stoichiometry additional examples. hst mr.watson

65
Stoichiomet ry Additional Examples

Upload: louise-hall

Post on 17-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stoichiometry Additional Examples. HST Mr.Watson

Stoichiometry

Additional

Examples

Page 2: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

Stoichiometry Flow Chart

mL soln A mL soln B (M/1000) \ Y moles B / (1000/M)

\ --------------- / 1/MM A \ X moles A / MM Bg A ---------------> mol A -----------------> mol B ---------------> g B / \ (P/1000RT) / (1000RT/P) \ / \ mL A gas mL B gas

where M => molarity of solutionMM => molar massP => pressure of gasR => gas constantT => temperature of gas

Page 3: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEWhat mass of H2, in grams, will react with 3.3

mol O2 to produce water?

Page 4: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEWhat mass of H2, in grams, will react with 3.3

mol O2 to produce water?

2 H2 + O2 -----> 2 H2O

Page 5: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEWhat mass of H2, in grams, will react with 3.3

mol O2 to produce water?

2 H2 + O2 -----> 2 H2O

(3.3 mol O2)

#g H2 = --------------------------------------------

Page 6: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEWhat mass of H2, in grams, will react with 3.3

mol O2 to produce water?

2 H2 + O2 -----> 2 H2O

(3.3 mol O2)

#g H2 = -------------------------------------------- (1 mol O2)

Page 7: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEWhat mass of H2, in grams, will react with 3.3

mol O2 to produce water?

2 H2 + O2 -----> 2 H2O

(3.3 mol O2) (2 mol H2)

#g H2 = -------------------------------------------- (1 mol O2)

stoichiometricfactor

Page 8: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEWhat mass of H2, in grams, will react with 3.3

mol O2 to produce water?

2 H2 + O2 -----> 2 H2O

(3.3 mol O2) (2 mol H2) (2.0 g H2)

#g H2 = -------------------------------------------- (1 mol O2) (1 mol H2)

the molar mass of H2

Page 9: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEWhat mass of H2, in grams, will react with 3.3

mol O2 to produce water?

2 H2 + O2 -----> 2 H2O

(3.3 mol O2) (2 mol H2) (2.0 g H2)

#g H2 = -------------------------------------------- (1 mol O2) (1 mol H2)

= 13 g H2

Page 10: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEWhat mass of H2, in grams, must react with

excess O2 to produce 5.40 g H2O?

Page 11: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEWhat mass of H2, in grams, must react with

excess O2 to produce 5.40 g H2O?

2 H2 + O2 -----> 2 H2O

Page 12: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEWhat mass of H2, in grams, must react with

excess O2 to produce 5.40 g H2O?

2 H2 + O2 -----> 2 H2O

(5.40 g H2O)

#g H2 = --------------------

Page 13: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEWhat mass of H2, in grams, must react with

excess O2 to produce 5.40 g H2O?

2 H2 + O2 -----> 2 H2O

(5.40 g H2O) (1 mol H2O)

#g H2 = ---------------------------------------------(18.0 g H2O)

molar mass of H2O

Page 14: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEWhat mass of H2, in grams, must react with

excess O2 to produce 5.40 g H2O?

2 H2 + O2 -----> 2 H2O

(5.40 g H2O) (1 mol H2O) (2 mol H2)

#g H2 = --------------------------------------------- (18.0 g H2O)

Page 15: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEWhat mass of H2, in grams, must react with

excess O2 to produce 5.40 g H2O?

2 H2 + O2 -----> 2 H2O

(5.40 g H2O) (1 mol H2O) (2 mol H2)

#g H2 = --------------------------------------------- (18.0 g H2O) (2 mol H2O)

stoichiometricfactor

Page 16: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEWhat mass of H2, in grams, must react with

excess O2 to produce 5.40 g H2O?

2 H2 + O2 -----> 2 H2O (5.40 g H2O) (1 mol H2O) (2 mol H2) (2.02 g H2)

#g H2 = ---------------------------------------------------------------

(18.0 g H2O) (2 mol H2O) (1 mol H2)

molar mass H2

Page 17: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEWhat mass of H2, in grams, must react with

excess O2 to produce 5.40 g H2O?

2 H2 + O2 -----> 2 H2O (5.40 g H2O) (1 mol H2O) (2 mol H2) (2.02 g H2)

#g H2 = ---------------------------------------------------------------

(18.0 g H2O) (2 mol H2O) (1 mol H2)

= 0.606 g H2

Page 18: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE

Calculate the weight of oxygen produced during the thermal decomposition of 100. g of potassium chlorate.

