = 19.55 kgf/cm2

Maximum allowable external pressure (MAEP) = 4.22 kgf/cm2

K (Corroded)K

= (1/6)*[2 + (D / (2*h))2]

= (1/6)*[2 + (1,306 / (2*328))2] = 0.993917 K (New) K

= (1/6)*[2 + (D / (2*h))2]

= (1/6)*[2 + (1,300 / (2*325))2] = 1 Design thickness for internal pressure, (Corroded at 87 °C) Appendix 1-4(c) t = P*D*K / (2*S*E - 0.2*P) + Corrosion = 3.59*1,306*0.993917 / (2*1,305.236*1 - 0.2*3.59) + 3 = 4.78 mm The head internal pressure design thickness is 4.79 mm. Maximum allowable working pressure, (Corroded at 87 °C) Appendix 1-4(c) P = 2*S*E*t / (K*D + 0.2*t) - Ps = 2*1,305.236*1*6.75 / (0.993917*1,306 +0.2*6.75) - 0.09 = 13.48 kgf/cm2 The maximum allowable working pressure (MAWP) is 13.48 kgf/cm2. Maximum allowable pressure, (New at 21 °C) Appendix 1-4(c) P = 2*S*E*t / (K*D + 0.2*t) - Ps = 2*1,305.236*1*9.75 / (1*1,300 +0.2*9.75) - 0 = 19.55 kgf/cm2 The maximum allowable pressure (MAP) is 19.55 kgf/cm2. Design thickness for external pressure, (Corroded at 87 °C) UG-33(d) Equivalent outside spherical radius (Ro) Ro = Ko*Do = 0.8869*1,319.5 = 1,170.26 mm A = 0.125 / (Ro / t) = 0.125 / (1,170.26 / 2.33) = 0.000249

13/88

Page 13: Strength Calculation

From Table CS-2 Metric: B = 251.1281 kgf/cm2

Pa = B / (Ro / t) = 251.1281 / (1,170.26 / 2.33) = 0.5 kgf/cm2 t = 2.33 mm + Corrosion = 2.33 mm + 3 mm = 5.33 mmCheck the external pressure per UG-33(a)(1) Appendix 1-4(c) t = 1.67*Pe*D*K / (2*S*E - 0.2*1.67*Pe) + Corrosion = 1.67*0.5*1,306*0.993917 / (2*1,305.236*1 - 0.2*1.67*0.5) + 3 = 3.42 mm The head external pressure design thickness (te) is 5.33 mm. Maximum Allowable External Pressure, (Corroded at 87 °C) UG-33(d) Equivalent outside spherical radius (Ro) Ro = Ko*Do = 0.8869*1,319.5 = 1,170.26 mm A = 0.125 / (Ro / t) = 0.125 / (1,170.26 / 6.75) = 0.000721 From Table CS-2 Metric: B = 731.1995 kgf/cm2

Pa = B / (Ro / t) = 731.1995 / (1,170.26 / 6.75) = 4.2177 kgf/cm2 Check the Maximum External Pressure, UG-33(a)(1) Appendix 1-4(c) P = 2*S*E*t / ((K*D + 0.2*t)*1.67) - Ps2 = 2*1,305.236*1*6.75 / ((0.993917*1,306 +0.2*6.75)*1.67) - 0 = 8.12 kgf/cm2 The maximum allowable external pressure (MAEP) is 4.22 kgf/cm2. % Extreme fiber elongation - UCS-79(d) EFE = (75*t / Rf)*(1 - Rf / Ro) = (75*13 / 227.5)*(1 - 227.5 / )   = 4.2857% The extreme fiber elongation does not exceed 5%.

14/88

Page 14: Strength Calculation

Straight Flange on LEFT HEAD

ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric Component: Straight FlangeMaterial specification: SA-516 65 (II-D Metric p. 14, ln. 35)Material impact test exemption temperature from Fig UCS-66M Curve D = -47.63 °C Fig UCS-66.1M MDMT reduction = 17.8 °C, (coincident ratio = 0.68269) Rated MDMT is governed by UCS-66(b)(2) UCS-66 governing thickness = 13 mm Internal design pressure: P = 3.5 kg/cm2 @ 87 °C External design pressure: Pe = 0.5 kg/cm2 @ 87 °C Static liquid head: Ps = 0.09 kg/cm2 (SG = 0.74, Hs = 1153 mm,Operating head)Pth = 0.19 kg/cm2 (SG = 1, Hs = 1950 mm, Horizontal test head)Corrosion allowance Inner C = 3 mm Outer C = 0 mmDesign MDMT = 7 °C No impact test performedRated MDMT = -48 °C Material is normalized Material is produced to Fine Grain Practice PWHT is not performedRadiography: Longitudinal joint - Full UW-11(a) Type 1 Circumferential joint - Spot UW-11(a)(5)b Type 1Estimated weight New = 16 kg corr = 12.3 kg Capacity New = 50.44 liters corr = 50.9 litersID = 1,300 mm Length Lc = 38 mm t = 13 mm Design thickness, (at 87 °C) UG-27(c)(1) t = P*R / (S*E - 0.60*P) + Corrosion = 3.59*653 / (1,305.24*1.00 - 0.60*3.59) + 3 = 4.8 mm Maximum allowable working pressure, (at 87 °C) UG-27(c)(1) P = S*E*t / (R + 0.60*t) - Ps = 1,305.24*1.00*10 / (653 + 0.60*10) - 0.09 = 19.72 kg/cm2 Maximum allowable pressure, (at 21 °C) UG-27(c)(1) P = S*E*t / (R + 0.60*t) = 1,305.24*1.00*13 / (650 + 0.60*13) = 25.8 kg/cm2 External Pressure, (Corroded & at 87 °C) UG-28(c) L / Do = 4,218.67 / 1,326 = 3.1815 Do / t = 1,326 / 5.14 = 258.1652From table G: A = 0.000096 From table CS-2 Metric: B = 96.8122 kg/cm2

Pa = 4*B / (3*(Do / t)) = 4*96.81 / (3*(1,326 / 5.14)) = 0.5 kg/cm2 Design thickness for external pressure Pa = 0.5 kg/cm2 ta = t + Corrosion = 5.14 + 3 = 8.14 mmMaximum Allowable External Pressure, (Corroded & at 87 °C) UG-28(c) L / Do = 4,218.67 / 1,326 = 3.1815 Do / t = 1,326 / 10 = 132.5965From table G: A = 0.000260 From table CS-2 Metric: B = 262.6607 kg/cm2

Pa = 4*B / (3*(Do / t)) = 4*262.66 / (3*(1,326 / 10)) = 2.64 kg/cm2 % Extreme fiber elongation - UCS-79(d) EFE = (50*t / Rf)*(1 - Rf / Ro) = (50*13 / 656.5)*(1 - 656.5 / )   = 0.9901% The extreme fiber elongation does not exceed 5%.

15/88

Page 15: Strength Calculation

SHELL

ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric Component: CylinderMaterial specification: SA-516 65 (II-D Metric p. 14, ln. 35)Material impact test exemption temperature from Fig UCS-66M Curve D = -47.63 °C Fig UCS-66.1M MDMT reduction = 17.7 °C, (coincident ratio = 0.6834465) Rated MDMT is governed by UCS-66(b)(2) UCS-66 governing thickness = 13 mm Internal design pressure: P = 3.5 kg/cm2 @ 87 °C External design pressure: Pe = 0.5 kg/cm2 @ 87 °C Static liquid head: Ps = 0.09 kg/cm2 (SG = 0.74, Hs = 1153 mm,Operating head)Pth = 0.19 kg/cm2 (SG = 1, Hs = 1950 mm, Horizontal test head)Corrosion allowance Inner C = 3 mm Outer C = 0 mmDesign MDMT = 7 °C No impact test performedRated MDMT = -48 °C Material is normalized Material is produced to Fine Grain Practice PWHT is not performedRadiography: Longitudinal joint - Spot UW-11(b) Type 1 Left circumferential joint - Spot UW-11(a)(5)b Type 1 Right circumferential joint - Spot UW-11(a)(5)b Type 1Estimated weight New = 1,596.5 kg corr = 1,231 kgCapacity New = 5,208.42 liters corr = 5,256.6 litersID = 1,300 mm Length Lc = 3,924 mm t = 13 mm Design thickness, (at 87 °C) UG-27(c)(1) t = P*R / (S*E - 0.60*P) + Corrosion = 3.59*653 / (1,305.24*0.85 - 0.60*3.59) + 3 = 5.12 mm Maximum allowable working pressure, (at 87 °C) UG-27(c)(1) P = S*E*t / (R + 0.60*t) - Ps = 1,305.24*0.85*10 / (653 + 0.60*10) - 0.09 = 16.75 kg/cm2 Maximum allowable pressure, (at 21 °C) UG-27(c)(1) P = S*E*t / (R + 0.60*t) = 1,305.24*0.85*13 / (650 + 0.60*13) = 21.93 kg/cm2 External Pressure, (Corroded & at 87 °C) UG-28(c) L / Do = 4,218.67 / 1,326 = 3.1815 Do / t = 1,326 / 5.14 = 258.1652From table G: A = 0.000096 From table CS-2 Metric: B = 96.8122 kg/cm2

Pa = 4*B / (3*(Do / t)) = 4*96.81 / (3*(1,326 / 5.14)) = 0.5 kg/cm2 Design thickness for external pressure Pa = 0.5 kg/cm2 ta = t + Corrosion = 5.14 + 3 = 8.14 mmMaximum Allowable External Pressure, (Corroded & at 87 °C) UG-28(c) L / Do = 4,218.67 / 1,326 = 3.1815 Do / t = 1,326 / 10 = 132.5965From table G: A = 0.000260 From table CS-2 Metric: B = 262.6607 kg/cm2

Pa = 4*B / (3*(Do / t)) = 4*262.66 / (3*(1,326 / 10)) = 2.64 kg/cm2 % Extreme fiber elongation - UCS-79(d) EFE = (50*t / Rf)*(1 - Rf / Ro) = (50*13 / 656.5)*(1 - 656.5 / )   = 0.9901% The extreme fiber elongation does not exceed 5%.

16/88

Page 16: Strength Calculation

Straight Flange on RIGHT HEAD

ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric Component: Straight FlangeMaterial specification: SA-516 65 (II-D Metric p. 14, ln. 35)Material impact test exemption temperature from Fig UCS-66M Curve D = -47.63 °C Fig UCS-66.1M MDMT reduction = 17.8 °C, (coincident ratio = 0.68269) Rated MDMT is governed by UCS-66(b)(2) UCS-66 governing thickness = 13 mm Internal design pressure: P = 3.5 kg/cm2 @ 87 °C External design pressure: Pe = 0.5 kg/cm2 @ 87 °C Static liquid head: Ps = 0.09 kg/cm2 (SG = 0.74, Hs = 1153 mm,Operating head)Pth = 0.19 kg/cm2 (SG = 1, Hs = 1950 mm, Horizontal test head)Corrosion allowance Inner C = 3 mm Outer C = 0 mmDesign MDMT = 7 °C No impact test performedRated MDMT = -48 °C Material is normalized Material is produced to Fine Grain Practice PWHT is not performedRadiography: Longitudinal joint - Full UW-11(a) Type 1 Circumferential joint - Spot UW-11(a)(5)b Type 1Estimated weight New = 16 kg corr = 12.3 kg Capacity New = 50.44 liters corr = 50.9 litersID = 1,300 mm Length Lc = 38 mm t = 13 mm Design thickness, (at 87 °C) UG-27(c)(1) t = P*R / (S*E - 0.60*P) + Corrosion = 3.59*653 / (1,305.24*1.00 - 0.60*3.59) + 3 = 4.8 mm Maximum allowable working pressure, (at 87 °C) UG-27(c)(1) P = S*E*t / (R + 0.60*t) - Ps = 1,305.24*1.00*10 / (653 + 0.60*10) - 0.09 = 19.72 kg/cm2 Maximum allowable pressure, (at 21 °C) UG-27(c)(1) P = S*E*t / (R + 0.60*t) = 1,305.24*1.00*13 / (650 + 0.60*13) = 25.8 kg/cm2 External Pressure, (Corroded & at 87 °C) UG-28(c) L / Do = 4,218.67 / 1,326 = 3.1815 Do / t = 1,326 / 5.14 = 258.1652From table G: A = 0.000096 From table CS-2 Metric: B = 96.8122 kg/cm2

Pa = 4*B / (3*(Do / t)) = 4*96.81 / (3*(1,326 / 5.14)) = 0.5 kg/cm2 Design thickness for external pressure Pa = 0.5 kg/cm2 ta = t + Corrosion = 5.14 + 3 = 8.14 mmMaximum Allowable External Pressure, (Corroded & at 87 °C) UG-28(c) L / Do = 4,218.67 / 1,326 = 3.1815 Do / t = 1,326 / 10 = 132.5965From table G: A = 0.000260 From table CS-2 Metric: B = 262.6607 kg/cm2

Pa = 4*B / (3*(Do / t)) = 4*262.66 / (3*(1,326 / 10)) = 2.64 kg/cm2 % Extreme fiber elongation - UCS-79(d) EFE = (50*t / Rf)*(1 - Rf / Ro) = (50*13 / 656.5)*(1 - 656.5 / )   = 0.9901% The extreme fiber elongation does not exceed 5%.

17/88

Page 17: Strength Calculation

RIGHT HEAD

ASME Section VIII, Division 1, 2007 Edition, A09 Addenda Metric Component: Ellipsoidal Head Material Specification: SA-516 65 (II-D Metric p.14, ln. 35)Material impact test exemption temperature from Fig UCS-66M Curve D = -48 °C UCS-66 governing thickness = 9.75 mm Internal design pressure: P = 3.5 kgf/cm2 @ 87 °C External design pressure: Pe = 0.5 kgf/cm2 @ 87 °C Static liquid head: Ps= 0.0853 kgf/cm2 (SG=0.74, Hs=1153 mm Operating head) Pth= 0.1948 kgf/cm2 (SG=1, Hs=1950 mm Horizontal test head) Corrosion allowance: Inner C = 3 mm Outer C = 0 mmDesign MDMT = 7°C No impact test performed Rated MDMT = -48°C Material is normalized Material is produced to fine grain practice PWHT is not performed Do not Optimize MDMT / Find MAWP Radiography: Category A joints - Full UW-11(a) Type 1 Head to shell seam - Spot UW-11(a)(5)(b) Type 1 Estimated weight*: new = 164.2 kg corr = 115.5 kg Capacity*: new = 338 liters corr = 343.8 liters* includes straight flange Inner diameter = 1300 mmMinimum head thickness = 9.75 mm Head ratio D/2h = 2 (new) Head ratio D/2h = 1.9909 (corroded)Straight flange length Lsf = 38 mm Nominal straight flange thickness tsf = 13 mm Results Summary The governing condition is external pressure. Minimum thickness per UG-16 = 1.5 mm + 3 mm = 4.5 mmDesign thickness due to internal pressure (t) = 4.79 mmDesign thickness due to external pressure (te) = 5.33 mmMaximum allowable working pressure (MAWP) = 13.48 kgf/cm2

Maximum allowable pressure (MAP) = 19.55 kgf/cm2

Maximum allowable external pressure (MAEP) = 4.22 kgf/cm2

K (Corroded)K

= (1/6)*[2 + (D / (2*h))2]

= (1/6)*[2 + (1,306 / (2*328))2] = 0.993917 K (New) K

= (1/6)*[2 + (D / (2*h))2]

= (1/6)*[2 + (1,300 / (2*325))2] = 1 Design thickness for internal pressure, (Corroded at 87 °C) Appendix 1-4(c) t = P*D*K / (2*S*E - 0.2*P) + Corrosion = 3.59*1,306*0.993917 / (2*1,305.236*1 - 0.2*3.59) + 3 = 4.78 mm The head internal pressure design thickness is 4.79 mm. Maximum allowable working pressure, (Corroded at 87 °C) Appendix 1-4(c) P = 2*S*E*t / (K*D + 0.2*t) - Ps = 2*1,305.236*1*6.75 / (0.993917*1,306 +0.2*6.75) - 0.09 = 13.48 kgf/cm2 The maximum allowable working pressure (MAWP) is 13.48 kgf/cm2. Maximum allowable pressure, (New at 21 °C) Appendix 1-4(c) P = 2*S*E*t / (K*D + 0.2*t) - Ps = 2*1,305.236*1*9.75 / (1*1,300 +0.2*9.75) - 0 = 19.55 kgf/cm2 The maximum allowable pressure (MAP) is 19.55 kgf/cm2. Design thickness for external pressure, (Corroded at 87 °C) UG-33(d) Equivalent outside spherical radius (Ro) Ro = Ko*Do = 0.8869*1,319.5 = 1,170.26 mm A = 0.125 / (Ro / t) = 0.125 / (1,170.26 / 2.33)

18/88

Page 18: Strength Calculation

= 0.000249 From Table CS-2 Metric: B = 251.1281 kgf/cm2

Pa = B / (Ro / t) = 251.1281 / (1,170.26 / 2.33) = 0.5 kgf/cm2 t = 2.33 mm + Corrosion = 2.33 mm + 3 mm = 5.33 mmCheck the external pressure per UG-33(a)(1) Appendix 1-4(c) t = 1.67*Pe*D*K / (2*S*E - 0.2*1.67*Pe) + Corrosion = 1.67*0.5*1,306*0.993917 / (2*1,305.236*1 - 0.2*1.67*0.5) + 3 = 3.42 mm The head external pressure design thickness (te) is 5.33 mm. Maximum Allowable External Pressure, (Corroded at 87 °C) UG-33(d) Equivalent outside spherical radius (Ro) Ro = Ko*Do = 0.8869*1,319.5 = 1,170.26 mm A = 0.125 / (Ro / t) = 0.125 / (1,170.26 / 6.75) = 0.000721 From Table CS-2 Metric: B = 731.1995 kgf/cm2

Pa = B / (Ro / t) = 731.1995 / (1,170.26 / 6.75) = 4.2177 kgf/cm2 Check the Maximum External Pressure, UG-33(a)(1) Appendix 1-4(c) P = 2*S*E*t / ((K*D + 0.2*t)*1.67) - Ps2 = 2*1,305.236*1*6.75 / ((0.993917*1,306 +0.2*6.75)*1.67) - 0 = 8.12 kgf/cm2 The maximum allowable external pressure (MAEP) is 4.22 kgf/cm2. % Extreme fiber elongation - UCS-79(d) EFE = (75*t / Rf)*(1 - Rf / Ro) = (75*13 / 227.5)*(1 - 227.5 / )   = 4.2857% The extreme fiber elongation does not exceed 5%.

