stellar neutrinos 2020 - arizona state...

39
Some New Results on Stellar Neutrinos Ebraheem Farag (ASU) Mainak Mukhopadhyay (ASU) Kelly Patton (Colby) Rob Farmer (Amsterdam) Morgan Taylor (ASU) Cecilia Lunardini (ASU) Kai Zuber (TU Dresden) fxt (asu) Texas A&M University-Commerce 03sep2020

Upload: others

Post on 03-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Some New Results on Stellar Neutrinos

Ebraheem Farag (ASU) Mainak Mukhopadhyay (ASU) Kelly Patton (Colby) Rob Farmer (Amsterdam) Morgan Taylor (ASU) Cecilia Lunardini (ASU) Kai Zuber (TU Dresden) fxt (asu)

Texas A&M University-Commerce 03sep2020

Page 2: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

1) Neutrino astronomy 2) Neutrino production in stars 3) MESA 4) Neutrino HR diagram 5) Probing the presupernova isotopic evolution 6) Identifying the presupernova progenitor 7) Low mass stars count too

38 Slides

Roadmap

Page 3: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Bob King, Sky & Telescope, 22Dec2019

Page 4: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Over the next decade, neutrino astronomy will probe the rich astrophysics of neutrino production in the sky.

Page 5: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Energy (keV)

Eve

nts

per

day

× 1

00

t ×

Nh

10–3

10–2

10–1

1

10 14C210Po210Bi85KrTotal t: P = 0. 7

11CPile-upExternal background

pp

7Be

CNO pep 8B

Nh

100 200 300 400 500 600 700 800 900

500 1,000 1,500 2,000 2,500

40

30

20

10

00 2 4

time (s)

KamiokandeIMBBaksan

ener

gy (M

eV)

6 8 10 12

Borexino Collaboration

IceCube Collaboration

In addition to the Sun, supernova 1987A,

and blazar TXS 0506+056,

Page 6: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

XENON dark matter projectJUNO aims to begin taking data in 2020.

Super-K with Gadolinium Test Facility

P

N

e+ a-ray

Gadolinium

Original detectable signal New signal

i

Super-Kamiokande with Gadolinium, Jiangmen Underground Neutrino Observatory, XENON and other experiments usher in a new generation of detectors designed to open new avenues for potentially observing currently undetected neutrinos.

Page 7: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

ABSTRACT

Supernova detection is a major objective of the Super-Kamiokande (SK) experiment. In the nextstage of SK (SK-Gd), gadolinium (Gd) sulfate will be added to the detector, which will improvethe ability of the detector to identify neutrons. A core-collapse supernova will be preceded by anincreasing flux of neutrinos and anti-neutrinos, from thermal and weak nuclear processes in the star,over a timescale of hours; some of which may be detected at SK-Gd. This could provide an earlywarning of an imminent core-collapse supernova, hours earlier than the detection of the neutrinosfrom core collapse. Electron anti-neutrino detection will rely on inverse beta decay events below theusual analysis energy threshold of SK, so Gd loading is vital to reduce backgrounds while maximisingdetection e!ciency. Assuming normal neutrino mass ordering, more than 200 events could be detectedin the final 12 hours before core collapse for a 15-25 solar mass star at around 200 pc, which isrepresentative of the nearest red supergiant to Earth, !-Ori (Betelgeuse). At a statistical false alarmrate of 1 per century, detection could be up to 10 hours before core collapse, and a pre-supernovastar could be detected by SK-Gd up to 600 pc away. A pre-supernova alert could be provided to theastrophysics community following gadolinium loading.

Sensitivity of Super-Kamiokande with Gadolinium

to Low Energy Anti-neutrinos from Pre-supernova Emission

C. Simpson et al, The Super-Kamiokande Collaboration

ApJ, Nov 2019

Page 8: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Celestial Equator b=0à

0.6 kpc 0.4 kpc

0.2 kpc

O,B,A K M Name (M!, kpc)

Spica (11,0.08)

12Peg(6,0.42)

_�Cyg(19,0.80)

5 Lac(5,0.51)

V424 Lac (7,0.63)

HR 8248(6,0.75)

HR 861(9,0.64)

V809 Cas (8,0.73)

HR 3692 (12,0.65)

145 CMa (8,0.70) VV Cep (11,0.59)

V381 Cep (12,0.63)

S Mon A (29,0.28) CE Tauri (14,0.33) S Mon B (21,0.28)

q Car (7,0.23) w Car (8,0.29)

NS Pup (10,0.32)

c�Oph(20,0.11) _�Lupi (10,0.14)

h�Vel(7,0.17)

Antares(11,0.17)

+x

Vernal Equinox_= 0 hr

¡�Peg(12,0.21)

c�Cep(10,0.26)

e�Del(6,0.63)

j�Cyg(8,0.28)

_�Ori(12,0.22)

`�Ori(21,0.26) a2 Vel

(9.0, 0.34)

k1 CMa (8,0.39)

m CMa(12,0.51)

Mukhopadhyay et al 2020

Page 9: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Let’s explore recent theoretical results that provide

New targets for current, forthcoming, and future generations of neutrino detectors.