Page 19: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE

Calculate the weight of oxygen produced during the thermal decomposition of 100. g of potassium chlorate.

potassium chlorate -----> oxygen + ?

Page 20: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE

Calculate the weight of oxygen produced during the thermal decomposition of 100. g of potassium chlorate.

potassium chlorate -----> oxygen + ?

KClO3 -----> O2 + ?

Page 21: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE

Calculate the weight of oxygen produced during the thermal decomposition of 100. g of potassium chlorate.

potassium chlorate -----> oxygen + ?

KClO3 -----> O2 + ?

? => KCl

KClO3 -----> O2 + KCl

Page 22: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE

Calculate the weight of oxygen produced during the thermal decomposition of 100. g of potassium chlorate.

potassium chlorate -----> oxygen + ?

KClO3 -----> O2 + ?

? => KCl

KClO3 -----> O2 + KCl

2 KClO3 -----> 3 O2 + 2 KCl

Page 23: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE

Calculate the weight of oxygen produced during the thermal decomposition of 100. g of potassium chlorate.

2 KClO3 -----> 3 O2 + 2 KCl (100. g KClO3) (1 mol KClO3) (3 moles O2) (32.0 g O2)

#g O2 = -------------------------------------------------------------------------------

(122.6 g KClO3) (2 moles KClO3) (1 mol O2)

Page 24: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE

Calculate the weight of oxygen produced during the thermal decomposition of 100. g of potassium chlorate.

2 KClO3 -----> 3 O2 + 2 KCl (100. g KClO3) (1 mol KClO3) (3 moles O2) (32.0 g O2)

#g O2 = -------------------------------------------------------------------------------

(122.6 g KClO3) (2 moles KClO3) (1 mol O2)

molar mass

Page 25: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE

Calculate the weight of oxygen produced during the thermal decomposition of 100. g of potassium chlorate.

2 KClO3 -----> 3 O2 + 2 KCl (100. g KClO3) (1 mol KClO3) (3 moles O2) (32.0 g O2)

#g O2 = -------------------------------------------------------------------------------

(122.6 g KClO3) (2 moles KClO3) (1 mol O2)

molar mass

stoichiometricfactor

Page 26: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE

Calculate the weight of oxygen produced during the thermal decomposition of 100. g of potassium chlorate.

2 KClO3 -----> 3 O2 + 2 KCl (100. g KClO3) (1 mol KClO3) (3 moles O2) (32.0 g O2)

#g O2 = -------------------------------------------------------------------------------

(122.6 g KClO3) (2 moles KClO3) (1 mol O2)

molar mass molar mass

stoichiometricfactor

Page 27: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE

Calculate the weight of oxygen produced during the thermal decomposition of 100. g of potassium chlorate.

2 KClO3 -----> 3 O2 + 2 KCl (100. g KClO3) (1 mol KClO3) (3 moles O2) (32.0 g O2)

#g O2 = -------------------------------------------------------------------------------

(122.6 g KClO3) (2 moles KClO3) (1 mol O2)

molar mass molar mass

= 39.2 g O2 stoichiometricfactor

Page 28: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEAmmonia, NH3, is prepared by the Haber

process by the reaction of nitrogen gas with hydrogen gas. How many moles of hydrogen are needed to produce 3.0 kg of NH3?

Page 29: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEAmmonia, NH3, is prepared by the Haber

process by the reaction of nitrogen gas with hydrogen gas. How many moles of hydrogen are needed to produce 3.0 kg of NH3?

nitrogen + hydrogen -----> ammonia

Page 30: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEAmmonia, NH3, is prepared by the Haber

process by the reaction of nitrogen gas with hydrogen gas. How many moles of hydrogen are needed to produce 3.0 kg of NH3?

nitrogen + hydrogen -----> ammonia

N2 + H2 -----> NH3

Page 31: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEAmmonia, NH3, is prepared by the Haber

process by the reaction of nitrogen gas with hydrogen gas. How many moles of hydrogen are needed to produce 3.0 kg of NH3?

nitrogen + hydrogen -----> ammoniaN2 + H2 -----> NH3

N2 + 3 H2 -----> 2 NH3

Page 32: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEAmmonia, NH3, is prepared by the Haber

process by the reaction of nitrogen gas with hydrogen gas. How many moles of hydrogen are needed to produce 3.0 kg of NH3?

N2 + 3 H2 -----> 2 NH3

(3.0 kg NH3)

#mol H2 = -----------------

Page 33: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEAmmonia, NH3, is prepared by the Haber

process by the reaction of nitrogen gas with hydrogen gas. How many moles of hydrogen are needed to produce 3.0 kg of NH3?

