state of the art of thermal treatment of waste and .... b_bilitewski.pdf · state of the art of...

39
State of the Art of Thermal Treatment of Waste and Perspectives Prof. Dr.-Ing. habil. Dr. h. c. Bernd Bilitewski Rio de Janeiro, 9. Nov. 2011 Fakultät Forst-, Geo- und Hydrowissenschaften, Fachrichtung Wasserwesen, Institut für Abfallwirtschaft und Altlasten, Lehrstuhl für Abfallwirtschaft

Upload: buiphuc

Post on 14-Dec-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

State of the Art of Thermal Treatment of Waste and

Perspectives

Prof. Dr.-Ing. habil. Dr. h. c. Bernd Bilitewski

Rio de Janeiro, 9. Nov. 2011

Fakultät Forst-, Geo- und Hydrowissenschaften, Fachrichtung Wasserwesen,

Institut für Abfallwirtschaft und Altlasten, Lehrstuhl für Abfallwirtschaft

Introduction

Pyrolysis

Gasification

Aim of Incineration

- Security of hygienic problems and sink for hazardous

components

- Energy production

- CO2 - reduction

Conclusion

Content

Introduction

Folie 4

Incineration

Drying

Degasification

Gasification

Incineration

Gasification

Drying

Degasification

Gasification

Degasification Pyrolysis

Drying

Degasification

Process: Step:

I

II III

IV

"Pyrolysis"

Drying

Drying

Basics

Folie 5

Thermal Processes

Drying Pyrolysis Gasification Incineration

CxHyOz, (N, S), Ash

CmHnOk, (N, S), Ash

C (N, S), Ash

H2O

100°C < 250°C 500 – 900°C 600 – 1300°C

Heat Heat Air, CO2 , O2,

steam Air, O2

λ = 0 λ = 0 λ = 0,2 – 0,5 λ > 1

CO, CH4, CxHy CO2 ,H2O, NHy

CN, Char Pyrolysis oel

CO, H2, CO2 ,H2O CH4, CxHy, Tar, NHy, NOx H2S, COS,

Heat CO2, H2O CO, CxHy, NOx, SOx

Ash

Pyrolysis

Folie 7

CnHm x CH 4 + y H2 + z C

C + CO2 2 CO (Generatorgas)

CH4 + H2O CO + 3 H 2 (Synthesegas)

C + H2O CO + H 2 (Wassergas)

3 C6H10O5 8 H 2O + C6H8O + 2 CO + 2 CO 2 + CH4 + H2 + 7 C

Zellulose

Reactions for an endothermic process

Pyrolysis

Folie 8

Pyrolysis plant in Burgau since 1984

Folie 9

200 300 400 500 600 700 800 900 1.000

Pyrolysis-final temperature [°C]

100

200

300

400

500

600

700

800

900

1.000

prod

ucts

[g/k

g w

aste

]

Pyrolysis gas

Tar-Oel condensat

Water, suspend solids

Solid residue

Material balance of pyrolysis of household waste in relation to the final temperature

Gasification

Folie 11

Main reactions of gasification process

Gas-Solid-Reactions ∆ HR [kJ/mol] C + O2 CO2 – 393

C + 0,5O2 CO – 110 C + H2O CO + H2 + 132 C + CO2 2CO + 173 C + 2H2 CH4 – 75 Gas-Gas-Reactions CO + H2O CO2 + H2 – 41 CO + 3H2 CH4 + H2O – 206

CO + 0,5O2 CO2 – 283 H2 + 0,5O2 H2O – 286 Forming of N-, S- und halogen compounds As well as tars

N2 CO2 CH4

H2

C2+ CO

autotherm gasification

allotherm gasification H2

CO2 C2+ CH4

CO

Products

Folie 13

Presse

Restmüll

Gas

Sauerstoff

Sauerstoff

Gas

Sauer-

stoff

Schmelze

Granulat

Prozeß-

wasser

Wasser-

dampf

Additive

Schwermetallschlamm,

Kalziumsulfat, Salz

Wasser Wasser NaOH Alkazid Heat Wärme,

elektrische

Energie Abgas

Luft

Pyrolysis

Homogenisation Reacto r

High temperatur reactor

reaktor

saure

Wäsche

basische

Wäsche

Konden-

sations-

kühler

Aktiv-

kohle-

filter

Abwasser-

aufbereitung

Puf-fer

Gas-

motor

Input

Output

Output

Output

Input

Quenche

Thermoselect

Folie 14

Energy balance for Thermoselect

Gas 325kWh/Mg

Waste 2780 kWh/Mg

Plant use; losses 1190 kWh/Mg

Flue gas losses 345 kWh/Mg

Heat use 235 kWh/Mg

Heat 685 kWh/Mg

Electricity use 275 kWh/Mg

Electricity 375 kWh/Mg

Folie 15

BGL-Gasifier at SVZ

Folie 16

Material and energy balance of waste plastic

Folie 17

Aim of Incineration

- Security of hygienic problems and sink for hazardous components

Folie 18

Deca brominated biphenyl

Poly brominated Diphenylether (PBDE)

Tetra brominated bi-phenol A

Isomer of Hex brominated cyclododecan

Flame-retardant Chemicals

Folie 19

Hazardous Components in WEEE

Heavy metal (Cd, Cr, Hg, Pb, etc.)