New estimates of the stellar neutrino background signal.

New opportunities for nuclear experiments that can make sizable differences in stellar evolution.

Page 10: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Neutrino Production in Stars

Page 11: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Stars radiate energy by releasing photons from the stellar surface and neutrinos from the stellar interior.

�⌫ ' (E⌫/mec2)2 · 10�44 cm2

<latexit sha1_base64="lsmXRjW3HX8RJTN9sqF/AwQSsIw=">AAACLnicdVDLSgMxFM34tr7qY+cmWARdWGdqQXeKIrpUsCp02iGT3tZgkhmTjFCHfpEg/oouBBURd679AtNWweeBwLnn3MvNPWHMmTaue+/09Pb1DwwODWdGRsfGJ7KTU4c6ShSFEo14pI5DooEzCSXDDIfjWAERIYej8HSr7R+dg9IskgemGUNFkIZkdUaJsVKQ3fY1awgSpL5MWtgWAs7wwvZHvYxFAJhWC4vVAvZpLTLYc6vpUrFoe3HqK4GpaFULQTbn5d0O8P8kt/72snM1c/GyF2Rv/VpEEwHSUE60LntubCopUYZRDq2Mn2iICT0lDShbKokAXUk757bwvFVquB4p+6TBHfXrREqE1k0R2k5BzIn+6bXFv7xyYuprlZTJODEgaXdRPeHYRLidHa4xBdTwpiWEKmb/iukJUYQam3DGhuB+nvybfIZwWMh7xfzKvpvb2ERdDKFZNIcWkIdW0QbaRXuohCi6RDfoAT06186d8+Q8d1t7nI+ZafQNzus7uV2q4w==</latexit>

�� =8⇡

3

✓↵~cmec2

◆2

' 10�24 cm2

<latexit sha1_base64="WHhCbFpHnmGJq6/h8FMVeoaOy2M=">AAACXHicdVHLbtQwFHVCgemU0uEhNmyuGCGVBaMkrUQ3iAoWZVkkpq00noluPE5i1U6C7SANVn6Jj2HXDVJ/gR8onplW4nkkS0fn3Gvfe5w1UhgbRRdBeGvj9p27vc3+1r3t+zuDBw9PTN1qxseslrU+y9BwKSo+tsJKftZojiqT/DQ7f7f0Tz9zbURdfbSLhk8VFpXIBUPrpXRgqBGFwtTRApXCDl4DzTUydwC0EZ3b64BKnlvYhWuDomxKBFpmqIF1TqUc2CzpvK9FUVp4MUs8N0LxTxBHM/cy2feXgKNaAVPdLEkHw3gUrQD/J8M3Py6Pvj7+cnmcDr7Rec1axSvLJBoziaPGTh1qK5jkXZ+2hjfIzrHgE08rVNxM3SqcDp57ZQ55rf2pLKzUXzscKmMWKvOVCm1p/vSW4r+8SWvzg6kTVdNaXrH1Q3krwdawTBrmQnNm5cITZFr4WYGV6CO0/j/6PoToZuW/yU0IJ8ko3h/tfYiGh2/JGj3ylDwjuyQmr8gheU+OyZgwckGugl6wGXwPN8KtcHtdGgbXPY/Ibwif/AT9FbbP</latexit>