N2 + 3 H2 -----> 2 NH3

(3.0 kg NH3) (1000 g)

#mol H2 = ------------------------------ (1 kg)

Page 34: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEAmmonia, NH3, is prepared by the Haber

process by the reaction of nitrogen gas with hydrogen gas. How many moles of hydrogen are needed to produce 3.0 kg of NH3?

N2 + 3 H2 -----> 2 NH3

(3.0 kg NH3) (1000 g) (1 mol NH3)

#mol H2 = -------------------------------------------- (1 kg) (17.0 g NH3)

Page 35: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEAmmonia, NH3, is prepared by the Haber process

by the reaction of nitrogen gas with hydrogen gas. How many moles of hydrogen are needed to produce 3.0 kg of NH3?

N2 + 3 H2 -----> 2 NH3

(3.0 kg NH3) (1000 g) (1 mol NH3) (3 mol H2)

#mol H2 = -------------------------------------------------------------

(1 kg) (17.0 g NH3) (2 mol NH3)

stoichiometricfactor

Page 36: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEAmmonia, NH3, is prepared by the Haber process

by the reaction of nitrogen gas with hydrogen gas. How many moles of hydrogen are needed to produce 3.0 kg of NH3?

N2 + 3 H2 -----> 2 NH3

(3.0 kg NH3) (1000 g) (1 mol NH3) (3 mol H2)

#mol H2 = -------------------------------------------------------------

(1 kg) (17.0 g NH3) (2 mol NH3)

= 2.6 X 102 mol H2

Page 37: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEThe first step in obtaining elemental zinc from

its sulfide ore involves heating it in air to obtain the oxide of zinc and sulfur dioxide. Calculate the mass of O2 required to react with 7.00 g of zinc sulfide. How much sulfur dioxide is produced?

Page 38: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEThe first step in obtaining elemental zinc from

its sulfide ore involves heating it in air to obtain the oxide of zinc and sulfur dioxide. Calculate the mass of O2 required to react with 7.00 g of zinc sulfide. How much sulfur dioxide is produced?

zinc sulfide + oxygen -----> zinc oxide + sulfur dioxide

Page 39: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEThe first step in obtaining elemental zinc from

its sulfide ore involves heating it in air to obtain the oxide of zinc and sulfur dioxide. Calculate the mass of O2 required to react with 7.00 g of zinc sulfide. How much sulfur dioxide is produced?

zinc sulfide + oxygen -----> zinc oxide + sulfur dioxide

ZnS + O2 -----> ZnO + SO2

Page 40: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE The first step in obtaining elemental zinc from its sulfide ore involves heating it in air to obtain the oxide of zinc and sulfur dioxide. Calculate the mass of O2 required to react

with 7.00 g of zinc sulfide. How much sulfur dioxide is produced?

zinc sulfide + oxygen -----> zinc oxide + sulfur dioxide

ZnS + O2 -----> ZnO + SO2

2 ZnS + 3 O2 -----> 2 ZnO + 2 SO2

Page 41: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE The first step in obtaining elemental zinc from its sulfide ore involves heating it in air to obtain the oxide of zinc and sulfur dioxide.

Calculate the mass of O2 required to react with 7.00 g of zinc sulfide. How much sulfur dioxide is produced?

2 ZnS + 3 O2 -----> 2 ZnO + 2 SO2

(7.00 g ZnS) (1 mol ZnS) (3 mol O2) (32.0 g O2)

#g O2 = ----------------------------------------------------------------

(97.44 g ZnS) (2 mol ZnS) (1 mol O2)

stoichiometricfactor

Page 42: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE The first step in obtaining elemental zinc from its sulfide ore involves heating it in air to obtain the oxide of zinc and sulfur dioxide. Calculate the mass of O2 required to react

with 7.00 g of zinc sulfide. How much sulfur dioxide is produced?

2 ZnS + 3 O2 -----> 2 ZnO + 2 SO2

(7.00 g ZnS) (1 mol ZnS) (3 mol O2) (32.0 g O2)#g O2 = ----------------------------------------------------------------

(97.44 g ZnS) (2 mol ZnS) (1 mol O2)

= 3.45 g O2

Page 43: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE The first step in obtaining elemental zinc from its sulfide ore involves heating it in air to obtain the oxide of zinc and sulfur dioxide.

Calculate the mass of O2 required to react with 7.00 g of zinc sulfide. How much sulfur dioxide is produced?

