statistical/evolutionary models of power-laws in plasmas

54
Statistical/Evolutionary Models of Power-laws in Plasmas Ilan Roth Space Sciences, UC Berkeley Halkidiki GREECE June 2009 Modern Challenges in Nonlinear Plasma Physics

Upload: others

Post on 18-Nov-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Statistical/Evolutionary Models of Power-laws in Plasmas

Ilan Roth

Space Sciences, UC Berkeley

Halkidiki

GREECE

June 2009

Modern Challenges in Nonlinear Plasma Physics

Heavy Tails

- Statistics of Energization Processes

- Anomalous Transport/Diffusion

- Entropy of Super-diffusive Processes

BASICS: Ergodic, weakly interacting system

converges into Boltzmann-Gibbs statistics/function

THEREFORE: particles that interact stochastically with electromagnetic fields and perform Brownian motion in phase space, characterized by short-range deviation and short term microscopic memory will approach asymptotically a Gaussian.

Why is there an ubiquity of (broken) power laws?

Example - Solar/Heliospheric Electrons

Electrons propagating along heliospheric field lines to 1 AU

prompt/delayedElectrons propagating along coronal field lines

B

164 MHz NRH images

LASCO/SOHO

Relation between coronal and IP perturbations

Heliospheric Signatures

Injection of electrons into heliosphere

CME Maia, 2001

Energization - occurs behind the CME?

Acceleration Sites?

Type II signature

Post-flare, post-CME: Gradual electrons

Distinct delay between Type III and energetic electron injections

Impulsive

Gradual

gradual

impulsive

Electron Spectra

Yellow – flare site Black arrow – CME direction

Red – closed (stretched) magnetic field lines

Blue - open, in ecliptic plane

green – open, non-ecliptic

Wang, 2006

Post CME reconstruction

Yellow – flare site Black arrow – CME direction

Red – closed (stretched) magnetic field lines

Blue - open, in ecliptic plane green – open, non-ecliptic

CME

Characteristics of electron trajectory in the presence of (oblique) whistler waves

Statistics of Energization Processes- Anomalous Transport/Diffusion

- Entropy of Super-diffusive Processes

Statistical Analysis – Particle Distribution

Energization is determined by an increment of an independent, identically distributed (iid) random variable (in the language of statistical mathematics), with an assigned probability distribution.

Central Limit Theorem (CLT):

Sum of random variables with a finite variance will converge (weakly) to a normal or Gaussian distribution.

No Heavy Tail. Stable Distribution: addition of a large number of random variables preserves the shape of the distribution (infinitely divisible). Normal Distribution is an example of a Stable Distribution (“attractor distribution”).

Normal Diffusion:

Brownian (random walk) motion – CLT applies, if

a) distribution with finite moments (variance)

b) no long range interaction

c) short term memory - Markovian process

Anomalous Diffusion:

CLT does not hold in its regular form

Result: Sub-diffusion or extended tails

yprobabilitnormalthepreservesnConvolutio

cdcNYcbadbac

ondistributiinYdcXbXaXdc

bbNbXaaNaX

vrddistributeyidenticallnottindependenXX

dxxxXPNXx

)(

])(,[~;)(,

)(:,

])(,[~],)(,[~

,.)(,,

]2/)(exp[2

1)();,(~

2222

21

22

21

21

22

2

2

σμμ

σμσμ

σμπσ

σμ

+−+=+=

=+=+∃

−−

−−=≤ ∫∞−

This (stable) Distribution is not unique

Normal Distribution

Generalization: the sum of a large number of time-homogeneous, independent, identically distributed random variables with an infinite variance will tend to a symmetric (skew) stable Levy distribution.

∫<<2

1

)()( ,21

X

XN dxxLXZXP βα

(Gedanenko-Kolgomorov-Levy)

Lévy (α stable) Probability Distribution The stable distribution functions are completely

defined by their Characteristic Function

(Fourier Transform of a single event probability)

– Lévy exponent, c – scale, β - skewness

( Gaussian : α = 2; Lorentzian /Cauchy: α = 1)

α=2 – “phase transition”Normal law attracts all distributions with α > 2

])sgn()2/tan(1exp[)( )(^

λπαβλλ αα icl −−=

20 ≤≤ α

Probability density function of stable Levy distributions

α-exponent; μ-shift; c=σ-width/scale; β-skewness

As α decreases, longer tail and narrower core δ function.