�⌫ =mu

⇢ · �⌫

�����' 3 · 1019cm ' 10pc ' 4 · 109R�

<latexit sha1_base64="2heOfWJKsobydDHiFk9PRWJGwN0=">AAACjXicdVHJbhMxGPYMWwlLw3Lj8osIiVPkoa0gFUsFh3IsiLSV4jDyeDyJVS9T24MUzLwNZx6GG8e+Ak+As5X9lyx9/hYv/1/UUjiP8bckvXDx0uUrG1c7167fuLnZvXX70JnGMj5kRhp7XFDHpdB86IWX/Li2nKpC8qPi5NVcP/rArRNGv/Ozmo8VnWhRCUZ9pPLuZyKjuaR5ILpp4RkQySsPfSCVpSwEYhWovGnbAMRODRBWGg/EiYlaZdooiMnUw6e4N1Ft57Lip7C1cmf4fcgGLSwOY+pcz/CSqtk5tf0zMoC36wPzbi/r40XB/0Hvxfez/S93P54d5N2vpDSsUVx7JqlzowzXfhyo9YJJ3nZI43hN2Qmd8FGEmiruxmHRzRYeRKaEyti4tIcF+2siUOXcTBXRqaifuj+1OfkvbdT46sk4CF03nmu2vKhqJHgD89FAKSxnXs4ioMyK+FZgUxrH4OMAO7EJeP3lv8G6CYeP+tl2f+sN7u29RMvaQPfQffQQZegx2kOv0QEaIpZ0EpwMkt10M91Jn6bPl9Y0WWXuoN8q3f8BAGrJBA==</latexit>

⌧⌫ ' R�/c ' 2 s

<latexit sha1_base64="InMffLZwEL+RRD+WcavU7yTvZ10=">AAACG3icdVC7SgNBFJ31GeMrPjqbwSBYxU0UtDNooaWKUSEbwuxkokPmsc7cFeKy/2HjL/gJNhaKWAkWlv6CX+AkMeDzwIUz59zL3HvCSHALvv/qDQwODY+MZsay4xOTU9O5mdkjq2NDWYVqoc1JSCwTXLEKcBDsJDKMyFCw47C13fGPL5ixXKtDaEesJsmp4k1OCTipnisFQOJ6Eqg4xYHlkp3jA/fUDQ0pXsG0L5ZwgJPASGzTei5fLPhd4P9JfvP9bedm/vJtr557DhqaxpIpoIJYWy36EdQSYoBTwdJsEFsWEdoip6zqqCKS2VrSvS3FS05p4KY2rhTgrvp1IiHS2rYMXackcGZ/eh3xL68aQ3OjlnAVxcAU7X3UjAUGjTtB4QY3jIJoO0Ko4W5XTM+IIRRcnFkXgt8/+Tfph3BUKhTXCqv7fr68hXrIoAW0iJZREa2jMtpFe6iCKLpCt+gePXjX3p336D31Wge8z5k59A3eyweXiqTq</latexit>

Page 12: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Weak reactions produce neutrinos by thermal processes

Log10 (thermal neutrino loss rate) erg g-1 s-1 for X(12C)=1

-10 -5 0 5 10 15Log

10 Density (g/cm 3)

7

7.5

8

8.5

9

9.5

10Lo

g 10 T

emp

erat

ure

(K)

-5

0

5

10

15

20

25

30

35

Pair neutrino

Photoneutrino

Plasmon

Bremsstrahlung

Reco

¡nuc = ¡ie+ + e- A�i��i

e-continuum A�e-bound + i��i

aplasmon A�i��i

e- + a A�e- + i��i

e- + ZA A�e- + ZA + i��i

Page 13: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Weak reactions produce neutrinos from β-processes

De-excitation: AZZ0

��! AZ + ⌫ + ⌫̄e

<latexit sha1_base64="wojmCTDLkH2jZP2zlEBwnd3ftHE=">AAACHnicdVDLSgMxFM34rPVVHzs3wSIIQpn6QHdWXeiygn3QTjtk0rQNzWSGJKPWYb7EjV/gP7hxoYjgSpf9Bb/AdGrB54F7OZxzL8k9js+oVKb5ZoyMjo1PTCamktMzs3PzqYXFovQCgUkBe8wTZQdJwignBUUVI2VfEOQ6jJSczlHfL50TIanHz1TXJzUXtThtUoyUluzUTv2gAqEFrUtBW22FhPAuYFipm5EWY28DWjzQPbQcJPo8somdSmczZgz4P0nvv/eOb5evenk79WI1PBy4hCvMkJTVrOmrWoiEopiRKGkFkvgId1CLVDXlyCWyFsbnRXBNKw3Y9IQurmCsft0IkStl13X0pItUW/70+uJfXjVQzb1aSLkfKMLx4KFmwKDyYD8r2KCCYMW6miAsqP4rxG0kEFY60aQOwRye/JsMQyhuZrLbma1TM507BAMkwApYBesgC3ZBDpyAPCgADK7BHXgAj8aNcW88Gc+D0RHjc2cJfIPx+gErV6R9</latexit>