2 ZnS + 3 O2 -----> 2 ZnO + 2 SO2

(7.00 g ZnS) (1 mol ZnS)(2 mol SO2) (64.06 g SO2)

#gSO2 = ---------------------------------------------------------------

(97.44 g ZnS) (2 mol ZnS) (1 mol SO2)

Page 44: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE The first step in obtaining elemental zinc from its sulfide ore involves heating it in air to obtain the oxide of zinc and sulfur dioxide. Calculate the mass of O2 required to react

with 7.00 g of zinc sulfide. How much sulfur dioxide is produced?

2 ZnS + 3 O2 -----> 2 ZnO + 2 SO2

(7.00 g ZnS) (1 mol ZnS)(2 mol SO2) (64.06 g SO2)

#gSO2 = ---------------------------------------------------------------

(97.44 g ZnS) (2 mol ZnS) (1 mol SO2)

= 4.60 g SO2

Page 45: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE The first step in obtaining elemental zinc from its sulfide ore involves heating it in air to obtain the oxide of zinc and sulfur dioxide.

Calculate the mass of O2 required to react with 7.00 g of zinc sulfide. How much sulfur dioxide is produced?

#g O2 = 3.45 g O2

#gSO2 = 4.60 g SO2

Page 46: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLEZinc and sulfur react to form zinc sulfide, a

substance used in phosphors that coat the inner surfaces of TV picture tubes. The equation for the reaction is Zn + S -----> ZnS In a particular experiment 12.0 g of Zn are mixed with 6.50 g S and allowed to react.

Page 47: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE In a particular experiment 12.0 g of Zn are mixed with 6.50 g S and

allowed to react. Zn + S -----> ZnS

(a) Which is the limiting reactant? (b) How many grams of ZnS can be formed from this particular reaction mixture? (c) How many grams of which element will remain unreacted in this experiment?

Page 48: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE In a particular experiment 12.0 g of Zn are mixed with 6.50 g S and allowed to react. Zn + S -----> ZnS

(a) The limiting reactant? (b) #grams of ZnS? if use all 12.0 g Zn (12.0 g Zn) (1 mol Zn) (1 mol ZnS) (97.5 g ZnS)

#g ZnS = --------------------------------------------------------------

(65.38 g Zn) (1 mol Zn) (1 mol ZnS)

Page 49: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE In a particular experiment 12.0 g of Zn are mixed with 6.50 g S and allowed to react. Zn + S -----> ZnS

(a) The limiting reactant? (b) #grams of ZnS? if use all 12.0 g Zn (12.0 g Zn) (1 mol Zn) (1 mol ZnS) (97.5 g ZnS)

#g ZnS = --------------------------------------------------------------

(65.38 g Zn) (1 mol Zn) (1 mol ZnS)

= 17.9 g ZnS

Page 50: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE In a particular experiment 12.0 g of Zn are mixed with 6.50 g S and allowed to react. Zn + S -----> ZnS

(a) The limiting reactant? (b) #grams of ZnS? if use all 12.0 g Zn #g ZnS = 17.9 g ZnS

if use all 6.50 g S (6.50 g S) (1 mol S) (1 mol ZnS) (97.5 g ZnS)

#g ZnS = -----------------------------------------------------------

(32.06 gS ) (1 mol S) (1 mol ZnS)

Page 51: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE In a particular experiment 12.0 g of Zn are mixed with 6.50 g S and allowed to react. Zn + S -----> ZnS

(a) The limiting reactant? (b) #grams of ZnS? if use all 12.0 g Zn #g ZnS = 17.9 g ZnS

if use all 6.50 g S (6.50 g S) (1 mol S) (1 mol ZnS) (97.5 g ZnS)

#g ZnS = -----------------------------------------------------------

(32.06 gS ) (1 mol S) (1 mol ZnS)

= 19.8 g ZnS

Page 52: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE In a particular experiment 12.0 g of Zn are mixed with 6.50 g S and allowed to react. Zn + S -----> ZnS

(a) The limiting reactant? (b) #grams of ZnS?

if use all 12.0 g Zn #g ZnS = 17.9 g ZnS

if use all 6.50 g S #g ZnS = 19.8 g ZnS

Therefore, Zn is the limiting reactant and 17.9 g ZnS can be produced.

Page 53: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE In a particular experiment 12.0 g of Zn are mixed with 6.50 g S and allowed to react. Zn + S -----> ZnS (a) The limiting reactant? (b) #grams of ZnS?

if use all 12.0 g Zn #g ZnS = 17.9 g ZnS

if use all 6.50 g S #g ZnS = 19.8 g ZnS

Therefore, Zn is the limiting reactant and 17.8 g ZnS can be produced.