Cauchy

Gaussian

Holtsmark

Cumulative Distribution Function

Gaussian

Cauchy

a. Pdf with Finite moments

P(ξ)~exp(-ξ 2)/(2π)1/2[1+ λ3H3(ξ)/(3! n1/2) + λ4H4(ξ)/(4! n)+…]

[Gram (1883) - Charlier (1905) - Edgeworth (1905)]

ξ=(r/σn1/2), λi cumulants normalized to the second moment σHn Hermite polynomials.

The Gaussian core of the distribution extends to very high values

Corrections to Gaussian

Procedure:

Characteristic function – Fourier of one event probability

Multiplication in Fourier space (instead of convolution)

Inverse Fourier integration

core

b. Leptokurtotic probability function (diverging high (>2) moments)

]2

sin2

)[cos2

exp()(:

)1(/2)(:

^

4

2/1

ηηηη

π

+−

=

+=

pFunctionsticCharacteri

rrpyprobabiliteventOne

πη

ηη

ηη

2)(

)](exp[log()(

)]([log

^^

^ deerP

pp

pnirn ∫=

=

dyeerDIntegralDawsonDGaussianr

nDOrD

nrr

dirrrn

r

dn

aeer

ryr

G

Gn

G

irn

=−−Φ

++′′′−+ΦΦ

−−−∂∂

++=Φ

0

)4(

2/12/1

223

3

2/1

32/

22

2

)(:;)(

...][)2

(62

)1()(~)(

})(exp[)2/{exp()62

1)(~

~2

...]1[)(

π

ηηπ

πηηηη

Cumulant expansion - log p(η) around η =0

....48/1123/2/)(log 432^

+++−= ηηηηp

]2

!)!12(43

211[

22~)( 2342 mmm x

mxxx

xD −+++ Σ∞

=

The edge of the central core ~ (log n)1/2

Due to limited interaction time, the observed distribution converges extremely slowly to a Gaussian and exhibits heavy tails.

]288/12/[)62

1)(~)(

3/1~)(

642/1

4

nn

xasxxD

Gn−− ++ΦΦ

∞>−−′′′

ξξπ

ξξ

c. Diverging second pdf momentCharacteristic function with α<2

ααζπ

αααπζ +

Γ=Φ 1

)/1()2/sin()( c ∞→ζfor

02/~)/exp()/1(~)(

)/12()!2()(1)(

2/322/1

)/12(

2

; →−Γ

Φ

+Γ−=Φ +Σ

ζαπσσζπα

αζ

αζπα

ζ

αα

αα

forc

cm

m m

m

m

And a Gaussian which narrows as α -->0 at the central core region

)/()exp()(

)exp()(

/1/1,

^

αα

ααα

αα

λλλ

λλ

nrlndcnrirL

cl

N−

=−=

−=

asymptotically

Gaussian

T-student

Truncated Cauchy

- Statistics of Energization Processes

Anomalous Transport/Diffusion- Entropy of Super-diffusive Processes

Random walk: continuum description FP

jumpsisotropicrrr

tPtPttP

ii

iii

;

);(21)(

21)(

1

11

Δ±=

+=Δ+

±

−+

Central limit theorem

),(),()(),(2

2

2

22

,0lim trP

rKtrP

rdtdr

ttrP

odtdr ∂∂

≡∂∂

=∂

→→

<r2> ~ tα ; α=1

)4/exp()4(),( 22/1 KtrKttrP −= −π

Continuum limit

Local in space and time

Phase space

Green propagator

Continuous time Random walk

Length of jump, waiting time

χ(r, t) = λ(r)τ(t)

Decoupled temporal/spatial memory

Probabilities

λ(r)dr phase space jump

τ(t)dt waiting time between jumps

Pj(t+dt)=∑n=1 [Aj,nPj-n(t)+ Bj,nPj+n (t)]

Non-locality in phase space

Generalization

),(

),(),(

tx

txvtxk

Ω

−=ω

ν

ν=n Waiting time

jump

Fourier-Laplace(Montroll-Weiss) ),(1

)(1),( 0

ukP

uuukP

χτ

−−

=

Probability P(r,t) - phase space position r at time t probability ζ(r,t’) of arrival at r at an earlier time t’ and staying there without a jump:“survival” probability φ(t)=1-∫dt τ(t);

P(r,t) = ∫dt’ ζ(r,t’) φ(t-t’)

