status of high-power laser development at stanford todd s. rutherford*, shailendhar saraf, karel...

13
Status of High-Power Laser Development at Stanford Todd S. Rutherford* , Shailendhar Saraf, Karel Urbanek, Justin Mansell, Eric K. Gustafson, and Robert L. Byer E. L. Ginzton Laboratory, Stanford University LIGO Science Collaboration Meeting Hanford Site, August 15-17 2000 *[email protected] LIGO-G000238-00-D

Upload: moris-greene

Post on 17-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Status of High-Power Laser Development at Stanford Todd S. Rutherford*, Shailendhar Saraf, Karel Urbanek, Justin Mansell, Eric K. Gustafson, and Robert

Status of High-Power Laser Development at Stanford

Todd S. Rutherford* , Shailendhar Saraf, Karel Urbanek, Justin Mansell, Eric K. Gustafson, and Robert L. Byer

E. L. Ginzton Laboratory, Stanford University

LIGO Science Collaboration Meeting

Hanford Site, August 15-17 2000

*[email protected]

Page 2: Status of High-Power Laser Development at Stanford Todd S. Rutherford*, Shailendhar Saraf, Karel Urbanek, Justin Mansell, Eric K. Gustafson, and Robert

Outline

• Review

• Progress since last LSC– Preliminary results on wavefront distortion– Installation of new diodes

• (Near) Future Work

Page 3: Status of High-Power Laser Development at Stanford Todd S. Rutherford*, Shailendhar Saraf, Karel Urbanek, Justin Mansell, Eric K. Gustafson, and Robert

Configuration

• Two zig-zag slab amplifiers– Brewster ends– 3:1 aspect ratio (width/thickness)

• About 900 W total pump power

• Use Lightwave 10 W as master oscillator

• Goal: 100 W, low M2

Page 4: Status of High-Power Laser Development at Stanford Todd S. Rutherford*, Shailendhar Saraf, Karel Urbanek, Justin Mansell, Eric K. Gustafson, and Robert

The Single -Triple Pass Amplifier

0

5

10

15

20

25

0 20 40 60 80 100

300 mW

1W

8.5 W

Out

put P

ower

% Pump

1.25 W

4.03 W

22.2 W

0

0.5

1

1.5

0 20 40 60 80 100

300 mW (goL)

8.5 W (gL)

Gai

n-L

engt

h P

rodu

ct, g

L

% Pump

G=4.17

G = 2.6

Pin = 8.5 W

Pout = 22.2 WM2=1.1

M2=1.3

Page 5: Status of High-Power Laser Development at Stanford Todd S. Rutherford*, Shailendhar Saraf, Karel Urbanek, Justin Mansell, Eric K. Gustafson, and Robert

The Double-Triple Pass Amplifier

50 cm ROC

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

300 mW

1W

Out

put P

ower

(W

)

% Pump Power (26 LD's)

7.4 W

3.7 W

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

300 mW (goL)

1W (gL)

Gai

n-L

engt

h P

rodu

ct ,

gL

% Pump Power (26 LD's)

G = 12.3

G = 7.5

Page 6: Status of High-Power Laser Development at Stanford Todd S. Rutherford*, Shailendhar Saraf, Karel Urbanek, Justin Mansell, Eric K. Gustafson, and Robert

Unsaturated Amplifier

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

1 x 3 Pass

2 x 3 Pass

Out

put P

ower

(W

)

% Pump Power

Unsaturated Amplifier Pin = 300 mW

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

1x3 Pass

2x3 Pass

Uns

atur

ated

Gai

n, g

oL

% Pump Power

Page 7: Status of High-Power Laser Development at Stanford Todd S. Rutherford*, Shailendhar Saraf, Karel Urbanek, Justin Mansell, Eric K. Gustafson, and Robert

8 m

Slab Wavefront

• Measured with Shack-Hartmann wavefront sensor

• Dominant distortion is tilt

• More detailed analysis in progress

Page 8: Status of High-Power Laser Development at Stanford Todd S. Rutherford*, Shailendhar Saraf, Karel Urbanek, Justin Mansell, Eric K. Gustafson, and Robert

2.25 m

Tilt Removed

Page 9: Status of High-Power Laser Development at Stanford Todd S. Rutherford*, Shailendhar Saraf, Karel Urbanek, Justin Mansell, Eric K. Gustafson, and Robert

Laser diode upgrade

Laser diodes• Manufacturer:

Coherent

• 30 W each

• 808 nm

• Fiber coupled– 400 m core

– 0.2 NA

• 24 units

• 720 W total

Power Supplies• Manufacturer:

Newport

• 100 A, 14 V– Drive 6 bars in series

• Temperature Control– PID controllers

– TEC drivers

• GPIB/RS-232

• Fault protection

Page 10: Status of High-Power Laser Development at Stanford Todd S. Rutherford*, Shailendhar Saraf, Karel Urbanek, Justin Mansell, Eric K. Gustafson, and Robert

Installation Complete

-Labview control of diode: -Current -Voltage -Temperature-Interlocks

Page 11: Status of High-Power Laser Development at Stanford Todd S. Rutherford*, Shailendhar Saraf, Karel Urbanek, Justin Mansell, Eric K. Gustafson, and Robert

Power Scaling Challenges

• Beam Quality– Difficult to model

• Distortions depend critically on slab boundary conditions

• RF Intensity noise– High circulating power in PMC(s)

– Requirements eased with DC readout

• Parasitic Oscillations• Depolarization

– Near edges only

• Temperature detuning

Page 12: Status of High-Power Laser Development at Stanford Todd S. Rutherford*, Shailendhar Saraf, Karel Urbanek, Justin Mansell, Eric K. Gustafson, and Robert

Depolarization

• Stress near edge of slab is not completely aligned with polarization

• Sensitive to fiber position and distribution

• 300 W pump ~ 15 % stress fracture limit0

0.01

0.02

0.03

0.04

0.05

50 100 150 200 250 300

Edge

Center

Dep

olar

izat

ion

Los

s

Pump power (W)

Page 13: Status of High-Power Laser Development at Stanford Todd S. Rutherford*, Shailendhar Saraf, Karel Urbanek, Justin Mansell, Eric K. Gustafson, and Robert

Future Work

• Calibrate Diodes (1 week)– Temperature for optimum absorption

– Power vs Current curves

• Assemble second amplifier head (2 days)– Machining finished

• Mount fiber clamp to second head (1 week)• Power tests of second head (2 weeks)• Begin amplification experiments