19/88

Page 19: Strength Calculation

BOOT SHELL

ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric Component: CylinderMaterial specification: SA-516 65 (II-D Metric p. 14, ln. 35)Material is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.26681) Internal design pressure: P = 3.5 kg/cm2 @ 87 °C External design pressure: Pe = 0.5 kg/cm2 @ 87 °C Static liquid head: Ps = 0.18 kg/cm2 (SG = 0.74, Hs = 2484 mm,Operating head)Pth = 0.05 kg/cm2 (SG = 1, Hs = 500 mm, Horizontal test head)Ptv = 0.13 kg/cm2 (SG = 1, Hs = 1321 mm, Vertical test head)Corrosion allowance Inner C = 3 mm Outer C = 0 mmDesign MDMT = 7 °C No impact test performedRated MDMT = -105 °C Material is normalized Material is produced to Fine Grain Practice PWHT is not performedRadiography: Longitudinal joint - Spot UW-11(b) Type 1 Top circumferential joint - Spot UW-11(a)(5)b Type 1 Bottom circumferential joint - Spot UW-11(a)(5)b Type 1Estimated weight New = 216.8 kg corr = 167.7 kgCapacity New = 259.38 liters corr = 265.64 litersID = 500 mm Length Lc = 1,321 mm t = 13 mm Design thickness, (at 87 °C) UG-27(c)(1) t = P*R / (S*E - 0.60*P) + Corrosion = 3.68*253 / (1,305.24*0.85 - 0.60*3.68) + 3 = 3.84 mm Maximum allowable working pressure, (at 87 °C) UG-27(c)(1) P = S*E*t / (R + 0.60*t) - Ps = 1,305.24*0.85*10 / (253 + 0.60*10) - 0.18 = 42.65 kg/cm2 Maximum allowable pressure, (at 21 °C) UG-27(c)(1) P = S*E*t / (R + 0.60*t) = 1,305.24*0.85*13 / (250 + 0.60*13) = 55.95 kg/cm2 External Pressure, (Corroded & at 87 °C) UG-28(c) L / Do = 1,401.67 / 526 = 2.6648 Do / t = 526 / 1.89 = 278.9025 From table G: A = 0.000104 From table CS-2 Metric: B = 104.5883 kg/cm2

Pa = 4*B / (3*(Do / t)) = 4*104.59 / (3*(526 / 1.89)) = 0.5 kg/cm2 Design thickness for external pressure Pa = 0.5 kg/cm2 ta = t + Corrosion = 1.89 + 3 = 4.89 mmMaximum Allowable External Pressure, (Corroded & at 87 °C) UG-28(c) L / Do = 1,401.67 / 526 = 2.6648 Do / t = 526 / 10 = 52.5986 From table G: A = 0.001238 From table CS-2 Metric: B = 918.0742 kg/cm2

Pa = 4*B / (3*(Do / t)) = 4*918.07 / (3*(526 / 10)) = 23.27 kg/cm2 % Extreme fiber elongation - UCS-79(d) EFE = (50*t / Rf)*(1 - Rf / Ro) = (50*13 / 256.5)*(1 - 256.5 / )   = 2.5341% The extreme fiber elongation does not exceed 5%.

20/88

Page 20: Strength Calculation

Straight Flange on BOOT HEAD

ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric Component: Straight FlangeMaterial specification: SA-516 65 (II-D Metric p. 14, ln. 35)Material is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.26657) Internal design pressure: P = 3.5 kg/cm2 @ 87 °C External design pressure: Pe = 0.5 kg/cm2 @ 87 °C Static liquid head: Ps = 0.19 kg/cm2 (SG = 0.74, Hs = 2522 mm,Operating head)Pth = 0.05 kg/cm2 (SG = 1, Hs = 500 mm, Horizontal test head)Ptv = 0.14 kg/cm2 (SG = 1, Hs = 1359 mm, Vertical test head)Corrosion allowance Inner C = 3 mm Outer C = 0 mmDesign MDMT = 7 °C No impact test performedRated MDMT = -105 °C Material is normalized Material is produced to Fine Grain Practice PWHT is not performedRadiography: Longitudinal joint - Full UW-11(a) Type 1 Circumferential joint - Spot UW-11(a)(5)b Type 1Estimated weight New = 6.2 kg corr = 4.8 kg Capacity New = 7.46 liters corr = 7.64 litersID = 500 mmLength Lc = 38 mm t = 13 mm Design thickness, (at 87 °C) UG-27(c)(1) t = P*R / (S*E - 0.60*P) + Corrosion = 3.69*253 / (1,305.24*1.00 - 0.60*3.69) + 3 = 3.72 mm Maximum allowable working pressure, (at 87 °C) UG-27(c)(1) P = S*E*t / (R + 0.60*t) - Ps = 1,305.24*1.00*10 / (253 + 0.60*10) - 0.19 = 50.21 kg/cm2 Maximum allowable pressure, (at 21 °C) UG-27(c)(1) P = S*E*t / (R + 0.60*t) = 1,305.24*1.00*13 / (250 + 0.60*13) = 65.82 kg/cm2 External Pressure, (Corroded & at 87 °C) UG-28(c) L / Do = 1,401.67 / 526 = 2.6648 Do / t = 526 / 1.89 = 278.9025 From table G: A = 0.000104 From table CS-2 Metric: B = 104.5883 kg/cm2

Pa = 4*B / (3*(Do / t)) = 4*104.59 / (3*(526 / 1.89)) = 0.5 kg/cm2 Design thickness for external pressure Pa = 0.5 kg/cm2 ta = t + Corrosion = 1.89 + 3 = 4.89 mmMaximum Allowable External Pressure, (Corroded & at 87 °C) UG-28(c) L / Do = 1,401.67 / 526 = 2.6648 Do / t = 526 / 10 = 52.5986 From table G: A = 0.001238 From table CS-2 Metric: B = 918.0742 kg/cm2

Pa = 4*B / (3*(Do / t)) = 4*918.07 / (3*(526 / 10)) = 23.27 kg/cm2 % Extreme fiber elongation - UCS-79(d) EFE = (50*t / Rf)*(1 - Rf / Ro) = (50*13 / 256.5)*(1 - 256.5 / )   = 2.5341% The extreme fiber elongation does not exceed 5%.

21/88

Page 21: Strength Calculation

BOOT SHELL

ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric Component: CylinderMaterial specification: SA-516 65 (II-D Metric p. 14, ln. 35)Material is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.26681) Internal design pressure: P = 3.5 kg/cm2 @ 87 °C External design pressure: Pe = 0.5 kg/cm2 @ 87 °C Static liquid head: Ps = 0.18 kg/cm2 (SG = 0.74, Hs = 2484 mm,Operating head)Pth = 0.05 kg/cm2 (SG = 1, Hs = 500 mm, Horizontal test head)Ptv = 0.13 kg/cm2 (SG = 1, Hs = 1321 mm, Vertical test head)Corrosion allowance Inner C = 3 mm Outer C = 0 mmDesign MDMT = 7 °C No impact test performedRated MDMT = -105 °C Material is normalized Material is produced to Fine Grain Practice PWHT is not performedRadiography: Longitudinal joint - Spot UW-11(b) Type 1 Top circumferential joint - Spot UW-11(a)(5)b Type 1 Bottom circumferential joint - Spot UW-11(a)(5)b Type 1Estimated weight New = 216.8 kg corr = 167.7 kgCapacity New = 259.38 liters corr = 265.64 litersID = 500 mm Length Lc = 1,321 mm t = 13 mm Design thickness, (at 87 °C) UG-27(c)(1) t = P*R / (S*E - 0.60*P) + Corrosion = 3.68*253 / (1,305.24*0.85 - 0.60*3.68) + 3 = 3.84 mm Maximum allowable working pressure, (at 87 °C) UG-27(c)(1) P = S*E*t / (R + 0.60*t) - Ps = 1,305.24*0.85*10 / (253 + 0.60*10) - 0.18 = 42.65 kg/cm2 Maximum allowable pressure, (at 21 °C) UG-27(c)(1) P = S*E*t / (R + 0.60*t) = 1,305.24*0.85*13 / (250 + 0.60*13) = 55.95 kg/cm2 External Pressure, (Corroded & at 87 °C) UG-28(c) L / Do = 1,401.67 / 526 = 2.6648 Do / t = 526 / 1.89 = 278.9025 From table G: A = 0.000104 From table CS-2 Metric: B = 104.5883 kg/cm2

Pa = 4*B / (3*(Do / t)) = 4*104.59 / (3*(526 / 1.89)) = 0.5 kg/cm2 Design thickness for external pressure Pa = 0.5 kg/cm2 ta = t + Corrosion = 1.89 + 3 = 4.89 mmMaximum Allowable External Pressure, (Corroded & at 87 °C) UG-28(c) L / Do = 1,401.67 / 526 = 2.6648 Do / t = 526 / 10 = 52.5986 From table G: A = 0.001238 From table CS-2 Metric: B = 918.0742 kg/cm2

Pa = 4*B / (3*(Do / t)) = 4*918.07 / (3*(526 / 10)) = 23.27 kg/cm2 % Extreme fiber elongation - UCS-79(d) EFE = (50*t / Rf)*(1 - Rf / Ro) = (50*13 / 256.5)*(1 - 256.5 / )   = 2.5341% The extreme fiber elongation does not exceed 5%.

22/88

Page 22: Strength Calculation

= 0.000249 From Table CS-2 Metric: B = 251.128 kgf/cm2

Pa = B / (Ro / t) = 251.128 / (450.81 / 0.9) = 0.5 kgf/cm2 t = 0.9 mm + Corrosion = 0.9 mm + 3 mm = 3.9 mmCheck the external pressure per UG-33(a)(1) Appendix 1-4(c) t = 1.67*Pe*D*K / (2*S*E - 0.2*1.67*Pe) + Corrosion = 1.67*0.5*506*0.984468 / (2*1,305.236*1 - 0.2*1.67*0.5) + 3 = 3.16 mm The head external pressure design thickness (te) is 3.9 mm. Maximum Allowable External Pressure, (Corroded at 87 °C) UG-33(d) Equivalent outside spherical radius (Ro) Ro = Ko*Do = 0.8635*522.1 = 450.81 mm A = 0.125 / (Ro / t) = 0.125 / (450.81 / 8.05) = 0.002232 From Table CS-2 Metric: B = 1,074.4119 kgf/cm2

Pa = B / (Ro / t) = 1,074.412 / (450.81 / 8.05) = 19.1862 kgf/cm2 Check the Maximum External Pressure, UG-33(a)(1) Appendix 1-4(c) P = 2*S*E*t / ((K*D + 0.2*t)*1.67) - Ps2 = 2*1,305.236*1*8.05 / ((0.984468*506 +0.2*8.05)*1.67) - 0 = 25.18 kgf/cm2 The maximum allowable external pressure (MAEP) is 19.19 kgf/cm2. % Extreme fiber elongation - UCS-79(d) EFE = (75*t / Rf)*(1 - Rf / Ro) = (75*13 / 91.5)*(1 - 91.5 / )   = 10.6557% The extreme fiber elongation exceeds 5 percent. Heat treatment per UCS-56 may be required. See UCS-79(d)(4) or (5).

23/88

Page 23: Strength Calculation

BOOT SHELL (BOOT)

ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric

tw(lower) = 13 mm Leg41 = 9 mm tw(upper) = 13 mm Leg42 = 10 mm Dp = 970 mm te = 13 mm

Note: round inside edges per UG-76(c) Located on: SHELL Liquid static head included: 0.086 kgf/cm2

Nozzle material specification: SA-516 65 (II-D Metric p. 14, ln. 35) (normalized) Nozzle longitudinal joint efficiency: 1 Pad material specification: SA-516 65 (II-D Metric p. 14, ln. 35) (normalized) Pad diameter: 970 mm Nozzle orientation: 180° Local vessel minimum thickness: 13 mm Nozzle center line offset to datum line: 2,400 mm End of nozzle to shell center: 1,984 mm Nozzle inside diameter, new: 500 mm Nozzle nominal wall thickness: 13 mm Nozzle corrosion allowance: 3 mm Projection available outside vessel, Lpr: 1,321 mm Pad is split: No Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2)For P = 13.56 kgf/cm2 @ 87 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5 A

welds treq tmin

23.0315 42.8057 8.0271 3.6781 -- 30.2903 0.8103 9.83 13

UG-41 Weld Failure Path Analysis Summary (kgf)All failure paths are stronger than the applicable weld loads

Weld load W

Weld load W1-1

Path 1-1strength

Weld load W2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

24,966 82,502 171,504 8,469 231,111 85,112 177,255

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 6 6.3 weld size is adequate

Pad to shell fillet (Leg42) 5 7 weld size is adequate

Nozzle to pad groove (Upper) 7 13 weld size is adequate

24/88

Page 24: Strength Calculation

Check the opening per Appendix 1-7 Area required within 75 percent of the limits of reinforcement = 2 / 3*A = (2 / 3)*34.5473 = 23.0315 cm2 Area that is within 75 percent of the limits of reinforcement is: A1 = larger of 1.269 or = (2*limits - d)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1) = (2*379.5 - 506)*(1*10 - 1*6.83) - 2*10*(1*10 - 1*6.83)*(1 - 1) = 8.0271 cm2 A5 = (Dp - d - 2*tn)*te*fr4 = (759 - 506 - 2*10)*13*1 = 30.2903 cm2 Area = A1 + A2 + A3 + A41 + A42 + A43 + A5 = 8.0271 + 3.6781 + 0 + 0.8103 + 0 + 0 + 30.2903 = 42.8057 cm2 The area placement requirements of Appendix 1-7 are satisfied. The opening is not within the size range defined by 1-7(b)(1)(a) and (b) so it is exempt from the requirements of 1-7(b)(2),(3) and (4). Rn / R ratio does not exceed 0.7 so a U-2(g) analysis is not required per 1-7(b)(1)(c). % Extreme fiber elongation - UCS-79(d) EFE = (50*t / Rf)*(1 - Rf / Ro) = (50*13 / 256.5)*(1 - 256.5 / )   = 2.5341% The extreme fiber elongation does not exceed 5%. Reinforcement Calculations for MAP

UG-37 Area Calculation Summary (cm2) For P = 19.55 kgf/cm2 @ 21 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5 A

welds treq tmin

49.1185 81.4051 15.8813 5.9935 -- 57.72 1.8103 8.33 13

UG-41 Weld Failure Path Analysis Summary (kgf)All failure paths are stronger than the applicable weld loads

Weld load W

Weld load W1-1

Path 1-1strength

Weld load W2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

44,460 85,524 193,161 13,292 255,050 89,936 201,195

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 6 6.3 weld size is adequate

Pad to shell fillet (Leg42) 6.5 7 weld size is adequate

Nozzle to pad groove (Upper) 9.1 13 weld size is adequateReinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm2) For Pe = 2.64 kgf/cm2 @ 87 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5 A

welds treq tmin

16.8671 34.2748 -- 3.1742 -- 30.2903 0.8103 6.65 13

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary

25/88

Page 25: Strength Calculation

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 6 6.3 weld size is adequate

Pad to shell fillet (Leg42) 5 7 weld size is adequate

Nozzle to pad groove (Upper) 7 13 weld size is adequate Check the opening per Appendix 1-7 Area required within 75 percent of the limits of reinforcement = 2 / 3*A = (2 / 3)*25.3006 = 16.8671 cm2 Area that is within 75 percent of the limits of reinforcement is: A1 = larger of 0 or = (2*limits - d)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1) = (2*379.5 - 506)*(1*10 - 1*10) - 2*10*(1*10 - 1*10)*(1 - 1) = 0 cm2 A5 = (Dp - d - 2*tn)*te*fr4 = (759 - 506 - 2*10)*13*1 = 30.2903 cm2 Area = A1 + A2 + A3 + A41 + A42 + A43 + A5 = 0 + 3.1742 + 0 + 0.8103 + 0 + 0 + 30.2903 = 34.2748 cm2 The area placement requirements of Appendix 1-7 are satisfied.

26/88

Page 26: Strength Calculation

INLET (A)

ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric

tw(lower) = 9.75 mm Leg41 = 9 mm tw(upper) = 13 mm Leg42 = 10 mm Dp = 400 mm te = 13 mm

Note: round inside edges per UG-76(c) Located on: RIGHT HEAD Liquid static head included: 0.0074 kgf/cm2

Nozzle material specification: SA-333 6 Wld & smls pipe (II-D Metric p. 14, ln. 8)

Nozzle longitudinal joint efficiency: 1 Nozzle description: 8" Sch 80 (XS) DN 200 Pad material specification: SA-516 65 (II-D Metric p. 14, ln. 35) (normalized) Pad diameter: 400 mmFlange description: 8 inch Class 150 WN A350 LF2 Cl.1

Bolt Material: SA-320 L7M Bolt <= 64 (II-D Metric p. 348, ln. 31)

Flange rated MDMT: -49°C (UG-84 provisions apply) (Flange impact tested to -49°C (UCS-66(g))) Liquid static head on flange: 0.0074 kgf/cm2 ASME B16.5 flange rating MAWP: 18.45 kgf/cm2 @ 87°C ASME B16.5 flange rating MAP: 19.99 kgf/cm2 @ 21°C ASME B16.5 flange hydro test: 30.59 kgf/cm2 @ 21°C Gasket Description: Flexitallic Spiral Wound CGI 316L S.S. PWHT performed: No Circumferential joint radiography: Full UW-11(a) Type 1 Nozzle orientation: 0° Calculated as hillside: Yes Local vessel minimum thickness: 9.75 mm End of nozzle to datum line: -550 mm Nozzle inside diameter, new: 193.68 mm Nozzle nominal wall thickness: 12.7 mm Nozzle corrosion allowance: 3 mm Opening chord length: 214.96 mm Projection available outside vessel, Lpr: 147.84 mm Projection available outside vessel to flange face, Lf: 249.44 mm Distance to head center, R: 400 mm Pad is split: No Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2)For P = 13.48 kgf/cm2 @ 87 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5 A

welds treq tmin

27/88

Page 27: Strength Calculation

14.5286 25.6288 0.0826 2.6684 -- 21.3733 1.5045 9.71 11.11

UG-41 Weld Failure Path Analysis Summary (kgf)All failure paths are stronger than the applicable weld loads

Weld load W

Weld load W1-1

Path 1-1strength

Weld load W2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

18,865 33,344 67,055 5,717 83,906 34,920 62,621

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 6 6.3 weld size is adequate

Pad to shell fillet (Leg42) 3.38 7 weld size is adequate

Nozzle to pad groove (Upper) 6.79 13 weld size is adequate

28/88

Page 28: Strength Calculation

OUTLET TO ATM (B2) ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric

tw(lower) = 13 mm Leg41 = 9 mm tw(upper) = 13 mm Leg42 = 10 mm Dp = 510 mm te = 13 mm

Note: round inside edges per UG-76(c) Located on: SHELL Liquid static head included: 0 kgf/cm2

Nozzle material specification: SA-333 6 Wld & smls pipe (II-D Metric p. 14, ln. 8)

Nozzle longitudinal joint efficiency: 1Nozzle description: 10" Sch 80 DN 250 Pad material specification: SA-516 65 (II-D Metric p. 14, ln. 35) (normalized) Pad diameter: 510 mmFlange description: 10 inch Class 150 WN A350 LF2 Cl.1

Bolt Material: SA-320 L7M Bolt <= 64 (II-D Metric p. 348, ln. 31)

Flange rated MDMT: -49°C (UG-84 provisions apply) (Flange impact tested to -49°C (UCS-66(g))) Liquid static head on flange: 0 kgf/cm2 ASME B16.5 flange rating MAWP: 18.45 kgf/cm2 @ 87°C ASME B16.5 flange rating MAP: 19.99 kgf/cm2 @ 21°C ASME B16.5 flange hydro test: 30.59 kgf/cm2 @ 21°C Gasket Description: Flexitallic Spiral Wound CGI 316L S.S. PWHT performed: No Circumferential joint radiography: Full UW-11(a) Type 1 Nozzle orientation: 0° Local vessel minimum thickness: 13 mm Nozzle center line offset to datum line: 3,600 mm End of nozzle to shell center: 1,200 mm Nozzle inside diameter, new: 242.87 mm Nozzle nominal wall thickness: 15.09 mm Nozzle corrosion allowance: 3 mm Projection available outside vessel, Lpr: 435.4 mm Projection available outside vessel to flange face, Lf: 537 mm Pad is split: No Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2)For P = 13.48 kgf/cm2 @ 87 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5 A

welds treq tmin

17.0113 42.8271 7.9439 4.9258 -- 29.2109 0.7465 9.78 13.2

29/88

Page 29: Strength Calculation

UG-41 Weld Failure Path Analysis Summary (kgf)All failure paths are stronger than the applicable weld loads