Organic Compounds

Brominated flame retardant

Source: Chancerel (2007)

Folie 20

1 Bi-phenol A; 2 4-tert-Octylphenol; 3 4-Nonylphenol; 4 Pentachlorophenol; 5 TMDD; Graphic: NLM

Endocrine disrupting compounds

Folie 21

Concentration of BPA and NP in waste paper from Dresden (mg/kg) [Gehring et al., 2005]

0,0

1,0

2,0

3,0

4,0

5,0

6,0

AltP7 AltP1 AltP5 AltP6 AltP2 AltP3 AltP4

Kon

zent

ratio

n (m

g · k

g-1 T

R)

BPANP

Verpackung Graphisches Papier

0,0

1,0

2,0

3,0

4,0

5,0

6,0

AltP7 AltP1 AltP5 AltP6 AltP2 AltP3 AltP4

Kon

zent

ratio

n (m

g · k

g-1 T

R)

BPANP

Verpackung Graphisches PapierPackaging Graphical Paper

Recycling toilet paper from Germany, Australia and China contaminated with 2,4,7,9-Tetramethyl-5-decin-4,7-diol (TMDD) Biphenyl A, and 4-Nonylphenol (Gehring, Vogel, Bilitewski 2009)

0

10

20

30

40

50

60

70

80

90

100

DE a DE b DE c DE d AU a AU b AU c AU d CN a CN b CN c CN d

Konz

entra

tion

(mg/

kg)

NPBPATMDD

Deutschland

Australien

China

0

10

20

30

40

50

60

70

80

90

100

DE a DE b DE c DE d AU a AU b AU c AU d CN a CN b CN c CN d

Konz

entra

tion

(mg/

kg)

NPBPATMDD

Deutschland

Australien

China

Germany

Australia

China

Folie 23

Main reactions of incineration

Gas-solid-reactions ∆ HR [kJ/mol] C + O2 CO2 – 393

C + 0,5O2 CO – 110 C + CO2 2CO + 173 Gas-Gas-reactions CO + 0,5O2 CO2 – 283 H2 + 0,5O2 H2O – 286 Forming of N-, S- und halogen- compounds

O2 H2O N2

Flue gas

Waste incineration systems

grate firing stationary fluidised bed firing

Folie 26

Folie 28

Folie 29

Technical Data

Energy input 24.2 MW

Annual through-put 50,000 Mg

Incineration technology Rotary kiln

Incineration temperature 950-1,200°C

Temperatue in the secondary

Combustion chamber > 1,100°C

Flue gas dwelling time > 2 sec.

Steam generation 28 Mg/h

Power generation Max. 4.5 MW

Flue gas cleaning 7-stage wet-dry process

Folie 30

Material flow of hazardous compounds of an incineration plant of municipal solid waste

(Reimann, D.O )

Waste Input

Hazardous Compounds

Anorganic Cl, S, F

∑ Heavy metals

Organic Dioxine, etc.

Incineration

100 % 100 % 100 %

11,5 kg/Mg 2,65 kg/Mg 30 kg/Mg

Anorganic

∑ Heavy metals

Organic

Hazardous Compounds and Slag

41 % 77 % <19 %

Energy (vessel)

Flue Gas Cleaning

Clear Flue Gas

Anorganic

∑ Heavy metals

Organic

0,15 % 0,007 % 0,07 %

Residuals from flue gas cleaning system

Anorganic

∑ Heavy metals

Organic

59 %

23%

45%

Folie 31

Aim of Incineration

- Energy production

Folie 32

MSWI - state of the art

• > 90 % grate firing systems • electric net energy efficiency around 20 % (up to 30 %) • steam parameters app. 400 °C, 40 bar • Gate fees 80 – 160 €/Mg

Folie 33

Energy Input

Incineration

100 %

3 (2-4) MWh/Mg

Energy Loses by Slag, Radiation, etc.

Energy (vessel)

Flue Gas Cleaning

Energy Losses Flue Gas

18% (9-25%) Energy in

form of steam

82 % (75-91%)

15,4% electricity (exported)

23,1% district heating

1,7% hot water (exported)

3%

External Energy

Figure 9: Energy balance of an incineration plant of municipal solid waste (Reimann, D.O )

3% (1-4%)

Folie 34

Brutto- efficiency

corresponding to R = 0,6

0%

5%

10%

15%

20%

25%

30%

Incineration of landfill gas MBT and RDF Gasification Typical

WTE Optimised WTE

Effic

ienc

y of

ele

ctric

pow

er p

rodu

ctio

n (n

etto

/ br

utto

)

Electr. Brutto-efficiency

(produced)

Electr. Netto-efficiency

(exported)

Comparison of Wastemanagement Concepts (Oliver Gohlke MARTIN GmbH)

40 bar 74 bar 380 °C 480°C λ 1,8 λ 1,4

TBO 200 135 °C

w

p

ExxE

R97.0

6.21 =

Aim of Incineration - CO2 - reduction

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Bio

gene

r K

ohle

nsto

ffant

eil

Sortieranalysen

Biogenic C in residual waste measured by fraction specific sorting at the IAA of TU Dresden

Saving of CO2-emissions of WFD

Average 67,5 % biogenic C in residual waste

Quelle: UBA 2006

CO2 – Reduction in Germany

Conclusion

Folie 39

Thank you for your attention!

Institut für Abfallwirtschaft und Altlasten

Tel.: 03501-530021 Mail :[email protected] Web: www.tu-dresden.de/fghhiaa/

Vielen Dank für Ihre Aufmerksamkeit!