Electron captures:

p+ e�W±��! n+ ⌫e

<latexit sha1_base64="gblH5u/3GT/oxTOMGa1RUElKvAs=">AAACFXicdVDLSgMxFM34rPVVHzs3wSIIapmqoDuLLnRZwT6g05ZMetuGZjJDklHr0J9w41+4duNCEbeCO5f9Bb/AtLXg80DgcM653NzjBpwpbdtv1sjo2PjEZGwqPj0zOzefWFjMKz+UFHLU574sukQBZwJymmkOxUAC8VwOBbd11PML5yAV88WZbgdQ9khDsDqjRBupmtgM8AaGyhbGDnYuJWs0NZHSv8BRoeIEXsfIApuII8IqVBPJdMruA/9Pkgfv3ePb5atutpp4dWo+DT0QmnKiVCltB7ocEakZ5dCJO6GCgNAWaUDJUEE8UOWof1UHrxmlhuu+NE9o3Fe/TkTEU6rtuSbpEd1UP72e+JdXCnV9vxwxEYQaBB0sqoccax/3KsI1JoFq3jaEUMnMXzFtEkmoNkXGTQn28OTfZFhCfjuV3k3tnNrJzCEaIIZW0CpaR2m0hzLoBGVRDlF0je7QA3q0bqx768l6HkRHrM+ZJfQN1ssHsjqhHQ==</latexit>

AZ + e�W±��! A(Z � 1) + ⌫e

<latexit sha1_base64="6y5yYUHNY103MtLj4td5lLc+vWQ=">AAACG3icdVDLSgMxFM34tr7qY+cmWARFLDNV0J2vhS4VrBU7bcmkd9rQTGZIMmod+h9u/AU/wY0LRVwJLlz6C36Baavg80DgcM653NzjRZwpbdsvVk9vX//A4NBwamR0bHwiPTl1pMJYUsjTkIfy2CMKOBOQ10xzOI4kkMDjUPAaO22/cApSsVAc6mYEpYDUBPMZJdpIlXSuvHWClzCUl7GL3XPJanVNpAzPcFIou1HQMnJ5a+Fk2Vk0MVfEFaikM07W7gD/TzIbb6+71zMXr/uV9JNbDWkcgNCUE6WKjh3pUkKkZpRDK+XGCiJCG6QGRUMFCUCVks5tLTxvlCr2Q2me0Lijfp1ISKBUM/BMMiC6rn56bfEvrxhrf72UMBHFGgTtLvJjjnWI20XhKpNANW8aQqhk5q+Y1okkVJs6U6YE+/Pk3+SzhKNc1lnNrhzYmc1t1MUQmkVzaAE5aA1toj20j/KIokt0g+7QvXVl3VoP1mM32mN9zEyjb7Ce3wE24aLc</latexit>

Positron captures: AZ + e+W±��! A(Z + 1) + ⌫̄e

<latexit sha1_base64="XkhhZHgsKPZ5sYkyZm1nzEvyg5o=">AAACJHicdVDLSgMxFM34tr7qY+cmWASlUGZUUHCh1YUuK1grdtqSSW/b0ExmSDJqHfoxblz6G25c+MCFG8Ff8AtMWwWfBwKHc87l5h4v5Exp2362+voHBoeGR0YTY+MTk1PJ6ZkjFUSSQp4GPJDHHlHAmYC8ZprDcSiB+B6Hgtfc7fiFU5CKBeJQt0Io+aQuWI1Roo1USW6Wsyc4jaGcxtjF7rlk9YYmUgZnOC6U3dBvG7mcXTpJO8vYBGPXIxK7ImpXoJJMORm7C/w/SW29ve5dz1285irJB7ca0MgHoSknShUdO9SlmEjNKId2wo0UhIQ2SR2KhgrigyrF3SPbeNEoVVwLpHlC4676dSImvlIt3zNJn+iG+ul1xL+8YqRrG6WYiTDSIGhvUS3iWAe40xiuMglU85YhhEpm/oppg0hCtek1YUqwP0/+TT5LOFrJOGuZ1QM7tb2DehhB82gBLSEHraNttI9yKI8oukQ36A7dW1fWrfVoPfWifdbHzCz6BuvlHXgHphs=</latexit>