(c) How many grams of which element will remain unreacted in this experiment?

if use all 12.0 g Zn

Page 54: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE In a particular experiment 12.0 g of Zn are mixed with 6.50 g S and allowed to react. Zn + S -----> ZnS (a) The limiting reactant? (b) #grams of ZnS?if use all 12.0 g Zn #g ZnS = 17.9 g ZnSif use all 6.50 g S #g ZnS = 19.8 g ZnSTherefore, Zn is the limiting reactant and 17.8 g

ZnS can be produced.

(c) if use all 12.0 g Zn (12.0 g Zn) (1 mol Zn) (1 mol S) (32.06 g S)

#g S = -------------------------------------------------------- (65.38 g Zn) (1 mol Zn) (1 mol S)

Page 55: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE In a particular experiment 12.0 g of Zn are mixed with 6.50 g S and allowed to react. Zn + S -----> ZnS (a) The limiting reactant? (b) #grams of ZnS?

if use all 12.0 g Zn #g ZnS = 17.9 g ZnSif use all 6.50 g S #g ZnS = 19.8 g ZnSTherefore, Zn is the limiting reactant and 17.8 g ZnS can

be produced.

(c) if use all 12.0 g Zn (12.0 g Zn) (1 mol Zn) (1 mol S) (32.06 g S)

#g S = -------------------------------------------------------- (65.38 g Zn) (1 mol Zn) (1 mol S)= 5.88 g S reacted

Page 56: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE In a particular experiment 12.0 g of Zn are mixed with 6.50 g S and allowed to react. Zn + S -----> ZnS(a) The limiting reactant? (b) #grams of ZnS?

if use all 12.0 g Zn #g ZnS = 17.9 g ZnS

if use all 6.50 g S #g ZnS = 19.8 g ZnS

Therefore, Zn is the limiting reactant and 17.8 g ZnS can be produced.

(c) if use all 12.0 g Zn #g S = 5.88 g S reacted

Therefore, (6.50 - 5.88)g = 0.61 g S remain unreacted.

Page 57: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE: What is the percent composition of chloroform, CHCl3, a substance once used as an anesthetic?

Page 58: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE: What is the percent composition of chloroform, CHCl3, a substance once used as an anesthetic?MM = 1(gaw)C + 1(gaw)H + 3(gaw)Cl

Page 59: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE: What is the percent composition of chloroform, CHCl3, a substance once used as an anesthetic?MM = 1(gaw)C + 1(gaw)H + 3(gaw)Cl

= (12.011 + 1.00797 + 3*35.453)amu

Page 60: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE: What is the percent composition of chloroform, CHCl3, a substance once used as an anesthetic?MM = 1(gaw)C + 1(gaw)H + 3(gaw)Cl

= (12.011 + 1.00797 + 3*35.453)amu

= 119.377amu

Page 61: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE: What is the percent composition of chloroform, CHCl3, a substance once used as an anesthetic?MM = 1(gaw)C + 1(gaw)H + 3(gaw)Cl

= (12.011 + 1.00797 + 3*35.453)amu

= 119.377amu

1(gaw)

%C = ------------ X 100

MM

Page 62: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE: What is the percent composition of chloroform, CHCl3, a substance once used as an anesthetic?MM = 1(gaw)C + 1(gaw)H + 3(gaw)Cl

= (12.011 + 1.00797 + 3*35.453)amu= 119.377amu

1(gaw)%C = ------------ X 100

MM

1(12.011)%C = -------------- X 100 = 10.061% C

119.377

Page 63: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE: What is the percent composition of chloroform, CHCl3, a substance once used as an anesthetic?MM = 1(gaw)C + 1(gaw)H + 3(gaw)Cl

= (12.011 + 1.00797 + 3*35.453)amu

= 119.377amu

1(1.00797)

%H = ---------------- X 100 = 0.844359% H

119.377

Page 64: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE: What is the percent composition of chloroform, CHCl3, a substance once used as an anesthetic?MM = 1(gaw)C + 1(gaw)H + 3(gaw)Cl

= (12.011 + 1.00797 + 3*35.453)amu

= 119.377amu

3(35.453)

%Cl = -------------- X 100 = 89.095% Cl

119.377

Page 65: Stoichiometry Additional Examples. HST Mr.Watson

HSTMr.Watson

EXAMPLE: What is the percent composition of chloroform, CHCl3, a substance once used as an anesthetic?MM = 1(gaw)C + 1(gaw)H + 3(gaw)Cl

= 119.377amu%C = 10.061% C

%H = 0.844359% H

%Cl = 89.095% Cl