Weld load W

Weld load W1-1

Path 1-1strength

Weld load W2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

12,771 45,531 92,971 10,313 118,043 48,440 92,664

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 6 6.3 weld size is adequate

Pad to shell fillet (Leg42) 5 7 weld size is adequate

Nozzle to pad groove (Upper) 8.46 13 weld size is adequate

30/88

Page 30: Strength Calculation

PUMP OUT CONNECTION (B3) ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric

tw(lower) = 13 mm Leg41 = 9 mm Leg43 = 9 mm hnew = 50 mm

Note: round inside edges per UG-76(c) Located on: SHELL Liquid static head included: 0 kgf/cm2

Nozzle material specification: SA-350 LF2 Cl 1 (II-D Metric p. 18, ln. 15) (normalized)

Nozzle longitudinal joint efficiency: 1Flange description: 2 inch Class 150 LWN A350 LF2 Cl.1 Bolt Material: SA-320 L7M Bolt <= 64 (II-D Metric p. 348, ln. 31) Flange rated MDMT: -49°C (UG-84 provisions apply) (Flange impact tested to -49°C (UCS-66(g))) Liquid static head on flange: 0 kgf/cm2 ASME B16.5 flange rating MAWP: 18.45 kgf/cm2 @ 87°C ASME B16.5 flange rating MAP: 19.99 kgf/cm2 @ 21°C ASME B16.5 flange hydro test: 30.59 kgf/cm2 @ 21°C Gasket Description: Flexitallic Spiral Wound CGI 316L S.S. PWHT performed: No Nozzle orientation: 0° Local vessel minimum thickness: 13 mm Nozzle center line offset to datum line: 1,600 mm End of nozzle to shell center: 1,200 mm Nozzle inside diameter, new: 42.9 mm Nozzle nominal wall thickness: 17.55 mm Nozzle corrosion allowance: 3 mm Projection available outside vessel, Lpr: 517.95 mm Internal projection, hnew: 50 mm Projection available outside vessel to flange face, Lf: 537 mm Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2) For P = 13.48 kgf/cm2 @ 87 °C

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from area calculations per UG-36(c)(3)(a) 7.8 17.55

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary

31/88

Page 31: Strength Calculation

Weld description Required weld throat size (mm)

Actual weldthroat size (mm) Status

Nozzle to shell fillet (Leg41) 6 6.3 weld size is adequate This opening does not require reinforcement per UG-36(c)(3)(a)

32/88

Page 32: Strength Calculation

DRAIN (D)

ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric

tw(lower) = 11.05 mm Leg41 = 9 mm

Note: round inside edges per UG-76(c) Located on: BOOT HEAD Liquid static head included: 0.1965 kgf/cm2

Nozzle material specification: SA-350 LF2 Cl 1 (II-D Metric p. 18, ln. 15) (normalized)

Nozzle longitudinal joint efficiency: 1Flange description: 2 inch Class 150 LWN A350 LF2 Cl.1 Bolt Material: SA-320 L7M Bolt <= 64 (II-D Metric p. 348, ln. 31) Flange rated MDMT: -49°C (UG-84 provisions apply) (Flange impact tested to -49°C (UCS-66(g))) Liquid static head on flange: 0.2109 kgf/cm2 ASME B16.5 flange rating MAWP: 18.45 kgf/cm2 @ 87°C ASME B16.5 flange rating MAP: 19.99 kgf/cm2 @ 21°C ASME B16.5 flange hydro test: 30.59 kgf/cm2 @ 21°C Gasket Description: Flexitallic Spiral Wound CGI 316L S.S. PWHT performed: No Nozzle orientation: 0° Calculated as hillside: No Local vessel minimum thickness: 11.05 mm End of nozzle to datum line: 0 mm Nozzle inside diameter, new: 50.8 mm Nozzle nominal wall thickness: 13.6 mm Nozzle corrosion allowance: 3 mm Projection available outside vessel, Lpr: 176.43 mm Projection available outside vessel to flange face, Lf: 195.48 mm Distance to head center, R: 0 mm Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2) For P = 13.67 kgf/cm2 @ 87 °C

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from area calculations per UG-36(c)(3)(a) 5.61 13.6

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

33/88

Page 33: Strength Calculation

UW-16 Weld Sizing Summary

Weld description Required weld throat size (mm)

Actual weldthroat size (mm) Status

Nozzle to shell fillet (Leg41) 5.63 6.3 weld size is adequate This opening does not require reinforcement per UG-36(c)(3)(a)

34/88

Page 34: Strength Calculation

NITROGEN CONNECTION (N1)

ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric

tw(lower) = 13 mm Leg41 = 9 mm

Note: round inside edges per UG-76(c) Located on: SHELL Liquid static head included: 0 kgf/cm2

Nozzle material specification: SA-350 LF2 Cl 1 (II-D Metric p. 18, ln. 15) (normalized)

Nozzle longitudinal joint efficiency: 1Flange description: 2 inch Class 150 LWN A350 LF2 Cl.1 Bolt Material: SA-320 L7M Bolt <= 64 (II-D Metric p. 348, ln. 31) Flange rated MDMT: -49°C (UG-84 provisions apply) (Flange impact tested to -49°C (UCS-66(g))) Liquid static head on flange: 0 kgf/cm2 ASME B16.5 flange rating MAWP: 18.45 kgf/cm2 @ 87°C ASME B16.5 flange rating MAP: 19.99 kgf/cm2 @ 21°C ASME B16.5 flange hydro test: 30.59 kgf/cm2 @ 21°C Gasket Description: Flexitallic Spiral Wound CGI 316L S.S. PWHT performed: No Nozzle orientation: 0° Local vessel minimum thickness: 13 mm Nozzle center line offset to datum line: 200 mm End of nozzle to shell center: 1,200 mm Nozzle inside diameter, new: 50.8 mm Nozzle nominal wall thickness: 13.6 mm Nozzle corrosion allowance: 3 mm Projection available outside vessel, Lpr: 517.95 mm Projection available outside vessel to flange face, Lf: 537 mm Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2) For P = 13.48 kgf/cm2 @ 87 °C

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from area calculations per UG-36(c)(3)(a) 7.8 13.6

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary

35/88

Page 35: Strength Calculation

Weld description Required weld throat size (mm)

Actual weldthroat size (mm) Status

Nozzle to shell fillet (Leg41) 6 6.3 weld size is adequate This opening does not require reinforcement per UG-36(c)(3)(a)

36/88

Page 36: Strength Calculation

UTILITY CONNECTION (UC)

ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric

tw(lower) = 13 mm Leg41 = 9 mm tw(upper) = 13 mm Leg42 = 10 mm Dp = 300 mm te = 13 mm

Note: round inside edges per UG-76(c) Located on: SHELL Liquid static head included: 0 kgf/cm2

Nozzle material specification: SA-333 6 Wld & smls pipe (II-D Metric p. 14, ln. 8)

Nozzle longitudinal joint efficiency: 1 Nozzle description: 6" Sch 80 (XS) DN 150 Pad material specification: SA-516 65 (II-D Metric p. 14, ln. 35) (normalized) Pad diameter: 300 mmFlange description: 6 inch Class 150 WN A350 LF2 Cl.1

Bolt Material: SA-320 L7M Bolt <= 64 (II-D Metric p. 348, ln. 31)

Flange rated MDMT: -49°C (UG-84 provisions apply) (Flange impact tested to -49°C (UCS-66(g))) Liquid static head on flange: 0 kgf/cm2 ASME B16.5 flange rating MAWP: 18.45 kgf/cm2 @ 87°C ASME B16.5 flange rating MAP: 19.99 kgf/cm2 @ 21°C ASME B16.5 flange hydro test: 30.59 kgf/cm2 @ 21°C Gasket Description: Flexitallic Spiral Wound CGI 316L S.S. PWHT performed: No Circumferential joint radiography: Full UW-11(a) Type 1 Nozzle orientation: 0° Local vessel minimum thickness: 13 mm Nozzle center line offset to datum line: 3,100 mm End of nozzle to shell center: 1,200 mm Nozzle inside diameter, new: 146.33 mm Nozzle nominal wall thickness: 10.97 mm Nozzle corrosion allowance: 3 mm Projection available outside vessel, Lpr: 448.1 mm Projection available outside vessel to flange face, Lf: 537 mm Pad is split: No Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2)For P = 13.48 kgf/cm2 @ 87 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5 A

welds treq tmin

10.4183 26.421 4.8593 3.2793 -- 17.1236 1.1587 9.22 9.6

37/88

Page 37: Strength Calculation

UG-41 Weld Failure Path Analysis Summary (kgf)All failure paths are stronger than the applicable weld loads

Weld load W

Weld load W1-1

Path 1-1strength

Weld load W2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

7,873 28,143 47,048 7,173 72,747 30,062 55,670

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 5.58 6.3 weld size is adequate

Pad to shell fillet (Leg42) 5 7 weld size is adequate

Nozzle to pad groove (Upper) 5.58 13 weld size is adequate

38/88

Page 38: Strength Calculation

VESSEL VENT (V) ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric

tw(lower) = 13 mm Leg41 = 9 mm

Note: round inside edges per UG-76(c) Located on: SHELL Liquid static head included: 0 kgf/cm2

Nozzle material specification: SA-350 LF2 Cl 1 (II-D Metric p. 18, ln. 15) (normalized)

Nozzle longitudinal joint efficiency: 1Flange description: 2 inch Class 150 LWN A350 LF2 Cl.1 Bolt Material: SA-320 L7M Bolt <= 64 (II-D Metric p. 348, ln. 31) Flange rated MDMT: -49°C (UG-84 provisions apply) (Flange impact tested to -49°C (UCS-66(g))) Liquid static head on flange: 0 kgf/cm2 ASME B16.5 flange rating MAWP: 18.45 kgf/cm2 @ 87°C ASME B16.5 flange rating MAP: 19.99 kgf/cm2 @ 21°C ASME B16.5 flange hydro test: 30.59 kgf/cm2 @ 21°C Gasket Description: Flexitallic Spiral Wound CGI 316L S.S. PWHT performed: No Nozzle orientation: 0° Local vessel minimum thickness: 13 mm Nozzle center line offset to datum line: 1,400 mm End of nozzle to shell center: 1,200 mm Nozzle inside diameter, new: 50.8 mm Nozzle nominal wall thickness: 13.6 mm Nozzle corrosion allowance: 3 mm Projection available outside vessel, Lpr: 517.95 mm Projection available outside vessel to flange face, Lf: 537 mm Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2) For P = 13.48 kgf/cm2 @ 87 °C

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from area calculations per UG-36(c)(3)(a) 7.8 13.6

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weld Actual weld Status

39/88

Page 39: Strength Calculation

throat size (mm) throat size (mm)

Nozzle to shell fillet (Leg41) 6 6.3 weld size is adequate This opening does not require reinforcement per UG-36(c)(3)(a)

40/88

Page 40: Strength Calculation

LEVEL TRANSMITTER (L1)

ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric

tw(lower) = 13 mm Leg41 = 9 mm tw(upper) = 13 mm Leg42 = 10 mm Leg43 = 9 mm hnew = 1,250 mm Dp = 210 mm te = 13 mm

Note: round inside edges per UG-76(c) Located on: SHELL Liquid static head included: 0 kgf/cm2

Nozzle material specification: SA-333 6 Wld & smls pipe (II-D Metric p. 14, ln. 8)

Nozzle longitudinal joint efficiency: 1 Nozzle description: 4" Sch 120 DN 100 Pad material specification: SA-516 65 (II-D Metric p. 14, ln. 35) (normalized) Pad diameter: 210 mm Flange description: 4 inch Class 300 WN A350 LF2 Cl.1

Bolt Material: SA-320 L7M Bolt <= 64 (II-D Metric p. 348, ln. 31)

Flange rated MDMT: -76°C (UCS-66(b)(3): Coincident ratio = 0.2586163) (Flange rated MDMT = -105 °C Bolts rated MDMT per Fig UCS-66 note (c) = -76 °C)

Liquid static head on flange: 0 kgf/cm2 ASME B16.5 flange rating MAWP: 48.45 kgf/cm2 @ 87°C ASME B16.5 flange rating MAP: 52.11 kgf/cm2 @ 21°C ASME B16.5 flange hydro test: 78.52 kgf/cm2 @ 21°C Gasket Description: Flexitallic Spiral Wound CGI 316L S.S. PWHT performed: No Circumferential joint radiography: Full UW-11(a) Type 1 Nozzle orientation: 0° Local vessel minimum thickness: 13 mm Nozzle center line offset to datum line: 850 mm End of nozzle to shell center: 1,200 mm Nozzle inside diameter, new: 92.05 mm Nozzle nominal wall thickness: 11.13 mm Nozzle corrosion allowance: 3 mm Projection available outside vessel, Lpr: 451.15 mm Internal projection, hnew: 1,250 mm Projection available outside vessel to flange face, Lf: 537 mm Pad is split: No Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2)For P = 13.48 kgf/cm2 @ 87 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

Awelds treq tmin

41/88

Page 41: Strength Calculation

6.7376 19.3997 3.1129 3.4903 1.2109 10.6339 0.9516 8.27 9.73

UG-41 Weld Failure Path Analysis Summary (kgf)All failure paths are stronger than the applicable weld loads

Weld load W

Weld load W1-1

Path 1-1strength

Weld load W2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

5,360 19,410 32,511 9,334 54,404 23,214 43,430

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 5.69 6.3 weld size is adequate

Pad to shell fillet (Leg42) 5 7 weld size is adequate

Nozzle to pad groove (Upper) 5.69 13 weld size is adequateReinforcement Calculations for MAP

UG-37 Area Calculation Summary (cm2)For P = 19.55 kgf/cm2 @ 21 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

Awelds treq tmin

9.2134 25.3552 2.8684 6.2148 5.7052 9.0739 1.4929 5.27 9.73

UG-41 Weld Failure Path Analysis Summary (kgf)All failure paths are stronger than the applicable weld loads

Weld load W

Weld load W1-1

Path 1-1strength

Weld load W2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

9,132 20,930 36,284 20,988 64,142 32,831 53,168

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 6 6.3 weld size is adequate

Pad to shell fillet (Leg42) 6.5 7 weld size is adequate

Nozzle to pad groove (Upper) 7.79 13 weld size is adequateReinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm2)For Pe = 2.64 kgf/cm2 @ 87 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5 A

welds treq tmin

4.9661 16.0719 -- 3.2755 1.2109 10.6339 0.9516 4.5 9.73

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 5.69 6.3 weld size is adequate

Pad to shell fillet (Leg42) 5 7 weld size is adequate

Nozzle to pad groove (Upper) 5.69 13 weld size is adequate

42/88

Page 42: Strength Calculation

LEVEL TRANSMITTER (L2) ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric

tw(lower) = 13 mm Leg41 = 9 mm tw(upper) = 13 mm Leg42 = 10 mm Leg43 = 9 mm hnew = 1,250 mm Dp = 210 mm te = 13 mm

Note: round inside edges per UG-76(c) Located on: SHELL Liquid static head included: 0 kgf/cm2

Nozzle material specification: SA-333 6 Wld & smls pipe (II-D Metric p. 14, ln. 8)

Nozzle longitudinal joint efficiency: 1 Nozzle description: 4" Sch 120 DN 100 Pad material specification: SA-516 65 (II-D Metric p. 14, ln. 35) (normalized) Pad diameter: 210 mm Flange description: 4 inch Class 300 WN A350 LF2 Cl.1

Bolt Material: SA-320 L7M Bolt <= 64 (II-D Metric p. 348, ln. 31)

Flange rated MDMT: -76°C (UCS-66(b)(3): Coincident ratio = 0.2586163) (Flange rated MDMT = -105 °C Bolts rated MDMT per Fig UCS-66 note (c) = -76 °C)

Liquid static head on flange: 0 kgf/cm2 ASME B16.5 flange rating MAWP: 48.45 kgf/cm2 @ 87°C ASME B16.5 flange rating MAP: 52.11 kgf/cm2 @ 21°C ASME B16.5 flange hydro test: 78.52 kgf/cm2 @ 21°C Gasket Description: Flexitallic Spiral Wound CGI 316L S.S. PWHT performed: No Circumferential joint radiography: Full UW-11(a) Type 1 Nozzle orientation: 0° Local vessel minimum thickness: 13 mm Nozzle center line offset to datum line: 1,150 mm End of nozzle to shell center: 1,200 mm Nozzle inside diameter, new: 92.05 mm Nozzle nominal wall thickness: 11.13 mm Nozzle corrosion allowance: 3 mm Projection available outside vessel, Lpr: 451.15 mm Internal projection, hnew: 1,250 mm Projection available outside vessel to flange face, Lf: 537 mm Pad is split: No Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2)For P = 13.48 kgf/cm2 @ 87 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

Awelds treq tmin

43/88

Page 43: Strength Calculation

6.7376 19.3997 3.1129 3.4903 1.2109 10.6339 0.9516 8.27 9.73

UG-41 Weld Failure Path Analysis Summary (kgf)All failure paths are stronger than the applicable weld loads

Weld load W

Weld load W1-1

Path 1-1strength

Weld load W2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

5,360 19,410 32,511 9,334 54,404 23,214 43,430

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 5.69 6.3 weld size is adequate

Pad to shell fillet (Leg42) 5 7 weld size is adequate

Nozzle to pad groove (Upper) 5.69 13 weld size is adequateReinforcement Calculations for MAP

UG-37 Area Calculation Summary (cm2)For P = 19.55 kgf/cm2 @ 21 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

Awelds treq tmin

9.2134 25.3552 2.8684 6.2148 5.7052 9.0739 1.4929 5.27 9.73

UG-41 Weld Failure Path Analysis Summary (kgf)All failure paths are stronger than the applicable weld loads

Weld load W

Weld load W1-1

Path 1-1strength

Weld load W2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

9,132 20,930 36,284 20,988 64,142 32,831 53,168

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 6 6.3 weld size is adequate

Pad to shell fillet (Leg42) 6.5 7 weld size is adequate

Nozzle to pad groove (Upper) 7.79 13 weld size is adequateReinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm2)For Pe = 2.64 kgf/cm2 @ 87 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5 A

welds treq tmin

4.9661 16.0719 -- 3.2755 1.2109 10.6339 0.9516 4.5 9.73

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 5.69 6.3 weld size is adequate

Pad to shell fillet (Leg42) 5 7 weld size is adequate

Nozzle to pad groove (Upper) 5.69 13 weld size is adequate

44/88

Page 44: Strength Calculation

PRESSURE TRANSMITTER (P) ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric

tw(lower) = 13 mm Leg41 = 9 mm

Note: round inside edges per UG-76(c) Located on: SHELL Liquid static head included: 0 kgf/cm2

Nozzle material specification: SA-350 LF2 Cl 1 (II-D Metric p. 18, ln. 15) (normalized)

Nozzle longitudinal joint efficiency: 1 Flange description: 2 inch Class 300 LWN A350 LF2 Cl.1 Bolt Material: SA-320 L7M Bolt <= 64 (II-D Metric p. 348, ln. 31) Flange rated MDMT: -76°C (UCS-66(b)(3): Coincident ratio = 0.2586163) (Flange rated MDMT = -105 °C Bolts rated MDMT per Fig UCS-66 note (c) = -76 °C)

Liquid static head on flange: 0 kgf/cm2 ASME B16.5 flange rating MAWP: 48.45 kgf/cm2 @ 87°C ASME B16.5 flange rating MAP: 52.11 kgf/cm2 @ 21°C ASME B16.5 flange hydro test: 78.52 kgf/cm2 @ 21°C Gasket Description: Flexitallic Spiral Wound CGI 316L S.S. PWHT performed: No Nozzle orientation: 0° Local vessel minimum thickness: 13 mm Nozzle center line offset to datum line: 400 mm End of nozzle to shell center: 1,200 mm Nozzle inside diameter, new: 50.8 mm Nozzle nominal wall thickness: 16.65 mm Nozzle corrosion allowance: 3 mm Projection available outside vessel, Lpr: 514.65 mm Projection available outside vessel to flange face, Lf: 537 mm Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2) For P = 13.48 kgf/cm2 @ 87 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

Awelds treq tmin

3.8532 9.3251 1.8271 6.6877 -- -- 0.8103 7.8 16.65

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary

45/88

Page 45: Strength Calculation

Weld description Required weld throat size (mm)

Actual weldthroat size (mm) Status

Nozzle to shell fillet (Leg41) 6 6.3 weld size is adequate Opening T is too close per UG-36(c)(3)(d) to allow an exemption per UG-36(c)(3)(a). Reinforcement calculations performed. Reinforcement Calculations for MAP

UG-37 Area Calculation Summary (cm2) For P = 19.55 kgf/cm2 @ 21 °C

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from area calculations per UG-36(c)(3)(a) 4.8 16.65

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weld throat size (mm)

Actual weldthroat size (mm) Status

Nozzle to shell fillet (Leg41) 6 6.3 weld size is adequate This opening does not require reinforcement per UG-36(c)(3)(a) Reinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm2) For Pe = 2.64 kgf/cm2 @ 87 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

A welds treq tmin

2.8401 7.2032 -- 6.3929 -- -- 0.8103 4.5 16.65

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary

Weld description Required weld throat size (mm)

Actual weldthroat size (mm) Status

Nozzle to shell fillet (Leg41) 6 6.3 weld size is adequate Opening T is too close per UG-36(c)(3)(d) to allow an exemption per UG-36(c)(3)(a). Reinforcement calculations performed.