Master equation

ζ (r,t)= ∫dr’ ∫dt’ ζ(r’,t’) χ(r-r’,t-t’) + Po(r) δ(t)

A. NORMAL Brownian motion - short memory, short range

τ(t) = [exp(-t/t0)/ t0]; Poissonian (finite) characteristic time

λ(r)=(4πσ )-1exp[-(r/2σ)2] finite jump length variance

F-L: τ(u)~ 1-ut0 and λ(k)~1-σ2 k2 as (k,u)->(0,0)

Inverse Fourier-Laplace diffusion limit; FP

2

1),(Kku

ukP+

=

Px

KtP

2

2

∂∂

=∂∂

B. SUBDIFFUSIVE PROCESS

Long-tailed waiting time pdf with finite jump variance

τ(t) = A (t/t0)-1-α , α<1; λ(r)=(4πσ )-1exp[-(r/2σ)2]

τ(u)~ 1-(ut0)α ; λ(k)~1-σ2k2 as (k,u)->(0,0)

αα

αα

σ tK

kuKukPukP

/

1/)(),(

2

20

=

+= −

),(),(2

2

trPr

KDt

trPt ∂

∂=

∂∂ −

αα1

Temporal Integration emphasizes the non-Markovian, long term memory

Solution converges to Brownian as α-->1

£{D-α P(r,t) } = u-α P(r,u)

Inverse F-L - Fractional FP

∫ −−

−Γ=

t

t tttGdttxGD

01'

''

0 )()(

)(1),( α

α

αRiemann-Liouville

Normal diffusive vs anomalously sub-diffusive

20 )(),(KkukPukP

+= 2

0

1/)(),(

kuKukPukP α

α−+

=

)(),()exp(),( 22 ααα tkKEtkPtKktkP −=−=

Exponential relaxation Stretched exponential

Single mode decay

1

0)]1([~

)1()()( −

=

−Γ+Γ

−=− ∑ α

αα

αα

α tn

ttEn

n

Mittag-Leffler

<r2> =[K/Γ(α+1)] tα , α<1

C. SUPERDIFFUSIVE PROCESS

Short memory waiting time - long jumps variance

Markovian time pdf Levy diverging jumps: μ<2

0

0

/

;)(),(

tK

kKukPukP

μμ

μμ

σ=

+=

μμμμ σσλτ k-1~)kexp(- (k) ;ut -1~ (u) 0 =

),(),( trPDKt

trPrμμ

∞−=∂

),1()}({)}({:

)()(

)(1)()( )(1'

'')(

nnzGkzGDFourier

zzzGdz

dzd

nzGDzGD

z

z

nn

nnn

zz

−∈−=

−−Γ==

∞−

∞−−−

−−∞−∞− ∫

μ

μ

μμ

μμμ

FF

Spatial Integration emphasizes the probability for a long range interaction

Solution converges to Brownian as μ-->2

Riess/Weyl fractional operator

Gauss walk Levy flight

Normal diffusive vs anomalously super-diffusive

20 )(),(KkukPukP

+= μμkKu

kPukP+

=)(),( 0

)exp(),()exp(),( 2 tkKtkPtKktkP μμ−=−=

Exponential relaxation Extended tail

Symmetric Levy

Single mode decay

Solution: Mellin Transform

∫∞

−==0

1)()()( ]Μ[ dtttFsFtF s

∫∞

−−=Γ0

1)( dttes st

Resulting in a set of Γ functions

qqr

qppqr t

qDt

qpptD −−

−Γ=⇒⇒

−+Γ+Γ

=)1(

11)1(

)1(00

]1),([)(}),),(({ stFssptFL −Γ= MM

Gamma function – holomorphic with simple poles at all the non-positive integers; the residue at -n is (-1)n/n!

dszsasb

sasb

izHzH s

p

niii

q

miii

n

iii

m

iii

ab

mnpq

∏∏

∏∏∫

+=+=

==

−Γ+−Γ

−−Γ−Γ==

11

11

C

),(),(

)()1(

)1()(

21];[)(

αβ

αβ

παβ

Alternating signs – slow convergence

Series expansion with residue (-1)/l! at the poles bk-βks=-l, l=0,...

k

k lb

k

l

p

ni k

kii

q

mi k

kii

n

i k

kii

m

ki k

kii

l

m

k

ab

mnpq bl

zlbalbb

lbalbbzH

βαβ

βα

ββ

βα

ββ

)(

11

1,1

01

),(),( !