n+ e+W±��! p+ ⌫̄e

<latexit sha1_base64="zH3fyC3ygAB/UAtJja2m5s/Kgbg=">AAACGnicdVDLSsNAFJ3Ud33Fx87NYBGEQklU0J2iC10qWCs0bZhMb9rBySTMTNQa+h1u/Ab/wI0LRdyJG5f+gl/gtFXweeDC4Zx7ufeeIOFMacd5sXIDg0PDI6Nj+fGJyalpe2b2SMWppFCmMY/lcUAUcCagrJnmcJxIIFHAoRKc7HT9yilIxWJxqNsJ1CLSFCxklGgj+bYrihjqRexh71yyZksTKeMznFXqXhJ1jJxgXMSZFxCJPZF2fPDtgltyesD/k8Lm2+vu9fzF675vP3mNmKYRCE05UarqOomuZURqRjl08l6qICH0hDShaqggEaha1nutg5eM0sBhLE0JjXvq14mMREq1o8B0RkS31E+vK/7lVVMdbtQyJpJUg6D9RWHKsY5xNyfcYBKo5m1DCJXM3Ippi0hCtUkzb0JwPl/+TT5DOFopuWul1QOnsLWN+hhFC2gRLSMXraMttIf2URlRdIlu0B26t66sW+vBeuy35qyPmTn0DdbzO25so7Y=</latexit>

Electron emission (β- decay): AZW±��! A(Z + 1) + e� + ⌫̄e

<latexit sha1_base64="TQhYt5x66NtITbQfpQh21Kq2Eog=">AAACInicdVDLSgMxFM34tr7qY+cmWARFLDMqqCutLnRZwVqx05ZMetuGZjJDklHr0G9x49q/cONCUVeCG3/BLzBtFXweuJfDOfeS3OOFnClt289WT29f/8Dg0HBiZHRsfCI5OXWkgkhSyNGAB/LYIwo4E5DTTHM4DiUQ3+OQ9xq7bT9/ClKxQBzqZghFn9QEqzJKtJHKyc1S5gRjF7vnktXqmkgZnOE4X3JDv+XiUmbhZMlZxEsYSsumx65HJHZF1CpDOZly0nYH+H+S2np73bueuXjNlpOPbiWgkQ9CU06UKjh2qIsxkZpRDq2EGykICW2QGhQMFcQHVYw7J7bwvFEquBpIU0Ljjvp1Iya+Uk3fM5M+0XX102uLf3mFSFc3ijETYaRB0O5D1YhjHeB2XrjCJFDNm4YQKpn5K6Z1IgnVJtWECcH+PPk3+QzhaCXtrKVXD+zU9g7qYgjNojm0gBy0jrbRPsqiHKLoEt2gO3RvXVm31oP11B3tsT52ptE3WC/vxz+lyQ==</latexit>

nW±��! p+ e� + ⌫̄e

<latexit sha1_base64="gNa0ydKfYV7qtQY8kr07zTF3qBg=">AAACHnicdVDJSgNBEO1xN25xuXkpDIIghokLelP0oEcFY4RMDD2dStKkp2fo7lHjkC/x4hf4D148KCJ40qO/4BfYSRRcHxQ83quiqp4fCa6N6744Pb19/QODQ8OpkdGx8Yn05NSRDmPFMM9CEapjn2oUXGLecCPwOFJIA19gwW/stP3CKSrNQ3lomhGWAlqTvMoZNVYqp9ckeOCdK16rG6pUeAZJ4cSLgpaVIYJFwJMlsFiExPOpAk/GrTKW05lc1u0A/ieZzbfX3euZi9f9cvrJq4QsDlAaJqjWxZwbmVJCleFMYCvlxRojyhq0hkVLJQ1Ql5LOey2Yt0oFqqGyJQ101K8TCQ20bga+7QyoqeufXlv8yyvGprpRSriMYoOSdRdVYwEmhHZWUOEKmRFNSyhT3N4KrE4VZcYmmrIhuJ8v/yafIRwtZ3Or2ZUDN7O1TboYIrNkjiyQHFknW2SP7JM8YeSS3JA7cu9cObfOg/PYbe1xPmamyTc4z+8OSKRg</latexit>