46/88

Page 46: Strength Calculation

TEMPERATURE TRANSMITTER (T)

ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric

tw(lower) = 13 mm Leg41 = 9 mm Leg43 = 9 mm hnew = 50 mm

Note: round inside edges per UG-76(c) Located on: SHELL Liquid static head included: 0 kgf/cm2

Nozzle material specification: SA-350 LF2 Cl 1 (II-D Metric p. 18, ln. 15) (normalized)

Nozzle longitudinal joint efficiency: 1 Flange description: 2 inch Class 300 LWN A350 LF2 Cl.1 Bolt Material: SA-320 L7M Bolt <= 64 (II-D Metric p. 348, ln. 31) Flange rated MDMT: -76°C (UCS-66(b)(3): Coincident ratio = 0.2586163) (Flange rated MDMT = -105 °C Bolts rated MDMT per Fig UCS-66 note (c) = -76 °C)

Liquid static head on flange: 0 kgf/cm2 ASME B16.5 flange rating MAWP: 48.45 kgf/cm2 @ 87°C ASME B16.5 flange rating MAP: 52.11 kgf/cm2 @ 21°C ASME B16.5 flange hydro test: 78.52 kgf/cm2 @ 21°C Gasket Description: Flexitallic Spiral Wound CGI 316L S.S. PWHT performed: No Nozzle orientation: 0° Local vessel minimum thickness: 13 mm Nozzle center line offset to datum line: 600 mm End of nozzle to shell center: 1,200 mm Nozzle inside diameter, new: 42.9 mm Nozzle nominal wall thickness: 20.6 mm Nozzle corrosion allowance: 3 mm Projection available outside vessel, Lpr: 514.65 mm Internal projection, hnew: 50 mm Projection available outside vessel to flange face, Lf: 537 mm Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2) For P = 13.48 kgf/cm2 @ 87 °C

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from area calculations per UG-36(c)(3)(a) 7.8 20.6

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

47/88

Page 47: Strength Calculation

UW-16 Weld Sizing Summary

Weld description Required weld throat size (mm)

Actual weldthroat size (mm) Status

Nozzle to shell fillet (Leg41) 6 6.3 weld size is adequate This opening does not require reinforcement per UG-36(c)(3)(a) Reinforcement Calculations for MAP

UG-37 Area Calculation Summary (cm2) For P = 19.55 kgf/cm2 @ 21 °C

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from area calculations per UG-36(c)(3)(a) 4.8 20.6

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weld throat size (mm)

Actual weldthroat size (mm) Status

Nozzle to shell fillet (Leg41) 6 6.3 weld size is adequate This opening does not require reinforcement per UG-36(c)(3)(a) Reinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm2) For Pe = 2.64 kgf/cm2 @ 87 °C

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from area calculations per UG-36(c)(3)(a) 4.5 20.6

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary

Weld description Required weld throat size (mm)

Actual weldthroat size (mm) Status

Nozzle to shell fillet (Leg41) 6 6.3 weld size is adequate This opening does not require reinforcement per UG-36(c)(3)(a)

48/88

Page 48: Strength Calculation

MANWAY (M1)

ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric

tw(lower) = 9.75 mm Leg41 = 9 mm tw(upper) = 13 mm Leg42 = 10 mm Dp = 1,050 mm te = 13 mm

Note: round inside edges per UG-76(c) Located on: LEFT HEAD Liquid static head included: 0.037 kgf/cm2

Nozzle material specification: SA-516 65 (II-D Metric p. 14, ln. 35) (normalized) Nozzle longitudinal joint efficiency: 1 Pad material specification: SA-516 65 (II-D Metric p. 14, ln. 35) (normalized) Pad diameter: 1,050 mm Flange description: 24 inch Class 150 WN A350 LF2 Cl.1

Bolt Material: SA-320 L7M Bolt <= 64 (II-D Metric p. 348, ln. 31)

Flange rated MDMT: -49°C (UG-84 provisions apply) (Flange impact tested to -49°C (UCS-66(g))) Liquid static head on flange: 0.037 kgf/cm2 ASME B16.5 flange rating MAWP: 18.45 kgf/cm2 @ 87°C ASME B16.5 flange rating MAP: 19.99 kgf/cm2 @ 21°C ASME B16.5 flange hydro test: 30.59 kgf/cm2 @ 21°C Gasket Description: Flexitallic Spiral Wound CGI 316L S.S. PWHT performed: No Circumferential joint radiography: Full UW-11(a) Type 1 Nozzle orientation: 0° Calculated as hillside: No Local vessel minimum thickness: 9.75 mm End of nozzle to datum line: 4,650 mm Nozzle inside diameter, new: 583.6 mm Nozzle nominal wall thickness: 13 mm Nozzle corrosion allowance: 3 mm Projection available outside vessel, Lpr: 200.72 mm Projection available outside vessel to flange face, Lf: 353.12 mm Distance to head center, R: 0 mm Pad is split: No Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2) For P = 13.51 kgf/cm2 @ 87 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5 A

welds treq tmin

39.6575 61.2797 0.1419 2.3387 -- 57.252 1.5471 9.73 13

49/88

Page 49: Strength Calculation

UG-41 Weld Failure Path Analysis Summary (kgf)All failure paths are stronger than the applicable weld loads

Weld load W

Weld load W1-1

Path 1-1strength

Weld load W2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

51,583 79,799 191,540 5,529 237,784 81,561 167,918

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 6 6.3 weld size is adequate

Pad to shell fillet (Leg42) 3.38 7 weld size is adequate

Nozzle to pad groove (Upper) 7 13 weld size is adequate% Extreme fiber elongation - UCS-79(d) EFE = (50*t / Rf)*(1 - Rf / Ro) = (50*13 / 298.3)*(1 - 298.3 / )   = 2.179% The extreme fiber elongation does not exceed 5%. Reinforcement Calculations for MAP

UG-37 Area Calculation Summary (cm2) For P = 19.55 kgf/cm2 @ 21 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5 A

welds treq tmin

56.9013 63.2501 -- 4.1877 -- 57.252 1.8103 8.33 13

UG-41 Weld Failure Path Analysis Summary (kgf)All failure paths are stronger than the applicable weld loads

Weld load W

Weld load W1-1

Path 1-1strength

Weld load W2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

74,270 82,556 216,796 9,832 265,528 85,865 195,662

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 6 6.3 weld size is adequate

Pad to shell fillet (Leg42) 4.87 7 weld size is adequate

Nozzle to pad groove (Upper) 9.1 13 weld size is adequateReinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm2) For Pe = 2.64 kgf/cm2 @ 87 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5 A

welds treq tmin

15.7561 69.7036 8.2871 2.6174 -- 57.252 1.5471 5.24 13

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 6 6.3 weld size is adequate

Pad to shell fillet (Leg42) 3.38 7 weld size is adequate

50/88

Page 50: Strength Calculation

Nozzle to pad groove (Upper) 7 13 weld size is adequate

51/88

Page 51: Strength Calculation

PUMP CONNECTION NOZZLE (M2) ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric

tw(lower) = 13 mm Leg41 = 9 mm tw(upper) = 13 mm Leg42 = 10 mm Dp = 870 mm te = 13 mm

Note: round inside edges per UG-76(c) Located on: SHELL Liquid static head included: 0 kgf/cm2

Nozzle material specification: SA-516 65 (II-D Metric p. 14, ln. 35) (normalized) Nozzle longitudinal joint efficiency: 1 Pad material specification: SA-516 65 (II-D Metric p. 14, ln. 35) (normalized) Pad diameter: 870 mm Flange description: 18 inch Class 150 WN A350 LF2 Cl.1

Bolt Material: SA-320 L7M Bolt <= 64 (II-D Metric p. 348, ln. 31)

Flange rated MDMT: -49°C (UG-84 provisions apply) (Flange impact tested to -49°C (UCS-66(g))) Liquid static head on flange: 0 kgf/cm2 ASME B16.5 flange rating MAWP: 18.45 kgf/cm2 @ 87°C ASME B16.5 flange rating MAP: 19.99 kgf/cm2 @ 21°C ASME B16.5 flange hydro test: 30.59 kgf/cm2 @ 21°C Gasket Description: Flexitallic Spiral Wound CGI 316L S.S. PWHT performed: No Circumferential joint radiography: Full UW-11(a) Type 1 Nozzle orientation: 0° Local vessel minimum thickness: 13 mm Nozzle center line offset to datum line: 2,400 mm End of nozzle to shell center: 1,300 mm Nozzle inside diameter, new: 431.2 mm Nozzle nominal wall thickness: 13 mm Nozzle corrosion allowance: 3 mm Projection available outside vessel, Lpr: 497.3 mm Projection available outside vessel to flange face, Lf: 637 mm Pad is split: No Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2)For P = 13.48 kgf/cm2 @ 87 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

Awelds treq tmin

29.6589 72.7924 14.0619 3.8645 -- 53.664 1.2019 9.78 13

UG-41 Weld Failure Path Analysis Summary (kgf)All failure paths are stronger than the applicable weld loads

52/88

Page 52: Strength Calculation

Weld load W

Weld load W1-1

Path 1-1strength

Weld load W2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

21,197 76,657 151,584 8,712 200,882 79,268 156,771

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 6 6.3 weld size is adequate

Pad to shell fillet (Leg42) 5 7 weld size is adequate

Nozzle to pad groove (Upper) 7 13 weld size is adequate% Extreme fiber elongation - UCS-79(d) EFE = (50*t / Rf)*(1 - Rf / Ro) = (50*13 / 222.1)*(1 - 222.1 / )   = 2.9266% The extreme fiber elongation does not exceed 5%. Reinforcement Calculations for MAP

UG-37 Area Calculation Summary (cm2)For P = 19.55 kgf/cm2 @ 21 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

Awelds treq tmin

42.3598 73.514 13.6961 6.3316 -- 52.676 0.8103 8.33 13

UG-41 Weld Failure Path Analysis Summary (kgf)All failure paths are stronger than the applicable weld loads

Weld load W

Weld load W1-1

Path 1-1strength

Weld load W2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

38,491 78,077 170,279 13,734 221,690 82,488 177,579

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 6 6.3 weld size is adequate

Pad to shell fillet (Leg42) 6.5 7 weld size is adequate

Nozzle to pad groove (Upper) 9.1 13 weld size is adequateReinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm2) For Pe = 2.64 kgf/cm2 @ 87 °C

The opening is adequately reinforced

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5 A

welds treq tmin

21.8605 58.6285 -- 3.7626 -- 53.664 1.2019 5.47 13

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary

Weld description Required weld size (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 6 6.3 weld size is adequate

Pad to shell fillet (Leg42) 5 7 weld size is adequate

Nozzle to pad groove (Upper) 7 13 weld size is adequate

53/88

Page 53: Strength Calculation

STEAM OUT (S) ASME Section VIII Division 1, 2007 Edition, A09 Addenda Metric

tw(lower) = 9.75 mm Leg41 = 9 mm

Note: round inside edges per UG-76(c) Located on: RIGHT HEAD Liquid static head included: 0.0813 kgf/cm2

Nozzle material specification: SA-350 LF2 Cl 1 (II-D Metric p. 18, ln. 15) (normalized)

Nozzle longitudinal joint efficiency: 1Flange description: 2 inch Class 150 LWN A350 LF2 Cl.1 Bolt Material: SA-320 L7M Bolt <= 64 (II-D Metric p. 348, ln. 31) Flange rated MDMT: -49°C (UG-84 provisions apply) (Flange impact tested to -49°C (UCS-66(g))) Liquid static head on flange: 0.0813 kgf/cm2 ASME B16.5 flange rating MAWP: 18.45 kgf/cm2 @ 87°C ASME B16.5 flange rating MAP: 19.99 kgf/cm2 @ 21°C ASME B16.5 flange hydro test: 30.59 kgf/cm2 @ 21°C Gasket Description: Flexitallic Spiral Wound CGI 316L S.S. PWHT performed: No Nozzle orientation: 180° Calculated as hillside: Yes Local vessel minimum thickness: 9.75 mm End of nozzle to datum line: -400 mm Nozzle inside diameter, new: 42.9 mm Nozzle nominal wall thickness: 17.55 mm Nozzle corrosion allowance: 3 mm Opening chord length: 74.05 mm Projection available outside vessel, Lpr: 204.78 mm Projection available outside vessel to flange face, Lf: 223.83 mm Distance to head center, R: 600 mm Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm2) For P = 13.56 kgf/cm2 @ 87 °C

UG-45 Nozzle WallThickness Summary (mm)The nozzle passes UG-45

A required

A available A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from area calculations per UG-36(c)(3)(a) 7.8 17.55

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

54/88

Page 54: Strength Calculation

UW-16 Weld Sizing Summary

Weld description Required weld throat size (mm)

Actual weldthroat size (mm) Status

Nozzle to shell fillet (Leg41) 4.73 6.3 weld size is adequate This opening does not require reinforcement per UG-36(c)(3)(a)

55/88

Page 55: Strength Calculation

Weight Summary

Component

Weight ( kg) Contributed by Vessel Elements

Metal New*

Metal Corroded*

Insulation &Supports &

Fire ProofingLining Piping

+ Liquid Operating

Liquid Test

Liquid

LEFT HEAD 145.2 102.3 0 0 0 277.7 381.3

SHELL 1,596.5 1,231 0 0 0 3,631.4 5,314.9

RIGHT HEAD 164.2 115.5 0 0 0 249.4 343.5

BOOT SHELL 216.8 167.7 0 0 0 196.4 259.2

BOOT HEAD 32.2 24 0 0 0 18.5 24.2

SADDLE 412.8 412.8 0 0 0 0 0

TOTAL: 2,567.6 2,053.3 0 0 0 4,373.5 6,323* Shells with attached nozzles have weight reduced by material cut out for opening.

Component

Weight ( kg) Contributed by Attachments

Body Flanges Nozzles & Flanges Packed

Beds Ladders &Platforms

Rings &Clips

VerticalLoads

New Corroded New Corroded

LEFT HEAD 0 0 434.3 424.7 0 0 0 0

SHELL 0 0 697.4 612.9 0 1,500 20.8 669*

RIGHT HEAD 0 0 52.2 47.4 0 0 0 0

BOOT SHELL 0 0 0 0 0 0 0 0

BOOT HEAD 0 0 6.8 6 0 0 0 0

TOTAL: 0 0 1,190.7 1,091 0 1,500 20.8 669** This number includes vertical loads which are not present in all conditions. Vessel operating weight, Corroded: 9,625 kg Vessel operating weight, New: 10,200 kg Vessel empty weight, Corroded: 5,180 kg Vessel empty weight, New: 5,800 kg Vessel test weight, New: 12,200 kg Vessel center of gravity location - from datum - lift condition Vessel Lift Weight, New: 4,300 kgCenter of Gravity: 2,278.5 mm Vessel Capacity Vessel Capacity** (New): 5,884 liters Vessel Capacity** (Corroded): 5,944 liters **The vessel capacity does not include volume of nozzle, piping or other attachments.

