stereological techniques for solid textures rob jagnow mit julie dorsey yale university holly...

39
Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Post on 21-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Stereological Techniquesfor Solid Textures

Rob Jagnow

MIT

Julie Dorsey

Yale University

Holly Rushmeier

Yale University

Page 2: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Given a 2D slice through an aggregate material, create a 3D volume with a comparable appearance.

ObjectiveObjective

Page 3: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Real-World MaterialsReal-World Materials

• Concrete

• Asphalt

• Terrazzo

• Igneous

minerals

• Porous

materials

Page 4: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Independently Recover…Independently Recover…

• Particle distribution

• Color

• Residual noise

Page 5: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Stereology (ster'e-ol' -je)

e

The study of 3Dproperties based on2D observations.

In Our Toolbox…In Our Toolbox…

Page 6: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Prior Work – Texture SynthesisPrior Work – Texture Synthesis

• 2D 2D

• 3D 3DEfros & Leung ’99

• 2D 3D– Heeger & Bergen 1995– Dischler et al. 1998– Wei 2003

Heeger & Bergen ’95

Wei 2003

• Procedural Textures

Page 7: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Prior Work – Texture SynthesisPrior Work – Texture Synthesis

Input Heeger & Bergen, ’95

Page 8: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Prior Work – StereologyPrior Work – Stereology

• Saltikov 1967Particle size distributions from section measurements

• Underwood 1970Quantitative Stereology

• Howard and Reed 1998Unbiased Stereology

• Wojnar 2002Stereology from one of all the possible angles

Page 9: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Estimating 3D DistributionsEstimating 3D Distributions

• Macroscopic statistics of a 2D image are related to,but not equal to the statistics of a 3D volume

– Distributions of Spheres

– Distributions for Other Particles

– Managing Multiple Particle Types

Page 10: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Distributions of SpheresDistributions of Spheres

• : maximum diameter

• Establish a relationship between– the size distribution of 2D circles

(as the number of circles per unit area)– the size distribution of 3D spheres

(as the number of spheres per unit volume)

maxd

Page 11: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Recovering Sphere DistributionsRecovering Sphere Distributions

AN

H

VN

= Profile density (number of circles per unit area)

= Mean caliper particle diameter

= Particle density (number of spheres per unit volume)

VA NHN

The fundamental relationshipof stereology:

Page 12: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Recovering Sphere DistributionsRecovering Sphere Distributions

Group profiles and particles into n binsaccording to diameter

}1{),( niiN A }1{),( niiNV

Particle densities =

Profile densities =

Densities , are related by the values ijKANVN

Relative probabilities :

- a sphere in the j th histogram bin with diameter - a profile in the i th histogram bin with diameter

ijK

n

id

n

i

)1(

n

j

Page 13: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Recovering Sphere DistributionsRecovering Sphere Distributions

Note that the profile source is ambiguous

For the following examples, n = 4

Page 14: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Recovering Sphere DistributionsRecovering Sphere Distributions

How many profiles of the largest size?

)4(AN )4(VN44K

=

ijK = Probability that particle NV(j) exhibits profile NA(i)

Page 15: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Recovering Sphere DistributionsRecovering Sphere Distributions

How many profiles of the smallest size?

)1(AN )4(VN11K

= + + +12K 13K 14K)3(VN)2(VN)1(VN

= Probability that particle NV(j) exhibits profile NA(i) ijK

Page 16: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Recovering Sphere DistributionsRecovering Sphere Distributions

Putting it all together…

AN VNK

=

Page 17: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Recovering Sphere DistributionsRecovering Sphere Distributions

Some minor rearrangements…

= maxd KAN VN

njKn

iij /

1

Normalize probabilities for each column j:

= Maximum diametermaxd

Page 18: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Recovering Sphere DistributionsRecovering Sphere Distributions

VA KNdN max

For spheres, we can solve for K analytically:

0

)1(/1 2222 ijijnK ij

K is upper-triangular and invertible

for ij otherwise

AV NKdN 1

max

1 Solving for particle densities:

Page 19: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Other Particle TypesOther Particle Types

We cannot classify arbitrary particles by d/dmax

Instead, we choose to use max/ AA

Approach: Collect statistics for 2D profiles and 3D particles

Algorithm inputs:

+

Page 20: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Profile StatisticsProfile Statistics

Segment input image to obtain profile densities NA.

Bin profiles according to their area, max/ AA

Input Segmentation

Page 21: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Particle StatisticsParticle Statistics

• Polygon mesh : random orientation

• Render

Page 22: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Particle StatisticsParticle Statistics

Look at thousands of random slices to obtain H and K

Example probabilities of for simple particlesmax/ AA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

spherecubelong ellipsoidflat ellipsoid

A/Amax

pro

ba

bili

ty

Page 23: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Scale FactorScale Factor

• Scale factor s : to relate the size of particle P to the size of the particles in input image

– profile maximum area• : input image• : particle P

• Mean caliper diameter

Pmaximg /AAs

PmaxA

imgA

PHsH

Page 24: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Recovering Particle DistributionsRecovering Particle Distributions

Just like before, VA KNHN

Use NV to populate a synthetic volume.

AV NKH

N 11

Solving for the particle densities,

Page 25: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Managing Multiple Particle TypesManaging Multiple Particle Types

• particle type : i• mean caliper diameter :• representative matrix :• distribution :• probability that a particle

is type i : P( i )• total particle density :

iH

iK

ViN

i

ViiiA NKHN )(

i

ViiA NiPKHN ))((

ViV NN

Vi

ii NiPKH ))((

Ai

iiV NiPKHN1

))((

Page 26: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Reconstructing the VolumeReconstructing the Volume

• Particle Positions

• Color

• Adding Fine Detail

Page 27: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Particle Position - AnnealingParticle Position - Annealing

• Populate the volume with all of the particles, ignoring overlap

• Perform simulated annealing to resolve collision– Repeatedly searches for all collision

(in the x, y, z directions)– Relaxes particle positions to reduce

interpenetration

Page 28: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Recovering ColorRecovering Color

Select mean particle colors fromsegmented regions in the input image

Input Mean ColorsSyntheticVolume

Page 29: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Recovering NoiseRecovering NoiseHow can we replicate the noisy appearance of the input?

- =

Input Mean Colors Residual

The noise residual is less structured and responds well to

Heeger & Bergen’s method

Synthesized Residual

Page 30: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

without noise

Putting it all togetherPutting it all together

Input

Synthetic volume

Page 31: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Prior Work – RevisitedPrior Work – Revisited

Input Heeger & Bergen ’95 Our result

Page 32: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Results- Testing PrecisionResults- Testing Precision

Inputdistribution

Estimateddistribution

Page 33: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Result- ComparisonResult- Comparison

Page 34: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Collection of Particle ShapesCollection of Particle Shapes

• Can’t predict exact particle shapes

• Unable to count small profiles

• Limited to fewer profile observation

Calculations error

Page 35: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Results – Physical DataResults – Physical Data

PhysicalModel

Heeger &Bergen ’95

Our Method

Page 36: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

ResultsResultsInput Result

Page 37: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

ResultsResults

Input Result

Page 38: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

SummarySummary

• Particle distribution– Stereological techniques

• Color– Mean colors of segmented profiles

• Residual noise– Replicated using Heeger & Bergen ’95

Page 39: Stereological Techniques for Solid Textures Rob Jagnow MIT Julie Dorsey Yale University Holly Rushmeier Yale University

Future WorkFuture Work

• Automated particle construction

• Extend technique to other domains and anisotropic appearances

• Perceptual analysis of results