Positron emission (β+ decay): AZW±��! A(Z � 1) + e+ + ⌫e

<latexit sha1_base64="ryxyBJM13alSsbx8OkywkGZlX3c=">AAACHnicdVDLSgMxFM34tr7qY+cmWARFLDM+0J1WF7qsYK3YaUsmvW1DM5khyah16Je48Qv8BzcuFBFc6dJf8AtMWwWfB+7lcM69JPd4IWdK2/aL1dPb1z8wODScGBkdG59ITk4dqSCSFHI04IE89ogCzgTkNNMcjkMJxPc45L3GbtvPn4JULBCHuhlC0Sc1waqMEm2kcnK9lDnBGLvYPZesVtdEyuAM4zhfckO/ZfRSZuFk2VnESxhKS6a7IipDOZly0nYH+H+S2np73bueuXjNlpNPbiWgkQ9CU06UKjh2qIsxkZpRDq2EGykICW2QGhQMFcQHVYw757XwvFEquBpIU0Ljjvp1Iya+Uk3fM5M+0XX102uLf3mFSFc3izETYaRB0O5D1YhjHeB2VrjCJFDNm4YQKpn5K6Z1IgnVJtGECcH+PPk3+QzhaCXtrKVXD+zU9g7qYgjNojm0gBy0gbbRPsqiHKLoEt2gO3RvXVm31oP12B3tsT52ptE3WM/vY6ijWA==</latexit>

pW±��! n+ e+ + ⌫e

<latexit sha1_base64="2DmtlSs4g+UgrSvqYsQkLj55ysM=">AAACFnicdVDLSgNBEJz1bXzFx81LYxCEYNiooDdFD3pUMEbIxjA76SRDZmeXmVk1LvkKL36Fdy8eFPEq3jz6C36Bk0TBZ0FDUdVNd5cfCa6N6744ff0Dg0PDI6OpsfGJyan09MyRDmPFsMBCEapjn2oUXGLBcCPwOFJIA19g0W/udPziKSrNQ3loWhGWA1qXvMYZNVaqpJcjD7xzxesNQ5UKzyApnnhR0AYPQEIW8CQLFlnwZFzBSjqTz7ldwP8ks/n2uns9d/G6X0k/e9WQxQFKwwTVupR3I1NOqDKcCWynvFhjRFmT1rFkqaQB6nLSfasNi1apQi1UtqSBrvp1IqGB1q3At50BNQ390+uIf3ml2NQ2ygmXUWxQst6iWizAhNDJCKpcITOiZQllittbgTWooszYJFM2BPfz5d/kM4SjlVx+Lbd64Ga2tkkPI2SeLJAlkifrZIvskX1SIIxckhtyR+6dK+fWeXAee619zsfMLPkG5+kdNHmhRQ==</latexit>

Page 14: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

A Stellar Evolution Instrument

Page 15: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

The MESA source code is a set of software modules for stellar astrophysics that can be used on their own, or combined to solve the coupled equations governing 1D stellar evolution with an implicit finite volume scheme.

PTLR

1H3He4He12C14N16O

20Ne24Mg

Variables

Equ

atio

ns fo

r cel

l k

cell k-1 cell k cell k+1

d(structk)d(structk-1)

d(chemk)d(chemk-1)

d(chemk)d(chemk+1)

d(chemk)d(chemk)

d(chemk)d(structk)

d(structk)d(structk+1)

d(structk)d(structk)

d(structk)d(chemk)

Page 16: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

South 3DFLĆFOcean

South AtlanticOcean

North AtlanticOcean

North 3DFLĆFOcean

IndianOcean

MESA : Community of ~1000, Jan 2020

Josiah Schwab Evan Bauer

Rob Farmer

Warrick Ball

Anne Thoul

Bill Wolf

Pablo Marchant

Matteo CantielloRich Townsend Bill Paxton Lars BildstenFrank TimmesAaron Dotter

Radek Smolec

Adam Jermyn Meridith Joyce

Page 17: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Citations: 4,279

Citations to articlesthat cite MESA: 80,859

Larger Science Community

MESA

ImpactRadius Ā20

Cita

tions

0

275

550

825

1100

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

MESA I - Top 5 in 2011MESA II - Top 10 in 2013MESA III - Top 10 in 2015MESA IV - Top 15 in 2018MESA V - Top 25 in 2019

Data from SAO/NASA ADS

Page 18: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Pulsations:

Stars:

Pulsations:

Adipls

MESA

Support:

Support:

Cyberhub:

NuGrid

Nuclear:

StarLibNuclear:

AZURE

3D hydro:

Athena++

3D hydro:

FLASH

3D hydro:

Dedalus

MAESTRO

3D hydro:

PPMStar

3D hydro:

Phantom

Opacity:

Opacity:

3D hydro:

ASTROBEAROP

OPLIB

3D hydro:

Changa

3D hydro:

ENZO

GAMMA

PyMESA

VMESA

MESA-Docker

Support:

GCE:

Ports:

SYGMAYields:

YTVisualization:

emceeAnalysis:

OMEGA

GCE:

Support:

HYPATIAStars:

AstropyAstro:Stars:

JINABase

3D hydro:

3D hydro:

Isochrones:

GYRE

N-Body:Amuse

Spectra:

Spectra:Chemistry: Chemistry:

CLOUDY

CMFGENGrackle KROME

StarCrash

Education:

MESA-Web

Support:

NuDocker

Development:

MESA-Test

Stars:

Dstar

Nuclear:

JINAReaclib

Radiation:

STELLA

Pulsations:

RSP

Nuclear:

WeakLib

MI T

NSCL FRIB CASPAR SECAR St. George Z-Pinch Diamond Anvil

Laboratory Astrophysics

Telescopes

1D 3DMESA2HYDRO

GRMHD:

Einstein Toolkit

ASAS-SN ZTFLIGO Hubble NuSTARVRO LCOGaia SK-GdSDSS JWST TESS

Page 19: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Neutrino HR diagram

Page 20: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Solar Neutrino Fluxes

Component AGSS09 GS98 Observeda

!pp 6.01 5.98 6.05(1+0.003!0.011)

!Be 4.71 4.95 4.82(1+0.05!0.04)

!B 4.62 5.09 5.00(1 ± 0.03)

!N 2.25 2.91 ! 6.7

!O 1.67 2.21 ! 3.2

aNeutrino observations from the Borexino Collabo-ration (Bellini et al. 2011) as presented in Haxtonet al. (2013) and Villante et al. (2014). The scalesfor neutrino fluxes ! (in cm-2 s-1) are: 1010 (pp);109 (Be); 106 (B); 108 (N); and 108 (O).

Farag et al 2020

Lν,⊙ = 0.024 · Lγ,⊙ = 9.18 × 1031 erg/s

A MESA standard solar model

Page 21: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Farag et al 2020

The ~110 year old classic HR Diagram.

One doesn’t mess with a classic …

… but what if …

Page 22: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Farag et al 2020

A neutrino HR Diagram!

Page 23: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Farag et al 2020

When do photons or neutrinos dominate?

Neutrinos tend to dominate at the end of star’s life.

Page 24: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Farag et al 2020

When do thermal neutrino or β-processes dominate?

β-processes tend to dominate whenever H or He burns.

Page 25: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Probing the evolution of pre-supernova models

Page 26: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Si Burning

early warning,SN direction,progenitor physics

Accretion ćDYRU�PL[LQJ��QHXWURQL]DWLRQ��61�GLVWDQFH��PXOWL�'�HIIHFWV

Mantle Contraction Cooling

Core Cooling }}

}

HTXDWLRQ�RI�VWDWH��energy loss rates, PNS radius, GLIIXVLRQ�WLPH��BSM physics

i<Sphere Recession

16�YV��%+�IRUPDWLRQ��WUDQVSDUHQF\�WLPH��integrated losses, BSM physics

Fallback

1053

1052

1051

1050

1049

1048

1047

���2 0

7LPHSRVW�ERXQFH (s)

10�� 100 101 102 103

3UH�61 Main Signal /DWH�7LPH

/XPLQRVLW\��i

e (e

rg s��

)

Following Li, Roberts & Beacom,

2020

Page 27: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

The march to core-collapse.

1046

1048

1050

1052

1054

L! ! N

(s!

1)

O core

O shell

2nd O shell

Si core

Si shell

9.0

9.2

9.4

9.6

9.8

10.0

cLog

(T/K

)

O burning

Si burning

10!410!2100102104

!CC (hr)

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

Log(!c/g cm!3)

"x/"̄x pair"e/"̄e pair

"̄e #"e #

15M 15M

Patton et al 2017

Page 28: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

β-process rates that matter. Isotopes listed for neutrinos are mainly electron captures, those for antineutrinos are mainly β- decay. We encourage new experiments and theory!

0.06 s

ie

ie

53Fe - 17%55Fe - 15%55Co - 14%54Mn - 10%57Ni - 4%

56Mn - 43%52V - 11%57Mn - 8%62Co - 7%55Cr - 7%

p - 23%53Cr - 7%51V - 5%55Mn - 5%55Fe - 4%

58Mn - 15%54V - 9%63Co - 7%55Cr - 6%59Mn - 6%

46 s

0.5 hr

1.0 hr

2.0 hr

Si burning

O burning

15 M!

6.0

9.0

9.2

9.4

9.6

9.8

10.0

Log (lc / g cm-3)

Log

(Tc

/ g

cm-3

)

7.0 8.0

Ei�ă 2 Mev

9.0 10.0

0.1 hr

ie

ie

Patton et al 2017

Page 29: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Patton et al 2017

Pre-supernova fluxes at 1 kpc : as strong as solar neutrinos, larger than background geo or reactor neutrinos.