56/88

Page 56: Strength Calculation

SADDLE

Saddle material: SA283-C Saddle construction is: Centered web Saddle allowable stress: Ss = 1,101.297 kgf/cm2

Saddle yield stress: Sy = 2,110.818 kgf/cm2

Saddle distance to datum: 650 mm Tangent to tangent length: L = 4,000 mm Saddle separation: Ls = 2,700 mm Vessel radius: R = 663 mm Tangent distance left: Al = 650 mm Tangent distance right: Ar = 650 mm Saddle height: Hs = 1,000 mm Saddle contact angle: = 120 ° Wear plate thickness: tp = 13 mm Wear plate width: Wp = 320 mm Wear plate contact angle: w = 128.6 ° Web plate thickness: ts = 20 mm Base plate length: E = 1,046 mm Base plate width: F = 220 mm Base plate thickness: tb = 20 mm Number of stiffener ribs: n = 3 Largest stiffener rib spacing: di = 345 mm Stiffener rib thickness: tw = 20 mm Saddle width: B = 200 mmAnchor bolt size & type: 20 mm Anchor bolt material: SA36 Anchor bolt allowable shear: 999.999 kgf/cm2

Anchor bolt corrosion allowance: 1.5 mm Anchor bolts per saddle: 4 Base coefficient of friction: = 0.17 Weight on left saddle: operating corr = 5,059.37 kg, test new = 6,359.37 kg Weight on right saddle: operating corr = 4,152.18 kg, test new = 5,428.14 kg Weight of saddle pair = 412.77 kg Notes: (1) Saddle calculations are based on the method presented in "Stresses in Large Cylindrical Pressure Vessels on Two Saddle Supports" by L.P. Zick. Seismic base shear on vessel Vessel is assumed to be a rigid structure. Method of seismic analysis: IBC 2009 ground supported Vertical seismic accelerations considered: Yes Importance factor: I = 1.25Short period spectral response acceleration: Ss = 35.5 percent of g From Table 1613.5.3(1): Fa = 1.2 SMS = Fa*Ss = 1.2*0.355 = 0.426 SDS = (2 / 3)*SMS = 0.284 Fp = 0.3*SDS*I*W*0.7 = 0.3*0.284*1.25*9,211.55*0.7 = 686.72 kgf Saddle reactions due to weight + seismic Vv = vertical seismic force acting on left saddle V = horizontal seismic shear acting on left saddle (worst case if not slotted) Seismic longitudinal reaction, Ql (left saddle): Ql = V*Hs / Ls + 0.14*SDS*W = 686.72*1,000 / 2,699.9997 + 0.14*0.284*5,059.37 = 455.5 kgf Seismic transverse reaction, Qt (left saddle): Qt = V*Hs / (Ro*Sin( / 2 )) + 0.14*S  DS*W = 377.18*1,000 / (663*Sin( 120 / 2 )) + 0.14*0.284*5,059.37

57/88

Page 57: Strength Calculation

= 858.06 kgf Q = Weight on saddle + larger of Qt or Ql Q = W + Qt = 5,059.37 + 858.06 = 5,917.43 kgf

58/88

Page 58: Strength Calculation

Load Vessel condition

Bending + pressure between saddles(kgf/cm2)

Bending + pressure at the saddle (kgf/cm2)

S1 (+)

allow (+)

S1 (-)

allow(-)

S2(+)

allow(+)

S2(-)

allow (-)

Seismic Operating 455.218 1,305.236 12.459 1,033.068 483.523 1,305.236 40.764 1,033.068

Seismic Vacuum 12.459 1,305.236 28.784 1,033.068 40.764 1,305.236 57.089 1,033.068

Weight Test 650.593 2,211.763 10.347 1,033.068 679.015 2,211.763 38.769 1,033.068

Load Vessel condition

Tangential shear (kgf/cm2)

Circumferentialstress (kgf/cm2)

Stress oversaddle (kgf/cm2) Splitting (kgf/cm2)

S3 allow S4 (horns)

allow(+/-) S5 allow S6 allow

Seismic Operating 71.816 1,044.189 -644.44 1,957.854 91.99 1,055.409 14.035 734.198

Seismic Vacuum 71.816 1,044.189 -644.44 1,957.854 91.99 1,055.409 14.035 734.198

Weight Test 55.48 1,769.41 -415.655 2,211.763 82.717 1,899.737 15.083 1,899.737 Longitudinal stress between saddles (Seismic ,Operating, left saddle loading and geometry govern) S1 = +- 3*K1*Q*(L / 12) / ( *R  2*t) = 300*0.2864*5,917.43*(4,000 / 12) / ( *658  2*10) = 12.459 kgf/cm2 Sp = P*R / (2*t) = 13.56*653 / (2*10) = 442.758 kgf/cm2 Maximum tensile stress S1t = S1 + Sp = 455.218 kgf/cm2 Maximum compressive stress (shut down) S1c = S1 = 12.459 kgf/cm2 Tensile stress is acceptable (<=1*S*E = 1,305.236 kgf/cm2) Compressive stress is acceptable (<=1*Sc = 1,033.068 kgf/cm2) Longitudinal stress at the left saddle (Seismic ,Operating) Le = 2*(Left head depth) / 3 + L + 2*(Right head depth) / 3 = 2*334.75 / 3 + 4,000 + 2*334.75 / 3 = 4,446.33 mm Seismic vertical acceleration coefficient m = 0.5333*0.0746 = 0.0398 w = Wt*(1 + m)*10 / Le = 9,211.55*(1 + 0.0398)*10 / 4,446.33 = 21.54 kgf/cm Bending moment at the left saddle: Mq = w*(2*H*Al / 3 + Al

2 / 2 - (R2 - H2) / 4) = 21.54 / 10000*(2*334.75*650 / 3 + 6502 / 2 - (6632 - 334.752) / 4) = 591.1 kgf-m S2 = +- Mq*K1' / ( *R  2*t) = 591.1*1e5*9.3799 / ( *658  2*10) = 40.764 kgf/cm2 Sp = P*R / (2*t) = 13.56*653 / (2*10) = 442.758 kgf/cm2 Maximum tensile stress S2t = S2 + Sp = 483.523 kgf/cm2 Maximum compressive stress (shut down) S2c = S2 = 40.764 kgf/cm2 Tensile stress is acceptable (<=1*S = 1,305.236 kgf/cm2) Compressive stress is acceptable (<=1*Sc = 1,033.068 kgf/cm2) Tangential shear stress in the shell (left saddle, Seismic ,Operating) Qshear = Q - w*(a + 2*H / 3) = 5,917.43 - 2.15*(650 + 2*334.75 / 3) = 4,036.55 kgf S3 = K2.2*Qshear / (R*t)

59/88

Page 59: Strength Calculation

= 1.1707*100*4,036.55 / (658*10) = 71.816 kgf/cm2 Tangential shear stress is acceptable (<= 0.8*S = 1,044.189 kgf/cm2) Circumferential stress at the left saddle horns (Seismic ,Operating) S4 = -Q / (4*t*(b+1.56*Sqr(Ro*t))) - 12*K3*Q*R / (L*t2) = -100*5,917.43 / (4*10*(200+1.56*Sqr(663*10))) - 12*0.0513*100*5,917.43*658 / (4,000*102) = -644.44 kgf/cm2 Circumferential stress at saddle horns is acceptable (<=1.5*Sa = 1,957.854 kgf/cm2) The wear plate was not considered in the calculation of S4 because the wear plate contact angle did not exceed the saddle contact angle by at least 11.46° and the wear plate width is not at least {B + 1.56*(Rotc)0.5} =327.02 mm Ring compression in shell over left saddle (Seismic ,Operating) S5 = K5*Q / ((t + tp)*(ts + 1.56*Sqr(Ro*tc))) = 100*0.7603*5,917.43 / ((10 + 13)*(20 + 1.56*Sqr(663*23))) = 91.99 kgf/cm2 Ring compression in shell is acceptable (<= 0.5*Sy = 1,055.409 kgf/cm2) Saddle splitting load (left, Seismic ,Operating) Area resisting splitting force = Web area + wear plate area Ae = Heff*ts + tp*Wp = 22.1*2 + 1.3*32 = 85.8 cm2 S6 = K8*Q / Ae = 100*0.2035*5,917.43 / 8,579.9996 = 14.035 kgf/cm2 Stress in saddle is acceptable (<= (2 / 3)*Ss = 734.198 kgf/cm2) Longitudinal stress at the left saddle (Seismic ,Vacuum) Le = 2*(Left head depth) / 3 + L + 2*(Right head depth) / 3 = 2*334.75 / 3 + 4,000 + 2*334.75 / 3 = 4,446.33 mm Seismic vertical acceleration coefficient m = 0.5333*0.0746 = 0.0398 w = Wt*(1 + m)*10 / Le = 9,211.55*(1 + 0.0398)*10 / 4,446.33 = 21.54 kgf/cm Bending moment at the left saddle: Mq = w*(2*H*Al / 3 + Al

2 / 2 - (R2 - H2) / 4) = 21.54 / 10000*(2*334.75*650 / 3 + 6502 / 2 - (6632 - 334.752) / 4) = 591.1 kgf-m S2 = +- Mq*K1' / ( *R  2*t) = 591.1*1e5*9.3799 / ( *658  2*10) = 40.764 kgf/cm2 Sp = P*R / (2*t) = 0.5*653 / (2*10) = 16.325 kgf/cm2 Maximum tensile stress (shut down) S2t = S2 = 40.764 kgf/cm2 Maximum compressive stress S2c = S2 + Sp = 57.089 kgf/cm2 Tensile stress is acceptable (<=1*S = 1,305.236 kgf/cm2) Compressive stress is acceptable (<=1*Sc = 1,033.068 kgf/cm2) Shear stress in anchor bolting, one end slotted Maximum seismic or wind base shear = 686.72 kgf Thermal expansion base shear = W* = 5,265.75*0.17 = 895.18 kg  f Corroded root area for a 20 mm bolt = 1.6045 cm2 ( 4 per saddle ) Bolt shear stress = 895.18 / (1.6045*4) = 139.478 kgf/cm2 Anchor bolt stress is acceptable (<= 999.999 kgf/cm2)

60/88

Page 60: Strength Calculation

Web plate buckling check (Escoe pg 251) Allowable compressive stress Sc is the lesser of 1,101.297 or 7,926.926 kgf/cm2: (1,101.297) Sc = Ki* 2*E / (12*(1 - 0.32)*(di / ts)2) = 1.28* 2*20.39E+05 / (12*(1 - 0.32)*(345 / 20)2) = 7,926.926 kgf/cm2 Allowable compressive load on the saddle be = di*ts / (di*ts + 2*tw*(b - 25.4))*25.4 = 345*20 / (345*20 + 2*20*(200 - 25.4))*25.4 = 12.62 Fb = n*(As + 2*be*ts)*Sc = 3*(3,600 + 2*12.62*20)*1,101.297 = 135,622.37 kgf Saddle loading of 6,565.75 kgf is <= Fb; satisfactory. Primary bending + axial stress in the saddle due to end loads (assumes one saddle slotted)  b = V*(Hs - xo)*y / I + Q / A = 686.72*(1,000 - 548.3)*100 / (100*4,040) + 100*5,917.43 / 33,766.99 = 94.305 kgf/cm2 The primary bending + axial stress in the saddle <= 1,101.297 kgf/cm2; satisfactory. Secondary bending + axial stress in the saddle due to end loads (includes thermal expansion, assumes one saddle slotted)  b = V*(Hs - xo)*y / I + Q / A = 1,581.9*(1,000 - 548.3)*100 / (100*4,040) + 100*5,917.43 / 33,766.99 = 194.393 kgf/cm2 The secondary bending + axial stress in the saddle < 2*Sy= 4,221.637 kgf/cm2; satisfactory. Saddle base plate thickness check (Roark sixth edition, Table 26, case 7a) where a = 345, b = 100 mm tb = ( 1*q*b2 / (1.5*Sa))0.5 = (3*2.853*1002 / (1.5*1,101.297))0.5 = 7.2 mm The base plate thickness of 20 mm is adequate. Foundation bearing check Sf = Qmax / (F*E) = 6,565.75 / (220*1,046) = 2.853 kgf/cm2 Concrete bearing stress ≤ 76 kgf/cm2 ; satisfactory.

61/88

Page 61: Strength Calculation

LIFTING LUG

Geometry Inputs Attached To SHELL

Material SA283-C

Orientation Circumferential

Distance of Lift Point From Datum 3,350 mm

Angular Position 90.00°

Length of Lug, L 130 mm

Height of Lug, H 165 mm

Thickness of Lug, t 20 mm

Hole Diameter, d 50 mm

Pin Diameter, Dp 47 mm

Load Eccentricity, a1 0 mm

Distance from Load to Shell or Pad, a2 100 mm

Weld Size, tw 9 mm

Width of Pad, Bp 100 mm

Length of Pad, Lp 180 mm

Pad Thickness, tp 13 mm

Pad Weld Size, twp 10 mm

Load Angle Normal to Vessel,   90.0000 °

Load Angle from Vertical,   15.0000 ° Intermediate Values Load Factor 2.0000

Vessel Weight (new, incl. Load Factor), W 8600 kg

Lug Weight (new), Wlug 5 kg

Allowable Stress, Tensile,  t 1266.488 kg/cm©÷ YIELD STRENGTH 60%

Allowable Stress, Shear,  s 844.326 kg/cm©÷ YIELD STRENGTH 40%

Allowable Stress, Bearing,  p 1899.733 kg/cm©÷ YIELD STRENGTH 90%

Allowable Stress, Bending,  b 1393.137 kg/cm©÷ YIELD STRENGTH 66%

Allowable Stress, Weld Shear,  allowable 844.326 kg/cm©÷ YIELD STRENGTH 40%

Allowable Stress set to 1/3 Sy per ASME B30.20 NoSummary Values Required Lift Pin Diameter, dreqd 14.23 mm

Required Lug Thickness, treqd 3.25 mm

Lug Stress Ratio,  ratio 0.31

Weld Shear Stress Ratio,  ratio 0.57

Lug Design Acceptable

Local Stresses Acceptable Lift Forces Fr = force on vessel at lug Fr = 0.5*[W / cos( 1)]*(1 - x1 / (x1 + x2)) = (4,300.1) / cos(15.0000)*(1 - 1,071.5/ (1,071.5 + 1,628.5)) = 2,685.1 kgf

62/88

byon
스탬프
Page 62: Strength Calculation

where 'x1' is the distance between this lug and the center of gravity 'x2' is the distance between the second lift lug and the center of gravityLug Pin Diameter - Shear stress dreqd = (2*Fr / ( *   s))0.5

= (2*2,685.1 / ( *844.3))  0.5 = 14.23 mm dreqd / Dp = 14.23 / 47 = 0.30 Acceptable   = Fr / A = Fr / (2*(0.25* *D  p

2)) = 2,685.1 / (2*(0.25* *47  2)) = 77.4 kg/cm2

/    s = 77.4 / 844.3 = 0.09 Acceptable

Lug Thickness - Tensile stress treqd = Fr / ((L - d)* t) = 2,685.1 / ((130 - 50)*1,266.5) = 2.65 mm treqd / t = 2.65 / 20 = 0.13 Acceptable   = Fr / A = Fr / ((L - d)*t) = 2,685.1 / ((130 - 50)*20) = 167.8 kg/cm2

/    t = 167.8 / 1,266.5 = 0.13 Acceptable

Lug Thickness - Bearing stress treqd = Fv / (Dp* p) = 2,685.1 / (47*1,899.7) = 3.01 mm treqd / t = 3.01 / 20 = 0.15 Acceptable   = Fv / Abearing = Fv / (Dp*(t)) = 2,685.1 / (47*(20)) = 285.6 kg/cm2

/    p = 285.6 / 1,899.7 = 0.15 Acceptable

Lug Thickness - Shear stress treqd = [Fv /  s] / (2*Lshear) = (2,685.1 / 844.3) / (2*48.94) = 3.25 mm treqd / t = 3.25 / 20 = 0.16 Acceptable   = Fv / Ashear = Fv / (2*t*Lshear ) = 2,685.1 / (2*20*48.94) = 137.2 kg/cm2

/    s = 137.2 / 844.3 = 0.16 Acceptable

Shear stress length (per Pressure Vessel and Stacks, A. Keith Escoe)

 

= 55*Dp / d

= 55*47 / 50 = 51.7° Lshear = (H - a2 - 0.5*d) + 0.5*Dp*(1 - cos( ))   = (165 - 100 - 0.5*50) + 0.5*47*(1 - cos(51.7)) = 48.94 mm Lug Plate Stress Lug stress tensile + bending during lift:

  ratio = [Ften / (Aten* t)] + [Mbend / (Zbend* b)] ≤ 1 = [(Fr*cos( ) ) / (t  *L* t)] + [(6*abs(Fr*sin( )*Hght   - Fr*cos( )*a  1) ) / (t*L2* b)] ≤ 1 = 2,685.1*cos(105.0) / (20*130*1,266.5) + 6*abs(2,685.1*sin(105.0)*100 - 2,685.1*cos(105.0)*0) / (20*1302*1,393.1) = 0.31 Acceptable Weld Stress

63/88

Page 63: Strength Calculation

Weld stress, tensile, bending and shear during lift: Direct shear: Shear stress at lift angle 105.00°; lift force = 2,685.1 kgf Aweld = 2*(0.707)*tw*(L + t) = 2*(0.707)*9*(130 + 20) = 1,908.9 mm2  t = Fr*cos( ) / A  weld = 2,685.1*cos(105.0) / 1,908.9 = -36.4 kg/cm2

 s = Fr*sin( ) / A  weld = 2,685.1*sin(105.0) / 1,908.9 = 135.9 kg/cm2

 b = M * c / I = 3*(Fr*sin( )*Hght   - Fr*cos( )*a  1) / (0.707*h*L*(3*t + L)) = 3*abs(2,685.1*sin(105.0)*100 - 2,685.1*cos(105.0)*(0)) / (157166.1094) = 495.1 kg/cm2

  ratio = sqr( ( t +  b)2 +  s2 ) /  allowable ≤ 1

= sqr ( (-36.4 + 495.1)2 + (135.9)2 ) / 844.3 = 0.57 AcceptablePad Weld Stress, tensile, bending and shear during lift: Direct shear: Shear stress at lift angle 105.00°; lift force = 2,685.1 kgf Aweld = 2*(0.707)*twp*(Lp + Bp) = 2*(0.707)*10*(180 + 100) = 3,959.2 mm2  t = Fr*cos( ) / A  weld = 2,685.1*cos(105.0) / 3,959.2 = -17.6 kg/cm2

 s = Fr*sin( ) / A  weld = 2,685.1*sin(105.0) / 3,959.2 = 65.5 kg/cm2  b = M * c / I = 3*(Fr*sin( )*Hght   - Fr*cos( )*a  1) / (0.707*hp*Lp*(3*Wp + Lp)) = 3*abs(2,685.1*sin(105.0)*113 - 2,685.1*cos(105.0)*(0)) / (610848.0000) = 143.9 kg/cm2

  ratio = sqr( ( t +  b)2 +  s2 ) /  allowable ≤ 1

= sqr ( (-17.6 + 143.9)2 + (65.5)2 ) / 844.3 = 0.17 AcceptableWRC 107 Analysis Geometry

Applied Loads Radial load: Pr = 694.95 kgf Circumferential moment: Mc = 293.08 kgf-m Circumferential shear: Vc = 2,593.6 kgf Longitudinal moment: ML = 0 kgf-m Longitudinal shear: VL = 0 kgf Torsion moment: Mt = 0 kgf-m Internal pressure: P = 0 kgf/cm2 Mean shell radius: Rm = 656.5 mm Shell yield stress: Sy = 2,457.51 kgf/cm2 Maximum stresses due to the applied loads at the lug edge (includes pressure) Rm / t = 656.5 / 26 = 25.25 C1 = 19, C2 = 74 mm Local circumferential pressure stress = P*Ri / t =0 kgf/cm2 Local longitudinal pressure stress = P*Ri / (2*t) =0 kgf/cm2 Maximum combined stress (PL+Pb+Q) = -872.58 kgf/cm2 Allowable combined stress (PL+Pb+Q) = +-3*S = +-3,915.71 kgf/cm2

Height(radial): 165 mm Pad Thickness: 13 mmWidth (circumferential): 20 mm Pad Width: 100 mmLength 130 mm Pad Length: 180 mmFillet Weld Size: 9 mm Pad Weld Size: 10 mmLocation Angle: 90.00°

64/88

Page 64: Strength Calculation

The maximum combined stress (PL+Pb+Q) is within allowable limits. Maximum local primary membrane stress (PL) = -27.14 kgf/cm2 Allowable local primary membrane (PL) = +-1.5*S = +-1,957.85 kgf/cm2 The maximum local primary membrane stress (PL) is within allowable limits.