)1(

])([])(1[

])(1[])([];[

+

+=+=

=≠=∞

==

−+

−Γ+

+−Γ

++−Γ

+−Γ

=

∏∏

∏∏∑∑

αj,βj >0; aj,bj –complex; roots of (a, α)/ (b,β ) left/right of C

Fox (H) : generalized Mellin-Barnes (Meijer G) Functions

])/([)(),(/1/1 μ

μμ KtrLKttrP −=

s

Css

ssds

rH

rtrP ξ

μ

μμ

ξμ

μ

)1()2

(

)()1(1]|[1),( )2/1,1)(/1,1(

)2/1,1)(1,1(1122

−ΓΓ

Γ−Γ== ∫

Roots at s/μ=-m; ∑∞

=+

−−−ΓΓ

=0

1~!)1(

)2/()(1),(

m

mm

rKt

mmm

rtrP μ

μξμμ

μ

Explicit solution of the FFPE

μμξ /1)( tKr

=

poles

Slow convergence

General: Long waiting times and large jumps

),(),( 1 trPr

KDt

trPt μ

μμα

α

∂∂

=∂

∂ −

μα /2 tr >=<

- Statistics of Energization Processes

- Anomalous Transport/Diffusion

Entropy of Super-diffusive processes

*Thermodynamic properties - from microscopic states

*System in contact with a large reservoir

*Short temporal/spatial interaction – random jumps p(r)

Boltzmann-Gibbs-Shannon entropy-extensive ~system size

∫−== drrprpSSBG )(ln)(1

Constrains:

Variational Optimization; β-Lagrange multiplier

∞<=>=<= ∫∫ 222 )(;1)( σdrrprrdrrp

)2/(1;)exp()(

)exp()( 212

1

2

1 2 σββββ

β==

−=

−= −

∫T

dre

rZ

rrpr

Gaussian – attractor in distribution space

Long range interaction makes the entropy non-extensive

formation of tails in the distribution.

q-statistics/entropy (Tsallis):

Optimization of Sq with q-expectation constraint

and β as Lagrange multiplier leads to heavy tail distributions

1)1/(])(1[ 1 →=→∫ −−= qasSSqdrrqpqS BG

)exp(/])1(1[)( 2)1/(12 rZrqrp qq

q βπβ

β −→−−= −

q 1

drrprr q)]([22 ∫>=<

∫ −

−=

−==⇒⇒−+= −

)(exp)(exp

)()(exp

)(])1(1[2

22)1/(1

rdrr

Zr

rprqeq

q

q

qq

qrq β

βββ

1<q<3 - Student t distribution 2/)1(2

)1(]2/[]2/)1[()( +−+

Γ+Γ

= k

kr

kkkrfπ

kkq

++

=13

qxpdxx )(2∫

Converges to Gaussian for q=1.

Converges to Cauchy for q=2

Variance – finite for q < 5/3 , diverges for 5/3 <q <3

q-variance: finite for q < 3,

drrqrqrpqq

q)1(

1)1(

1

])1(1[/])1(1[)( 22 −−

−−−−= ∫ ββ

3<<∞ q

33/5:])/[(]/[),(

20);1/()3(..~)(

/12/1/12/1

)1/(2

<<=

<<−−=−−

qrNLNNrp

qqeirrp

q

qq

αα

α ββ

αα

q-entropy converges to stable laws (distributions)

“Phase Transition” at q=5/3 (α=2)

Comparison with the data allows to assess a) the validity of the single event probability

density function

b) the relative importance of the different expansion terms – power law transition

c) the “duration” of the interaction

One-event Gradual probability

α=0.5-1.0 (Lévy)

with a truncated Levy index α

at the range of Holtsmark-Cauchy

One-event Impulsive probability

with an incomplete asymptotic Gaussian evolution

-------------------------------------------------

Electron Spectra)1(

)( 4EAEp+

=

0.25.1;)1(

)( −=+

= δδEAEp

O

O

oo

SUMMARY

ΕΠΙΛΟΓΟΣDistribution function of electrons and ions in space plasmas due to random, resonant interactions with electromagnetic turbulence displays numerous characteristic forms, combining Gaussians with (broken) power laws. The basic single event interaction probability determines the asymptotic distribution with a phase transition at the index of the characteristic function α=2, while the global interaction time determines the observed non-asymptotic distribution. The distribution function of the injected particles may be construed via general arguments of stochastic processes, and parameterized via non-extensive entropy.