2 hr

2 hr

0.4 s

Energy (Mev)

solar ireactor i

geo i

30 M!, ie , NH, 1 kpc

Flu

x at

Ear

th (M

ev-1

s-1

cm

-2)

Energy (Mev)1.0 1.010.0 10.0

104

106

108

1010

0.4 s0.0 s

0.0 s

30 M!, ie , NH, 1 kpc

Page 30: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

“A prime example is the red supergiant Betelgeuse (α Orionis) … We find that for D=200 pc, a presupernova neutrino signal would be practically background-free — in energy windows that are realistic for detection — for several hours, and the window of observability can extend up to ∼10 hr.”

Patton et al 2017

Page 31: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Simpson et al 2019

“A presupernova alert could be provided to the gravitational wave and electromagnetic communities …”

Page 32: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Identifying the Progenitor

Page 33: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

n

ea

_ei p

X(i)pn

e+

Mukhopadhyay et al 2020

In a liquid scintillator detector:

Page 34: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

0

20

40

60

80

100

120

140

0

10

20

30

40

50

60

N

``

0 100 200 300 400 500

0 100 200 300 400 500

LS

68% C.L.

68% C.L.

90% C.L.

90% C.L.

LS-Li

310þ

310þ

310þ

310þ_

_

_

_

Standard liquid scintillators could localize the pre-supernova to ~ 70° after~100 detections.

Enhanced liquid scintillators could localize the pre-supernova to ~ 15° after ~100 detections.

Mukhopadhyay et al 2020

Page 35: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Antares 0.17 pc 15 M!

t-minus 4 hr

75à 60à

45à

30à

15à

-15à

-30à

-45à

-60à -75à

RA

Dec

210 180 150 120 90 60 30 0 330 300

Galactic PlaneLS, 65% CL

LS, 95% CL

LS-Li, 65% CL

LS-Li, 95% CL

D Ă 0.25 kpc0.25 <D Ă 0.6 kpc0.6 <D Ă 1.0 kpc

Antares 0.17 pc 15 M! 75à 60à

45à

30à

15à

-15à

-30à

-45à

-60à -75à

RA

Dec

180 150 120 90 60 30 0 330 300

t-minus 1 hr

Galactic PlaneLS, 65% CLLS, 95% CL

LS-Li, 65% CL

LS-Li, 95% CL

Antares 0.17 pc 15 M! 75à 60à

45à

30à

15à

-15à

-30à

-45à

-60à -75à

RA

180 150 120 90 60 30 0 330 300 Dec

LS-Li, 95% CL

t-minus 2 min

Galactic PlaneLS, 65% CL

LS, 95% CL

LS-Li, 65% CL

Mukhopadhyay et al 2020

Page 36: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Probing the evolution of low mass models

Page 37: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

The He-burning driven thermal pulses reach Lν ≃ 109 Lν,⊙ mostly from the 18F(,e+νe)18O reaction .

flux Φν,Thermal Pulse ≃ 1.7x107 (10 pc/d)2 cm-2 s-1 timescale ≃ 0.1 year average νe energy ≃ 0.3 MeV

Farag et al 2020

flux Φν,He flash ≃ 170 (10 pc/d)2 cm-2 s-1 timescale ≃ 3 days average νe energy ≃ 0.3 MeV

The He-flash reach Lν ≃ 104 Lν,⊙ mostly from the same reaction .

Page 38: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

3

GL 54.1

GL 358

Oort Cloud

Barnard StarAC+79 3888

Sirius

GL693

GL806A

GL682

Ross 128

Lalande21185

_-Cen A/B + Proxima

2

1

0-100 -50 50 100

Time (kyr)

Hel

ioce

ntr

ic D

ista

nce

(pc)

0

No good nearby targets for detections of the He-flash or thermal pulse.

After García-Sánchez et al 1999

Page 39: stellar neutrinos 2020 - Arizona State Universitycococubed.asu.edu/talks/stellar_neutrinos_2020.pdf · 2020. 4. 25. · JUNO aims to begin taking data in 2020. XENON dark matter project

Time for a Neutrino Cocktail