65/88

Page 65: Strength Calculation

Stresses at the lug edge per WRC Bulletin 107

Figure value   Au Al Bu Bl Cu Cl Du Dl

3C* 4.3777 0.0843 0 0 0 0 -17.858 -17.858 -17.858 -17.858

4C* 4.7891 0.0684 -19.475 -19.475 -19.475 -19.475 0 0 0 0

1C 0.2073 0.0503 0 0 0 0 -127.888 127.888 -127.888 127.888

2C-1 0.1693 0.0503 -104.406 104.406 -104.406 104.406 0 0 0 0

3A* 0.2233 0.0455 0 0 0 0 -3.726 -3.726 3.726 3.726

1A 0.1067 0.0585 0 0 0 0 -723.106 723.106 723.106 -723.106

3B* 1.5708 0.0716 0 0 0 0 0 0 0 0

1B-1 0.0572 0.0638 0 0 0 0 0 0 0 0

Pressure stress* 0 0 0 0 0 0 0 0

Total circumferential stress -123.881 84.931 -123.881 84.931 -872.579 829.41 581.087 -609.35

Primary membrane circumferential stress* -19.475 -19.475 -19.475 -19.475 -21.584 -21.584 -14.132 -14.132

3C* 4.5829 0.0684 -18.631 -18.631 -18.631 -18.631 0 0 0 0

4C* 4.6793 0.0843 0 0 0 0 -19.053 -19.053 -19.053 -19.053

1C-1 0.1845 0.0713 -113.827 113.827 -113.827 113.827 0 0 0 0

2C 0.1403 0.0713 0 0 0 0 -86.548 86.548 -86.548 86.548

4A* 0.2884 0.0455 0 0 0 0 -8.085 -8.085 8.085 8.085

2A 0.0601 0.0803 0 0 0 0 -296.484 296.484 296.484 -296.484

4B* 0.4194 0.0716 0 0 0 0 0 0 0 0

2B-1 0.0869 0.0874 0 0 0 0 0 0 0 0

Pressure stress* 0 0 0 0 0 0 0 0

Total longitudinal stress -132.458 95.196 -132.458 95.196 -410.17 355.894 198.969 -220.904

Primary membrane longitudinal stress* -18.631 -18.631 -18.631 -18.631 -27.138 -27.138 -10.968 -10.968

Shear from Mt 0 0 0 0 0 0 0 0

Circ shear from Vc 131.263 131.263 -131.263 -131.263 0 0 0 0

Long shear from VL 0 0 0 0 0 0 0 0

Total Shear stress 131.263 131.263 -131.263 -131.263 0 0 0 0

Combined stress (PL+Pb+Q) 262.667 262.737 262.667 262.737 -872.579 829.41 581.087 -609.35 Note: * denotes primary stress. Maximum stresses due to the applied loads at the pad edge (includes pressure) Rm / t = 656.5 / 13 = 50.5 C1 = 60, C2 = 100 mm Local circumferential pressure stress = P*Ri / t =0 kgf/cm2 Local longitudinal pressure stress = P*Ri / (2*t) =0 kgf/cm2 Maximum combined stress (PL+Pb+Q) = -1,573.4 kgf/cm2 Allowable combined stress (PL+Pb+Q) = +-3*S = +-3,915.71 kgf/cm2 The maximum combined stress (PL+Pb+Q) is within allowable limits. Maximum local primary membrane stress (PL) = -165.57 kgf/cm2 Allowable local primary membrane (PL) = +-1.5*S = +-1,957.85 kgf/cm2 The maximum local primary membrane stress (PL) is within allowable limits.

66/88

Page 66: Strength Calculation

Stresses at the pad edge per WRC Bulletin 107

Figure value   Au Al Bu Bl Cu Cl Du Dl

3C* 5.8336 0.1482 0 0 0 0 -47.527 -47.527 -47.527 -47.527

4C* 8.1129 0.1306 -66.088 -66.088 -66.088 -66.088 0 0 0 0

1C 0.1051 0.1104 0 0 0 0 -259.292 259.292 -259.292 259.292

2C-1 0.0711 0.1104 -175.416 175.416 -175.416 175.416 0 0 0 0

3A* 1.772 0.1084 0 0 0 0 -57.581 -57.581 57.581 57.581

1A 0.0899 0.1179 0 0 0 0 -1,208.997 1,208.997 1,208.997 -1,208.997

3B* 5.6899 0.1285 0 0 0 0 0 0 0 0

1B-1 0.0377 0.1216 0 0 0 0 0 0 0 0

Pressure stress* 0 0 0 0 0 0 0 0

Total circumferential stress -241.504 109.327 -241.504 109.327 -1,573.398 1,363.18 959.759 -939.652

Primary membrane circumferential stress* -66.088 -66.088 -66.088 -66.088 -105.109 -105.109 10.054 10.054

3C* 6.4593 0.1306 -52.59 -52.59 -52.59 -52.59 0 0 0 0

4C* 7.791 0.1482 0 0 0 0 -63.417 -63.417 -63.417 -63.417

1C-1 0.0918 0.1337 -226.529 226.529 -226.529 226.529 0 0 0 0

2C 0.0569 0.1337 0 0 0 0 -140.403 140.403 -140.403 140.403

4A* 2.6263 0.1084 0 0 0 0 -102.156 -102.156 102.156 102.156

2A 0.044 0.1382 0 0 0 0 -504.522 504.522 504.522 -504.522

4B* 1.8491 0.1285 0 0 0 0 0 0 0 0

2B-1 0.0492 0.14 0 0 0 0 0 0 0 0

Pressure stress* 0 0 0 0 0 0 0 0

Total longitudinal stress -279.118 173.939 -279.118 173.939 -810.498 479.352 402.859 -325.38

Primary membrane longitudinal stress* -52.59 -52.59 -52.59 -52.59 -165.573 -165.573 38.739 38.739

Shear from Mt 0 0 0 0 0 0 0 0

Circ shear from Vc 83.103 83.103 -83.103 -83.103 0 0 0 0

Long shear from VL 0 0 0 0 0 0 0 0

Total Shear stress 83.103 83.103 -83.103 -83.103 0 0 0 0

Combined stress (PL+Pb+Q) -345.488 230.818 -345.488 230.818 -1,573.398 1,363.18 959.759 -939.652 Note: * denotes primary stress.

67/88

Page 67: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis A Item: 1 4:56p Jun 23,2011

Input Echo, PD:5500 Annex G Item 1, Description: A

Diameter Basis for Vessel Vbasis ID

Design Internal Pressure Dp 3.50 kgf/cm

Corrosion Allowance for Vessel Cas 3.0000 mm

Vessel Diameter Dv 2351.700 mm

Vessel Thickness Tv 9.750 mm

Vessel Shell Design Allowable Stress f 1536.294 kgf/cm

Vessel Shell Yield Strength fy 2304.441 kgf/cm

Attachment Type TYPE Round

Diameter Basis for Nozzle Nbasis OD

Corrosion Allowance for Nozzle Can 3.0000 mm

Nozzle Diameter Dn 219.100 mm

Nozzle Thickness Tn 11.113 mm

Nozzle Inside Projection h 0.000 mm

Nozzle Design Allowable Stress fnoz 1536.294 kgf/cm

Does the Attachment cut a hole in the shell Yes

Diameter of Reinforcing Pad Dpad 400.000 mm

Thickness of Reinforcing Pad Tpad 13.000 mm

Pad Design Allowable Stress fpad 1536.294 kgf/cm

Radial Load (positive outward) Fr 979.00 kgf

Circumferential Shear Fc 0.00 kgf

Longitudinal Shear Fl 0.00 kgf

Torsional Moment Mt 0.0 kgf-m.

Circumferential Moment Mc 392.0 kgf-m.

Longitudinal Moment Ml 509.0 kgf-m.

Allowable Stress Intensity Factor (Mem + Bend) 2.25

Print Membrane Stress at the Attachment junction Yes

Allowable Stress Intensity Factor (Membrane) 1.20

Allowable Stress Intensity Factor (Mem) Pad Edge 1.20

Allow. Str. Inten. Fac. (Mem + Bend) Pad Edge 2.00

PD-5500 Annex G Nozzle to Sphere Junction Stress Analysis

Stress Calculations at the Edge of the Reinforcing Pad :

Resultant Shear Force Srss( Fc? + Fl? ) S 0. kgf

Resultant Moment Srss( Mc? + Ml? ) M 642. kgf-m.

Shell Mean Radius R 1182.225 mm

Nozzle Mean Radius r 201.500 mm

Ratio of Shell Mean Radius to Shell Thk. R/T` 175.1445

Value of Rho r/R*(R/T`)^1/2 2.2557

Value of u (=s) u 4.1053

Stress Concentration Factor for Pressure 1.0000

Stress Concentration Factor for Radial Force 1.0000

Stress Concentration Factor for Bending Moment 1.0000

Stress Concentration Factor for Shear 1.0000

Total Stress due to Pressure 306.50 kgf/cm

Total Stress due to Radial Loads 151.61 kgf/cm

Total Stress due to Shear Forces 0.00 kgf/cm

Total Stress due to Bending Moments 987.50 kgf/cm

Total Stress due to Torsional Moment 0.00 kgf/cm

68/88

Page 68: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis A Item: 1 4:56p Jun 23,2011

Maximum Stress at Sphere/Attachment Junction 1445.61 kgf/cm

Check the Maximum Stresses versus defined Allowables :

Max. Str. Int. (Mem + Bend): 1445.61 Allowable: 3072.59 kgf/cm

PD-5500 Annex G Nozzle to Sphere Junction Stress Analysis

Stress Calculations at the Edge of the Nozzle Neck :

Resultant Shear Force Srss( Fc? + Fl? ) S 0. kgf

Resultant Moment Srss( Mc? + Ml? ) M 642. kgf-m.

Shell Mean Radius R 1188.725 mm

Nozzle Mean Radius r 105.494 mm

Thickness Ratio t/T` 0.4108

Ratio of Shell Mean Radius to Shell Thk. R/T` 60.1886

Value of Rho r/R*(R/T`)^1/2 0.6885

Value of u (=s) u 1.2531

Stress Concentration Factor for Pressure 3.0203

Stress Concentration Factor for Radial Force 1.9653

Stress Concentration Factor for Bending Moment 1.2458

Stress Concentration Factor for Shear 0.4264

Total Stress due to Pressure 318.12 kgf/cm

Total Stress due to Radial Loads 114.03 kgf/cm

Total Stress due to Shear Forces 0.00 kgf/cm

Total Stress due to Bending Moments 899.23 kgf/cm

Total Stress due to Torsional Moment 0.00 kgf/cm

Maximum Stress at Sphere/Attachment Junction 1331.38 kgf/cm

Check the Maximum Stresses versus defined Allowables :

Max. Str. Int. (Mem + Bend): 1331.38 Allowable: 3456.66 kgf/cm

Maximum Loads: PD:5500 Annex G.2.8 ( Alternative Rules - Information Only ):

Flush Nozzle located in a sphere:

Note: Pmax is determined per PD:5500 Section 3.5.4:

Shell Effective Mean Diameter [D]:

= Di + es + Min(fp/fs, 1 )*tp + cas - caext

= 2351.70 + 9.750 + Min(1536.29 /1536.29 , 1 )*13.000 + 3.000 - 3.000

= 2377.450 mm

Nozzle Mean Diameter [d]:

= do - eb + can - caext

= 219.100 - 11.113 + 3.000 - 0.000 = 210.988 mm

Adjusted value of [Ratio erb/ers]:

= min(fn/fs, 1 ) * erb / ers

= min(1536.294 /1536.294 , 1 ) * 8.113 / 19.750 = 0.4108

Compute the Maximum Pressure [Pmax]

The value of Pmax is 36.122 kgf/cm and is derived as follows:

Required Shell Thickness [esp]

= Pmax * D / ( 4 * fs )

69/88

Page 69: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis A Item: 1 4:56p Jun 23,2011

= 36.122 * 2377.450 / ( 4 * 1536.294 ) = 13.975 mm

Compute Ratio [C.ers/eps]

= C * ers / eps

= 1.0 * 19.750 /13.975 = 1.4133

Compute the Value of [Rho] :

= d/D * sqrt( D / ( 2 * as ))

= 210.988 /2377.450 * sqrt(2377.450 / ( 2 * 19.750 )) = 0.6885

From Graph: Figure 3.5-10 we obtain a value of erb/ers of: 0.4108

Linear Interpolation Points from: Figure 3.5-10

Rho1 Rho Rho2

0.7000 0.6885 0.6000

Cers/eps1 1.4000 0.430 0.360

Cers/eps 1.4133 <- Interpolated 0.4108

Cers/eps2 1.3000 0.530 0.430

As Calculated Nozzle Thickness equals Actual Thickness: Pmax is correct.

Maxium Allowable Radial Force Fzmax and Moment [MBmax]:

Determine the value of [k]:

= min( 2 * fn * eab / ( fs * eac ) * ( eab / d )?, 1 )

= min(2*1536.294 *8.11 /(1536.29 *19.75 ) * (8.11 /210.99 )?, 1)

= 0.471

Determine the value of [LamdaS]:

= d / ( R * eac )?= 210.988 / ( 1188.725 * 19.750 )?

= 1.377

Determine the Maximum Allowable Radial Force: [FZmax]:

= fs *eac? 1.82 + 2.4 ( ( 1 + k )?* LamdaS + 0.91 * k * LamdaS?)

= 1536.3 *19.750?1.82+2.4((1+0.471 )?1.377 +0.91*0.471 *1.377?

= 9700.133 kgf

From Figure 2.1, FZmax must not exceed: 53944.355 kgf

Determine the Maximum Allowable Moment: [MBmax]:

= fs * eac?* d/4 * ( 4.9 + 2 ( ( 1 + k )?* LamdaS + 0.91 * k * LamdaS?)

= 1536.294 * 19.750?* 210.988 /4 *

(4.9 + 2*(1 + 0.471 )?* 1.377 + 0.91 * 0.471 * 1.377 ))

= 2861.787 kgf-m.

From Figure 2.2, Mbmax must not exceed: 13208.207 kgf-m.

Unity Checks per PD:5500 2.4 for Simultaneous Loads:

P/Pmax = 0.097 Fz/Fzmax = 0.101 Mb/Mbmax = 0.224

P/Pmax + Fz/Fzmax + Mb/Mbmax = 0.422

Summary of results:

P Fz Mb

kgf/cm kgf kgf-m.

---------------------------------------------------------------------------

Actual: 3.500 979.000 642.452

Allowable: 36.122 9700.133 2861.787

---------------------------------------------------------------------------

Ratio: 0.097 0.101 0.224

70/88

Page 70: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis A Item: 1 4:56p Jun 23,2011

Ratio of combined values: 0.422 (must be <= 1.0)

The Given Force and Moments Comply with the Code

PVElite is a registered trademark of COADE, Inc. [2010]

71/88

Page 71: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis B2 Item: 4 4:56p Jun 23,2011

Input Echo, PD:5500 Annex G Item 4, Description: B2

Diameter Basis for Vessel Vbasis ID

Design Internal Pressure Dp 3.50 kgf/cm

Corrosion Allowance for Vessel Cas 3.0000 mm

Vessel Diameter Dv 1300.000 mm

Vessel Thickness Tv 13.000 mm

Vessel Shell Design Allowable Stress f 1536.294 kgf/cm

Vessel Shell Yield Strength fy 2304.441 kgf/cm

Attachment Type TYPE Round

Diameter Basis for Nozzle Nbasis OD

Corrosion Allowance for Nozzle Can 3.0000 mm

Nozzle Diameter Dn 273.100 mm

Nozzle Thickness Tn 13.203 mm

Nozzle Inside Projection h 0.000 mm

Nozzle Design Allowable Stress fnoz 1536.294 kgf/cm

Does the Attachment cut a hole in the shell Yes

Stiffened Length of Vessel Section L 4000.00 mm

Offset from Left Tangent Line Dx 400.00 mm

Diameter of Reinforcing Pad Dpad 510.000 mm

Thickness of Reinforcing Pad Tpad 13.000 mm

Pad Design Allowable Stress fpad 1536.294 kgf/cm

Radial Load (positive outward) Fr 1224.00 kgf

Circumferential Shear Fc 0.00 kgf

Longitudinal Shear Fl 0.00 kgf

Torsional Moment Mt 0.0 kgf-m.

Circumferential Moment Mc 612.0 kgf-m.

Longitudinal Moment Ml 795.0 kgf-m.

Allowable Stress Intensity Factor (Mem + Bend) 2.25

Print Membrane Stress at the Attachment junction Yes

Allowable Stress Intensity Factor (Membrane) 1.20

Allowable Stress Intensity Factor (Mem) Pad Edge 1.20

Allow. Str. Inten. Fac. (Mem + Bend) Pad Edge 2.00

Stress Calculations at the Edge of the Reinforcing Pad :

Intermediate Values L o n g i t u d i n a l Circ. Radial

At Point A Point B At C

----------------------------------------------------------------------------

K Factor K 3.7068 3.7068 0.0000

Load over the Area W 2.7 -2.7 2.1 -1224.0

Equivalent Length Le 953.7532 1883.9935 1440.0000 1440.0000

Parameter Cx 72.6750 72.6750 218.0250 218.0250

Parameter C? 218.0250 218.0250 72.6750 218.0250

Parameter 64r(Cx/r) 51.3717 51.3717 462.3456 462.3456

Parameter 2Cx/Le 0.1524 0.0771 0.3028 0.3028

Parameter C?Cx 3.0000 3.0000 0.3333 1.0000

G6 Curve Value 0.0223 0.0286 0.0639

G7 Curve Value 0.0211 0.0204 0.0223

G8 Curve Value -0.0896 -0.0839 -0.0428

G9 Curve Value -0.0653 -0.0835 -0.0901

72/88

Page 72: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis B2 Item: 4 4:56p Jun 23,2011

G6 at Zero 0.1646 0.1722

G7 at Zero 0.0869 0.0886

G8 at Zero -0.1358 -0.1344

G9 at Zero -0.1394 -0.1543

Circ. value M? 0.1352 0.1663

Long. value Mx 0.2424 0.2298

Circ. value N? 0.6593 0.6242

Long. value Nx 0.4685 0.5410

Curve Value M?/W 0.0132 0.0340

Curve Value Mx3/W 0.0022 0.0056

Curve Value N?/W 0.0115 0.0155

Curve Value Nx3/W -0.0175 -0.0452

Value M?/W 0.0000 0.0000

Value Mx2/W 0.0000 0.0000

Value N?/W 0.0000 0.0000

Value Nx2/W 0.0000 0.0000

Circ. value M?W 0.0223 0.0286 0.0639 0.0139

Long. value Mx/W 0.0211 0.0204 0.0223 0.0056

Circ. value N?/W -0.0896 -0.0839 -0.0428 -0.0362

Long. value Nxt/W -0.0653 -0.0835 -0.0901 -0.0638

Pressure Stress SIF 1.0000

PD-5500 Annex G Nozzle to Cylinder Stress Evaluation

Quadrant Q1 Q2 Q3 Q4

Surface In Out In Out In Out In Out

Circumferential Stresses:

Membrane Component (N?t) due to:

1 Radial Load 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3

2 Circ. Moment -90.1 -90.1 -90.1 -90.1 90.1 90.1 90.1 90.1

3 Long. Moment -244.9 -244.9 229.4 229.4 229.4 229.4 -244.9 -244.9

4 Sub-Total loc. -290.7 -290.7 183.6 183.6 363.8 363.8 -110.5 -110.5

5 Pressure (fp) 230.3 230.3 230.3 230.3 230.3 230.3 230.3 230.3

6 Sub-Total(f?) -60.4 -60.4 413.9 413.9 594.1 594.1 119.8 119.8

Bending Component (6M?t? due to:

7 Radial Load -102.1 102.1 -102.1 102.1 -102.1 102.1 -102.1 102.1

8 Circ. Moment 807.1 -807.1 807.1 -807.1 -807.1 807.1 -807.1 807.1

9 Long. Moment 365.2 -365.2 -469.8 469.8 -469.8 469.8 365.2 -365.2

10 Sub-Total(f?) 1070.2-1070.2 235.2 -235.2-1379.1 1379.1 -544.1 544.1

------------------------------------------------------------------------------

11 Tot. Circ. Str 1009.8-1130.7 649.0 178.7 -785.0 1973.2 -424.3 663.8

Longitudinal Stresses:

Membrane Component (Nx/t) due to:

12 Radial Load 78.1 78.1 78.1 78.1 78.1 78.1 78.1 78.1

13 Circ. Moment -189.8 -189.8 -189.8 -189.8 189.8 189.8 189.8 189.8

14 Long. Moment -178.7 -178.7 228.4 228.4 228.4 228.4 -178.7 -178.7

15 Sub-Total loc. -290.3 -290.3 116.7 116.7 496.3 496.3 89.3 89.3

16 Pressure (fp) 115.2 115.2 115.2 115.2 115.2 115.2 115.2 115.2

17 Sub-Total(fxm) -175.2 -175.2 231.9 231.9 611.4 611.4 204.4 204.4

Bending Component (6Mx/t? due to:

18 Radial Load -40.8 40.8 -40.8 40.8 -40.8 40.8 -40.8 40.8

73/88

Page 73: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis B2 Item: 4 4:56p Jun 23,2011

19 Circ. Moment 281.2 -281.2 281.2 -281.2 -281.2 281.2 -281.2 281.2

20 Long. Moment 345.6 -345.6 -334.1 334.1 -334.1 334.1 345.6 -345.6

21 Sub-Total(fxb) 586.0 -586.0 -93.7 93.7 -656.2 656.2 23.5 -23.5

------------------------------------------------------------------------------

22 Tot. Long. fx 410.8 -761.1 138.2 325.5 -44.7 1267.6 227.9 180.9

Shear Stresses due to:

23 Torsion Moment 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

24 Circ. Shear 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

25 Long. Shear 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

------------------------------------------------------------------------------

26 Tot. Shear tau 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Check of Total Stress Intensity (membrane + bending)

27 f1 Principle 1009.8 -761.1 649.0 325.5 -44.7 1973.2 227.9 663.8

28 f2 Principle 410.8-1130.7 138.2 178.7 -785.0 1267.6 -424.3 180.9

29 f2-f1 -598.9 -369.5 -510.9 -146.8 -740.3 -705.6 -652.2 -482.9

Check of Buckling Stress (only if Row 4, 15 in Compression)

30 Row 4+Row10 779.5-1361.0 0.0 0.0 0.0 0.0 -654.6 433.5

31 Row15+Row21 295.7 -876.3 0.0 0.0 0.0 0.0 0.0 0.0

Compute the membrane stress intensity to A.3.3.1

32 f1m -60.4 -60.4 413.9 413.9 611.4 611.4 204.4 204.4

33 f2m -175.2 -175.2 231.9 231.9 594.1 594.1 119.8 119.8

34 f2m - f1m -114.7 -114.7 -182.0 -182.0 -17.4 -17.4 -84.7 -84.7

Check the Maximum Stresses versus defined Allowables kgf/cm:

---------------------------------------------------------

Max. Str. Int. (Mem + Bend) : 1973.20 Allowable: 3072.59

Max. Compressive Stress : -1360.96 Allowable: -2074.00

Max. Membrane Stress : 611.44 Allowable: 1843.55

Stress Calculations at the Edge of the Nozzle Neck :

Mean nozzle diameter / Mean Shell Diameter d/D: 0.1978

Compute the value of [Rho]:

= d/D * sqrt( D / ( 2 * ( ers - Cas ) ) )

= 262.90 /1329.00 * sqrt( 1329.00 / ( 2 * ( 26.00 - 3.00 )))

= 1.06

The following are the curves of rho selected for the analysis:

Values of Rho: 1.000 (Curve1), 1.063 (Computed rho), 1.200 (Curve2)

Values of erb/ers for values of rho: 0.460 , 0.550 , 0.590 , 0.690

Compute SCF per G.2.3.6.2:

= (2.25 / 1.1) * Ceas/eps

= (2.25 / 1.1) * 1.480

= 3.027

Intermediate Values L o n g i t u d i n a l Circ. Radial

At Point A Point B At C

----------------------------------------------------------------------------

K Factor K 7.6046 7.6046 0.8057

Load over the Area W 5.3 -5.3 4.1 -1224.0

Equivalent Length Le 1196.0916 1672.8116 1440.0000 1440.0000

Parameter Cx 37.2437 37.2437 111.7312 111.7312

Parameter C? 111.7312 111.7312 37.2437 111.7312

74/88

Page 74: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis B2 Item: 4 4:56p Jun 23,2011

Parameter 64r(Cx/r) 5.8085 5.8085 52.2765 52.2765

Parameter 2Cx/Le 0.0623 0.0445 0.1552 0.1552

Parameter C?Cx 3.0000 3.0000 0.3333 1.0000

G6 Curve Value 0.0980 0.1029 0.1353

G7 Curve Value 0.0986 0.0998 0.0744

G8 Curve Value -0.1762 -0.1742 -0.1305

G9 Curve Value -0.1224 -0.1309 -0.1329

G6 at Zero 0.2659 0.2713

G7 at Zero 0.1863 0.1863

G8 at Zero -0.1944 -0.1931

G9 at Zero -0.1505 -0.1590

Circ. value M? 0.3684 0.3792

Long. value Mx 0.5295 0.5358

Circ. value N? 0.9065 0.9020

Long. value Nx 0.8135 0.8230

Curve Value M?/W 0.0673 0.0759

Curve Value Mx3/W 0.0147 0.0174

Curve Value N?/W -0.0149 -0.0142

Curve Value Nx3/W -0.0727 -0.0825

Value M?/W 0.0248 0.0288

Value Mx2/W 0.0078 0.0093

Value N?/W -0.0135 -0.0128

Value Nx2/W -0.0591 -0.0679

Circ. value M?W 0.0731 0.0741 0.1353 0.0786

Long. value Mx/W 0.0909 0.0905 0.0744 0.0507

Circ. value N?/W -0.1627 -0.1614 -0.1305 -0.1214

Long. value Nxt/W -0.0633 -0.0630 -0.1329 -0.1210

Pressure Stress SIF 3.0273

PD-5500 Annex G Nozzle to Cylinder Stress Evaluation

Quadrant Q1 Q2 Q3 Q4

Surface In Out In Out In Out In Out

Circumferential Stresses:

Membrane Component (N?t) due to:

1 Radial Load 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1

2 Circ. Moment -101.4 -101.4 -101.4 -101.4 101.4 101.4 101.4 101.4

3 Long. Moment -164.1 -164.1 162.8 162.8 162.8 162.8 -164.1 -164.1

4 Sub-Total loc. -237.4 -237.4 89.5 89.5 292.3 292.3 -34.7 -34.7

5 Pressure (fp) 306.1 306.1 306.1 306.1 306.1 306.1 306.1 306.1

6 Sub-Total(f?) 68.7 68.7 395.7 395.7 598.4 598.4 271.4 271.4

Bending Component (6M?t? due to:

7 Radial Load -109.1 109.1 -109.1 109.1 -109.1 109.1 -109.1 109.1

8 Circ. Moment 630.3 -630.3 630.3 -630.3 -630.3 630.3 -630.3 630.3

9 Long. Moment 442.7 -442.7 -448.5 448.5 -448.5 448.5 442.7 -442.7

10 Sub-Total(f?) 963.9 -963.9 72.8 -72.8-1187.9 1187.9 -296.7 296.7

------------------------------------------------------------------------------

11 Tot. Circ. Str 1032.7 -895.2 468.4 322.9 -589.5 1786.3 -25.3 568.2

Longitudinal Stresses:

Membrane Component (Nx/t) due to:

75/88

Page 75: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis B2 Item: 4 4:56p Jun 23,2011

12 Radial Load 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0

13 Circ. Moment -103.2 -103.2 -103.2 -103.2 103.2 103.2 103.2 103.2

14 Long. Moment -63.8 -63.8 63.6 63.6 63.6 63.6 -63.8 -63.8

15 Sub-Total loc. -139.0 -139.0 -11.6 -11.6 194.7 194.7 67.3 67.3

16 Pressure (fp) 306.1 306.1 306.1 306.1 306.1 306.1 306.1 306.1

17 Sub-Total(fxm) 167.1 167.1 294.5 294.5 500.9 500.9 373.5 373.5

Bending Component (6Mx/t? due to:

18 Radial Load -70.4 70.4 -70.4 70.4 -70.4 70.4 -70.4 70.4

19 Circ. Moment 346.7 -346.7 346.7 -346.7 -346.7 346.7 -346.7 346.7

20 Long. Moment 549.9 -549.9 -548.0 548.0 -548.0 548.0 549.9 -549.9

21 Sub-Total(fxb) 826.1 -826.1 -271.8 271.8 -965.1 965.1 132.8 -132.8

------------------------------------------------------------------------------

22 Tot. Long. fx 993.2 -659.0 22.7 566.3 -464.3 1466.0 506.3 240.7

Shear Stresses due to:

23 Torsion Moment 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

24 Circ. Shear 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

25 Long. Shear 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

------------------------------------------------------------------------------

26 Tot. Shear tau 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Check of Total Stress Intensity (membrane + bending)

27 f1 Principle 1032.7 -659.0 468.4 566.3 -464.3 1786.3 506.3 568.2

28 f2 Principle 993.2 -895.2 22.7 322.9 -589.5 1466.0 -25.3 240.7

29 f2-f1 -39.5 -236.2 -445.8 -243.4 -125.3 -320.3 -531.5 -327.5

Check of Buckling Stress (only if Row 4, 15 in Compression)

30 Row 4+Row10 726.6-1201.3 0.0 0.0 0.0 0.0 -331.4 262.0

31 Row15+Row21 687.1 -965.1 -283.5 260.2 0.0 0.0 0.0 0.0

Check the Maximum Stresses versus defined Allowables kgf/cm:

---------------------------------------------------------

Max. Str. Int. (Mem + Bend) : 1786.28 Allowable: 3456.66

Max. Compressive Stress : -1201.34 Allowable: -2074.00

Max. Membrane Stress : 598.37 Allowable: 1843.55

Maximum Loads: PD:5500 Annex G.2.8 ( Alternative Rules - Information Only ):

Flush Nozzle located in a cylinder:

Note: Pmax is determined per PD:5500 Section 3.5.4:

Shell Effective Mean Diameter [D]:

= Di + es + Min(fp/fs, 1 )*tp + cas - caext

= 1300.00 + 13.000 + Min(1536.29 /1536.29 , 1 )*13.000 + 3.000 - 3.000

= 1329.000 mm

Nozzle Mean Diameter [d]:

= do - eb + can - caext

= 273.100 - 13.203 + 3.000 - 0.000 = 262.897 mm

Adjusted value of [Ratio erb/ers]:

= min(fn/fs, 1 ) * erb / ers

= min(1536.294 /1536.294 , 1 ) * 10.203 / 23.000 = 0.4436

Compute the Maximum Pressure [Pmax]

The value of Pmax is 33.754 kgf/cm and is derived as follows:

76/88

Page 76: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis B2 Item: 4 4:56p Jun 23,2011

Required Shell Thickness [eps]

= Pmax * D / ( 2 * fs )

= 33.754 * 1329.000 / ( 2 * 1536.294 ) = 14.600 mm

Compute Ratio [C.ers/eps]

= C * ers / eps

= 1.0 * 23.000 /14.600 = 1.5754

Compute the Value of [Rho] :

= d/D * sqrt( D / ( 2 * as ))

= 262.897 /1329.000 * sqrt(1329.000 / ( 2 * 23.000 )) = 1.0633

From Graph: Figure 3.5-11 we obtain a value of erb/ers of: 0.4436

Linear Interpolation Points from: Figure 3.5-11

Rho1 Rho Rho2

1.2000 1.0633 1.0000

Cers/eps1 1.6000 0.500 0.390

Cers/eps 1.5754 <- Interpolated 0.4436

Cers/eps2 1.5000 0.590 0.460

As Calculated Nozzle Thickness equals Actual Thickness: Pmax is correct.

Maximum Allowable Radial Force Fzmax, and Moments Mxmax, Mymax:

Determine the value of [LambdaC]:

= d /( D * eac )?

= 262.897 /(1329.000 * 23.000 )?= 1.504

From Figures 3.1, 3.2 and 3.3:

C2 = 2.040 C3 = 4.914 C4 = 8.087

Maximum Allowable Force [Fzmax]:

= fs * eac?* Max(C2, 1.81)

= 1536.294 * 23.000?* Max(2.040 , 1.81)

= 16582.230 kgf

Maximum Allowable Moment [MXmax]:

= fs * eac?* d / 4 * Max( C3, 4.90 )

= 1536.294 * 23.000?* 262.897 /4 * Max(4.914 , 4.90 )

= 2624.865 kgf-m.

Maximum Allowable Moment [MYmax]:

= fs * eac?* d/4 * Max( C4, 4.90 )

= 1536.294 * 23.000?* 262.897 /4 * Max(8.087 , 4.90)

= 4319.363 kgf-m.

Unity Check per PD:5500 per 3.4 for Simultaneous Loads:

P/Pmax = 0.104 Fz/Fzmax = 0.074 Mx/Mxmax = 0.233 My/Mymax = 0.184

P/Pmax + Fz/Fzmax + Mx/Mxmax + My/Mymax = 0.595

Summary of results:

P Fz Mx My

kgf/cm kgf kgf-m. kgf-m.

----------------------------------------------------------------------

Actual : 3.500 1224.000 612.000 795.000

Allowable: 33.754 16582.230 2624.865 4319.363

----------------------------------------------------------------------

Ratio: 0.104 0.074 0.233 0.184

77/88

Page 77: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis B2 Item: 4 4:56p Jun 23,2011

Ratio of combined values: 0.595 (must be <= 1.0)

The Given Force and Moments Comply with the Code

PVElite is a registered trademark of COADE, Inc. [2010]

78/88

Page 78: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis UC Item: 5 4:56p Jun 23,2011

Input Echo, PD:5500 Annex G Item 5, Description: UC

Diameter Basis for Vessel Vbasis ID

Design Internal Pressure Dp 3.50 kgf/cm

Corrosion Allowance for Vessel Cas 3.0000 mm

Vessel Diameter Dv 1300.000 mm

Vessel Thickness Tv 13.000 mm

Vessel Shell Design Allowable Stress f 1536.294 kgf/cm

Vessel Shell Yield Strength fy 2304.441 kgf/cm

Attachment Type TYPE Round

Diameter Basis for Nozzle Nbasis OD

Corrosion Allowance for Nozzle Can 3.0000 mm

Nozzle Diameter Dn 168.300 mm

Nozzle Thickness Tn 9.590 mm

Nozzle Inside Projection h 0.000 mm

Nozzle Design Allowable Stress fnoz 1536.294 kgf/cm

Does the Attachment cut a hole in the shell Yes

Stiffened Length of Vessel Section L 4000.00 mm

Offset from Left Tangent Line Dx 900.00 mm

Diameter of Reinforcing Pad Dpad 300.000 mm

Thickness of Reinforcing Pad Tpad 13.000 mm

Pad Design Allowable Stress fpad 1536.294 kgf/cm

Radial Load (positive outward) Fr 734.00 kgf

Circumferential Shear Fc 0.00 kgf

Longitudinal Shear Fl 0.00 kgf

Torsional Moment Mt 0.0 kgf-m.

Circumferential Moment Mc 220.0 kgf-m.

Longitudinal Moment Ml 287.0 kgf-m.

Allowable Stress Intensity Factor (Mem + Bend) 2.25

Print Membrane Stress at the Attachment junction Yes

Allowable Stress Intensity Factor (Membrane) 1.20

Allowable Stress Intensity Factor (Mem) Pad Edge 1.20

Allow. Str. Inten. Fac. (Mem + Bend) Pad Edge 2.00

Stress Calculations at the Edge of the Reinforcing Pad :

Intermediate Values L o n g i t u d i n a l Circ. Radial

At Point A Point B At C

----------------------------------------------------------------------------

K Factor K 7.3033 7.3033 0.1592

Load over the Area W 1.7 -1.7 1.3 -734.0

Equivalent Length Le 2593.7598 2971.4998 2790.0000 2790.0000

Parameter Cx 42.9250 42.9250 128.7750 128.7750

Parameter C? 128.7750 128.7750 42.9250 128.7750

Parameter 64r(Cx/r) 17.9215 17.9215 161.2937 161.2937

Parameter 2Cx/Le 0.0331 0.0289 0.0923 0.0923

Parameter C?Cx 3.0000 3.0000 0.3333 1.0000

G6 Curve Value 0.0668 0.0681 0.1044

G7 Curve Value 0.0552 0.0557 0.0453

G8 Curve Value -0.1327 -0.1322 -0.0788

G9 Curve Value -0.1278 -0.1297 -0.1314

79/88

Page 79: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis UC Item: 5 4:56p Jun 23,2011

G6 at Zero 0.2283 0.2300

G7 at Zero 0.1342 0.1346

G8 at Zero -0.1656 -0.1652

G9 at Zero -0.1700 -0.1719

Circ. value M? 0.2926 0.2960

Long. value Mx 0.4114 0.4136

Circ. value N? 0.8013 0.8003

Long. value Nx 0.7516 0.7545

Curve Value M?/W 0.0589 0.0605

Curve Value Mx3/W 0.0090 0.0098

Curve Value N?/W 0.0207 0.0217

Curve Value Nx3/W -0.0762 -0.0779

Value M?/W 0.0172 0.0179

Value Mx2/W 0.0037 0.0041

Value N?/W 0.0166 0.0173

Value Nx2/W -0.0573 -0.0588

Circ. value M?W 0.0496 0.0502 0.1044 0.0510

Long. value Mx/W 0.0515 0.0516 0.0453 0.0233

Circ. value N?/W -0.1493 -0.1496 -0.0788 -0.0694

Long. value Nxt/W -0.0705 -0.0709 -0.1314 -0.1141

Pressure Stress SIF 1.0000

PD-5500 Annex G Nozzle to Cylinder Stress Evaluation

Quadrant Q1 Q2 Q3 Q4

Surface In Out In Out In Out In Out

Circumferential Stresses:

Membrane Component (N?t) due to:

1 Radial Load 50.9 50.9 50.9 50.9 50.9 50.9 50.9 50.9

2 Circ. Moment -100.9 -100.9 -100.9 -100.9 100.9 100.9 100.9 100.9

3 Long. Moment -249.6 -249.6 250.0 250.0 250.0 250.0 -249.6 -249.6

4 Sub-Total loc. -299.6 -299.6 200.0 200.0 401.8 401.8 -97.7 -97.7

5 Pressure (fp) 230.3 230.3 230.3 230.3 230.3 230.3 230.3 230.3

6 Sub-Total(f?) -69.3 -69.3 430.3 430.3 632.1 632.1 132.6 132.6

Bending Component (6M?t? due to:

7 Radial Load -224.7 224.7 -224.7 224.7 -224.7 224.7 -224.7 224.7

8 Circ. Moment 802.9 -802.9 802.9 -802.9 -802.9 802.9 -802.9 802.9

9 Long. Moment 497.1 -497.1 -503.2 503.2 -503.2 503.2 497.1 -497.1

10 Sub-Total(f?) 1075.4-1075.4 75.0 -75.0-1530.8 1530.8 -530.5 530.5

------------------------------------------------------------------------------

11 Tot. Circ. Str 1006.1-1144.7 505.3 355.3 -898.7 2163.0 -397.9 663.0

Longitudinal Stresses:

Membrane Component (Nx/t) due to:

12 Radial Load 83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.7

13 Circ. Moment -168.3 -168.3 -168.3 -168.3 168.3 168.3 168.3 168.3

14 Long. Moment -117.9 -117.9 118.5 118.5 118.5 118.5 -117.9 -117.9

15 Sub-Total loc. -202.5 -202.5 33.9 33.9 370.5 370.5 134.1 134.1

16 Pressure (fp) 115.2 115.2 115.2 115.2 115.2 115.2 115.2 115.2

17 Sub-Total(fxm) -87.3 -87.3 149.1 149.1 485.7 485.7 249.3 249.3

Bending Component (6Mx/t? due to:

18 Radial Load -102.5 102.5 -102.5 102.5 -102.5 102.5 -102.5 102.5

80/88

Page 80: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis UC Item: 5 4:56p Jun 23,2011

19 Circ. Moment 348.6 -348.6 348.6 -348.6 -348.6 348.6 -348.6 348.6

20 Long. Moment 516.5 -516.5 -517.6 517.6 -517.6 517.6 516.5 -516.5

21 Sub-Total(fxb) 762.6 -762.6 -271.5 271.5 -968.8 968.8 65.3 -65.3

------------------------------------------------------------------------------

22 Tot. Long. fx 675.2 -849.9 -122.5 420.6 -483.1 1454.5 314.6 183.9

Shear Stresses due to:

23 Torsion Moment 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

24 Circ. Shear 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

25 Long. Shear 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

------------------------------------------------------------------------------

26 Tot. Shear tau 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Check of Total Stress Intensity (membrane + bending)

27 f1 Principle 1006.1 -849.9 505.3 420.6 -483.1 2163.0 314.6 663.0

28 f2 Principle 675.2-1144.7 -122.5 355.3 -898.7 1454.5 -397.9 183.9

29 f2-f1 -330.9 -294.8 -627.7 -65.3 -415.6 -708.5 -712.5 -479.1

Check of Buckling Stress (only if Row 4, 15 in Compression)

30 Row 4+Row10 775.8-1375.0 0.0 0.0 0.0 0.0 -628.2 432.7

31 Row15+Row21 560.1 -965.1 0.0 0.0 0.0 0.0 0.0 0.0

Compute the membrane stress intensity to A.3.3.1

32 f1m -69.3 -69.3 430.3 430.3 632.1 632.1 249.3 249.3

33 f2m -87.3 -87.3 149.1 149.1 485.7 485.7 132.6 132.6

34 f2m - f1m -18.1 -18.1 -281.2 -281.2 -146.4 -146.4 -116.7 -116.7

Check the Maximum Stresses versus defined Allowables kgf/cm:

---------------------------------------------------------

Max. Str. Int. (Mem + Bend) : 2162.97 Allowable: 3072.59

Max. Compressive Stress : -1374.98 Allowable: -2074.00

Max. Membrane Stress : 632.13 Allowable: 1843.55

Stress Calculations at the Edge of the Nozzle Neck :

Mean nozzle diameter / Mean Shell Diameter d/D: 0.1217

Compute the value of [Rho]:

= d/D * sqrt( D / ( 2 * ( ers - Cas ) ) )

= 161.71 /1329.00 * sqrt( 1329.00 / ( 2 * ( 26.00 - 3.00 )))

= 0.65

The following are the curves of rho selected for the analysis:

Values of Rho: 0.600 (Curve1), 0.654 (Computed rho), 0.700 (Curve2)

Values of erb/ers for values of rho: 0.340 , 0.420 , 0.410 , 0.510

Compute SCF per G.2.3.6.2:

= (2.25 / 1.1) * Ceas/eps

= (2.25 / 1.1) * 1.300

= 2.659

Intermediate Values L o n g i t u d i n a l Circ. Radial

At Point A Point B At C

----------------------------------------------------------------------------

K Factor K 8.0000 8.0000 1.9379

Load over the Area W 3.1 -3.1 2.4 -734.0

Equivalent Length Le 2687.1016 2888.7000 2790.0000 2790.0000

Parameter Cx 22.9089 22.9089 68.7268 68.7268

Parameter C? 68.7268 68.7268 22.9089 68.7268

81/88

Page 81: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis UC Item: 5 4:56p Jun 23,2011

Parameter 64r(Cx/r) 2.1977 2.1977 19.7792 19.7792

Parameter 2Cx/Le 0.0171 0.0159 0.0493 0.0493

Parameter C?Cx 3.0000 3.0000 0.3333 1.0000

G6 Curve Value 0.1587 0.1594 0.1896

G7 Curve Value 0.1480 0.1481 0.1167

G8 Curve Value -0.1916 -0.1913 -0.1618

G9 Curve Value -0.1573 -0.1585 -0.1609

G6 at Zero 0.3300 0.3307

G7 at Zero 0.2357 0.2357

G8 at Zero -0.2046 -0.2044

G9 at Zero -0.1720 -0.1731

Circ. value M? 0.4809 0.4821

Long. value Mx 0.6279 0.6284

Circ. value N? 0.9367 0.9360

Long. value Nx 0.9144 0.9158

Curve Value M?/W 0.1203 0.1211

Curve Value Mx3/W 0.0457 0.0461

Curve Value N?/W -0.0574 -0.0567

Curve Value Nx3/W -0.1127 -0.1138

Value M?/W 0.0578 0.0584

Value Mx2/W 0.0287 0.0290

Value N?/W -0.0537 -0.0531

Value Nx2/W -0.1030 -0.1042

Circ. value M?W 0.1008 0.1011 0.1896 0.1324

Long. value Mx/W 0.1193 0.1192 0.1167 0.0935

Circ. value N?/W -0.1379 -0.1382 -0.1618 -0.1564

Long. value Nxt/W -0.0542 -0.0543 -0.1609 -0.1562

Pressure Stress SIF 2.6591

PD-5500 Annex G Nozzle to Cylinder Stress Evaluation

Quadrant Q1 Q2 Q3 Q4

Surface In Out In Out In Out In Out

Circumferential Stresses:

Membrane Component (N?t) due to:

1 Radial Load 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7

2 Circ. Moment -73.4 -73.4 -73.4 -73.4 73.4 73.4 73.4 73.4

3 Long. Moment -81.6 -81.6 81.8 81.8 81.8 81.8 -81.6 -81.6

4 Sub-Total loc. -133.4 -133.4 30.1 30.1 177.0 177.0 13.5 13.5

5 Pressure (fp) 268.9 268.9 268.9 268.9 268.9 268.9 268.9 268.9

6 Sub-Total(f?) 135.5 135.5 299.0 299.0 445.9 445.9 282.4 282.4

Bending Component (6M?t? due to:

7 Radial Load -110.2 110.2 -110.2 110.2 -110.2 110.2 -110.2 110.2

8 Circ. Moment 516.3 -516.3 516.3 -516.3 -516.3 516.3 -516.3 516.3

9 Long. Moment 358.2 -358.2 -359.1 359.1 -359.1 359.1 358.2 -358.2

10 Sub-Total(f?) 764.3 -764.3 47.0 -47.0 -985.5 985.5 -268.3 268.3

------------------------------------------------------------------------------

11 Tot. Circ. Str 899.7 -628.8 346.0 252.0 -539.6 1431.4 14.1 550.6

Longitudinal Stresses:

Membrane Component (Nx/t) due to:

82/88

Page 82: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis UC Item: 5 4:56p Jun 23,2011

12 Radial Load 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7

13 Circ. Moment -73.0 -73.0 -73.0 -73.0 73.0 73.0 73.0 73.0

14 Long. Moment -32.1 -32.1 32.2 32.2 32.2 32.2 -32.1 -32.1

15 Sub-Total loc. -83.4 -83.4 -19.2 -19.2 126.9 126.9 62.6 62.6

16 Pressure (fp) 268.9 268.9 268.9 268.9 268.9 268.9 268.9 268.9

17 Sub-Total(fxm) 185.4 185.4 249.7 249.7 395.8 395.8 331.5 331.5

Bending Component (6Mx/t? due to:

18 Radial Load -77.9 77.9 -77.9 77.9 -77.9 77.9 -77.9 77.9

19 Circ. Moment 317.8 -317.8 317.8 -317.8 -317.8 317.8 -317.8 317.8

20 Long. Moment 423.7 -423.7 -423.3 423.3 -423.3 423.3 423.7 -423.7

21 Sub-Total(fxb) 663.6 -663.6 -183.4 183.4 -819.0 819.0 28.0 -28.0

------------------------------------------------------------------------------

22 Tot. Long. fx 849.0 -478.1 66.3 433.1 -423.2 1214.7 359.5 303.5

Shear Stresses due to:

23 Torsion Moment 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

24 Circ. Shear 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

25 Long. Shear 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

------------------------------------------------------------------------------

26 Tot. Shear tau 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Check of Total Stress Intensity (membrane + bending)

27 f1 Principle 899.7 -478.1 346.0 433.1 -423.2 1431.4 359.5 550.6

28 f2 Principle 849.0 -628.8 66.3 252.0 -539.6 1214.7 14.1 303.5

29 f2-f1 -50.7 -150.6 -279.7 -181.1 -116.4 -216.7 -345.4 -247.2

Check of Buckling Stress (only if Row 4, 15 in Compression)

30 Row 4+Row10 630.9 -897.6 0.0 0.0 0.0 0.0 0.0 0.0

31 Row15+Row21 580.1 -747.0 -202.6 164.2 0.0 0.0 0.0 0.0

Check the Maximum Stresses versus defined Allowables kgf/cm:

---------------------------------------------------------

Max. Str. Int. (Mem + Bend) : 1431.37 Allowable: 3456.66

Max. Compressive Stress : -897.64 Allowable: -2074.00

Max. Membrane Stress : 445.86 Allowable: 1843.55

Maximum Loads: PD:5500 Annex G.2.8 ( Alternative Rules - Information Only ):

Flush Nozzle located in a cylinder:

Note: Pmax is determined per PD:5500 Section 3.5.4:

Shell Effective Mean Diameter [D]:

= Di + es + Min(fp/fs, 1 )*tp + cas - caext

= 1300.00 + 13.000 + Min(1536.29 /1536.29 , 1 )*13.000 + 3.000 - 3.000

= 1329.000 mm

Nozzle Mean Diameter [d]:

= do - eb + can - caext

= 168.300 - 9.590 + 3.000 - 0.000 = 161.710 mm

Adjusted value of [Ratio erb/ers]:

= min(fn/fs, 1 ) * erb / ers

= min(1536.294 /1536.294 , 1 ) * 6.590 / 23.000 = 0.2865

Compute the Maximum Pressure [Pmax]

The value of Pmax is 37.419 kgf/cm and is derived as follows:

83/88

Page 83: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis UC Item: 5 4:56p Jun 23,2011

Required Shell Thickness [eps]

= Pmax * D / ( 2 * fs )

= 37.419 * 1329.000 / ( 2 * 1536.294 ) = 16.185 mm

Compute Ratio [C.ers/eps]

= C * ers / eps

= 1.0 * 23.000 /16.185 = 1.4211

Compute the Value of [Rho] :

= d/D * sqrt( D / ( 2 * as ))

= 161.710 /1329.000 * sqrt(1329.000 / ( 2 * 23.000 )) = 0.6540

From Graph: Figure 3.5-11 we obtain a value of erb/ers of: 0.2865

Linear Interpolation Points from: Figure 3.5-11

Rho1 Rho Rho2

0.7000 0.6540 0.6000

Cers/eps1 1.4000 0.330 0.270

Cers/eps 1.4211 <- Interpolated 0.2865

Cers/eps2 1.3000 0.410 0.340

As Calculated Nozzle Thickness equals Actual Thickness: Pmax is correct.

Maximum Allowable Radial Force Fzmax, and Moments Mxmax, Mymax:

Determine the value of [LambdaC]:

= d /( D * eac )?

= 161.710 /(1329.000 * 23.000 )?= 0.925

From Figures 3.1, 3.2 and 3.3:

C2 = 1.485 C3 = 4.705 C4 = 5.682

Maximum Allowable Force [Fzmax]:

= fs * eac?* Max(C2, 1.81)

= 1536.294 * 23.000?* Max(1.485 , 1.81)

= 14709.842 kgf

Maximum Allowable Moment [MXmax]:

= fs * eac?* d / 4 * Max( C3, 4.90 )

= 1536.294 * 23.000?* 161.710 /4 * Max(4.705 , 4.90 )

= 1609.915 kgf-m.

Maximum Allowable Moment [MYmax]:

= fs * eac?* d/4 * Max( C4, 4.90 )

= 1536.294 * 23.000?* 161.710 /4 * Max(5.682 , 4.90)

= 1866.938 kgf-m.

Unity Check per PD:5500 per 3.4 for Simultaneous Loads:

P/Pmax = 0.094 Fz/Fzmax = 0.050 Mx/Mxmax = 0.137 My/Mymax = 0.154

P/Pmax + Fz/Fzmax + Mx/Mxmax + My/Mymax = 0.434

Summary of results:

P Fz Mx My

kgf/cm kgf kgf-m. kgf-m.

----------------------------------------------------------------------

Actual : 3.500 734.000 220.000 287.000

Allowable: 37.419 14709.842 1609.915 1866.938

----------------------------------------------------------------------

Ratio: 0.094 0.050 0.137 0.154

84/88

Page 84: Strength Calculation

PV Elite 2010 Licensee: HANTECH LTD. FileName : 1041-D-042 (D.P) ------------------------------ Annex G Analysis UC Item: 5 4:56p Jun 23,2011

Ratio of combined values: 0.434 (must be <= 1.0)

The Given Force and Moments Comply with the Code

PVElite is a registered trademark of COADE, Inc. [2010]

85/88

Page 85: Strength Calculation

(REFER. : PRESSURE VESSEL DESIGN MANUAL)

MANHOLE NO. : M1 (24")

DAVITS MATERIAL : SA36

DAVITS SIZE : R.B 45

CROSS SECTIONAL AREA A = 1590.4 MM²

SECTION MODULUS Z = 8946.2 MM³

MOMENT OF INERTIA I = 201289 MM⁴

ALLOWABLE AXIAL STRESS Fa = 11.625 KG/MM²

MIN. SPECCIFIED YIELD STRESS Fy = 25.289 KG/MM²

ALLOWABLE BENDING STRESS (0.6*Fy) Fb = 15.173 KG/MM²

WEIGHT OF BOOM AND BRACE W1 = 10 KG

MANHOLE BLIND FLANGE WEIGHT WL = 190 KG

TOTAL WEIGHT OF DAVIT WD = 20 KG

VERTICAL IMPACT FACTOR Cv = 1.25

HORIZONTAL IMPACT FACTOR Ch = 0.2

1. LOADS ON DAVIT

fv = Cv x WL = 237.5 KG

fh = Ch x WL = 38 KG

2. AXIAL LOAD ON DAVIT MAST

P = fv + WD = 257.5 KG

3. BENDING MOMENT IN DAVIT MAST

M1 = fv x L1 + 0.5 x W1 x L1 + fh x L2 = 120635 KG-MM

M2 = M1 x (L2 - R) / L2 = 31275.7 KG

Where, L1 = 434 MM

L2 = 405 MM

R = 300 MM

------------------------------------------------------------------------------------------------------

===========================

DESIGN OF MANHOLE DAVIT

===========================

--------------------------------------------- < DESIGN DATA > ---------------------------------------------

86/88

Page 86: Strength Calculation

4. AXIAL STRESS - MAST

fa = P / A = 0.162 KG/MM²

5. BENDING STRESS - MAST

At M1, fb = M1 / Z = 13.484 KG/MM²

At M2, fb' = (M2 x a / I) x ( 2 / 3 x K x (3 x β)0.5)

= 12.284 KG/MM²

Where, α = tp x R / a² = 0

β = 6 / ( 5 + 6 α²) = 1.200

K = 1 - 9 / ( 10 + 12 α²) = 0.1

a : OUTSIDE RADIUS OF PIPE = 22.5 MM

tp : WALL THICKNESS OF PIPE DAVIT = 0 MM

6. COMBINED STRESS - MAST

At M1 = fa / Fa + fb / Fb = 0.903 < 1.0 (O.K)

At M2, = fa / Fa + fb' / Fb = 0.824 < 1.0 (O.K)

7. WELDMENT CHECK

1) CRITICAL WELD CROSS-SECTION PROPERTIES

AREA : Aw = 1.414 x w x 2 x d = 2545.2 MM²

SECTION MODULUS ; Zw = 0.707 x w x d² / 3 = 21210 MM³

2) STRESS FROM FORCE, fv

BANDING STRESS ; S1 = fv x e / Zw = 1.297 KG/MM²

COMPRESSIVE STRESS ; S2 = fv / Aw = 0.093 KG/MM²

3) MAXIMUM COMBINED STRESS

S3 = ( S1²+ S2²)^0.5 = 1.3 KG/MM² < 0.6 S = 7.599 KG/MM² (O.K)

Where, e = 115.8 MM, d = 100 MM, w = 9 MM

S = 0.6*Sy = 0.6 x 21.108 = 12.665 KG/MM² ( SA285-C )

87/88

Page 87: Strength Calculation

MANHOLE BLIND FLANGE WEIGHT WL = 190.0 KG THICKNESS OF HANGE t = 15.0 MM WELD THROAT AT HOOK TO FLANGE J = 6.0 MM LENGTH OF HOOK AT BOTTOM L = 50.0 MM HOOK HOLE RADIUS r = 18.0 MM HOOK OUTSIDE RADIUS R = 25.0 MM ALLOWABLE STRESS OF HOOK Sa = 11.013 KG/MM² ALLOWABLE STRESS OF EYE & HEX BOLT Sb = 17.539 KG/MM² HEX BOLT AREA (M16) Ah = 150.3 MM² EYE BOLT AREA (M20) Ae = 234.9 MM² DYNAMIC FACTOR F = 1.5

1. HANGE DESIGN

1) SHEAR STRESS CHECK

A = t x (R - r) = 105.000 MM

S1 = F x WL / A = 2.714 KG/MM² < 0.8 Sa = 8.81 KG/MM² - O.K -

2) TENSION STRESS

A = t x (R - r) = 105.000 MM

S2 = F x WL / 2A = 1.357 KG/MM² < Sa = 11.013 KG/MM² - O.K -

3) STRESS AT HOOK TO FLANGE JUNCTION

S3 = F x WL / [2 (2 J x L)]

= 0.238 KG/MM² < 0.55 Sa = 6.057 KG/MM² - O.K -

2. HEX BOLT DESIGN

1) AXIAL STRESS

S4 = F x WL / Ah = 1.896 KG/MM² < Sb = 17.539 KG/MM² - O.K -

3. EYE BOLT DESIGN

1) SHEAR STRESS

S5 = F x WL / Ae = 1.213 KG/MM² < 0.8 Sb = 14.031 KG/MM² - O.K -

--------------------------------------------------------------------------------------------------------

=================================================DESIGN OF HOOK & HEX BOLT & EYE BOLT FOR DAVIT

=================================================

--------------------------------------------< DESIGN DATA >---------------------------------------------

88/88