star-forming galaxies at high redshift · 2019. 7. 19. · star-forming galaxies at high redshift...

37
Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen Mullard Space Science Laboratory Dept. Space & Climate Physics University College London [email protected] Collaborators Kinwah Wu (MSSL), Xiangyu Jin (McGill), Pooja Surajbali (MPIK), Noriko Kataoka (Kyoto SU), Idunn Jacobsen (MSSL), Suetyi Chan (Nanjing), Brian Yu (MSSL) IPMU, Tokyo – July 2019 HST and ALMA image of MACS1149-JD1 (z=9.11) – NASA/ESA, Hashimoto+ 2018

Upload: others

Post on 17-Oct-2020

2 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays

Ellis OwenMullard Space Science Laboratory Dept. Space & Climate PhysicsUniversity College London

[email protected]

CollaboratorsKinwah Wu (MSSL), Xiangyu Jin (McGill),Pooja Surajbali (MPIK), Noriko Kataoka (Kyoto SU),Idunn Jacobsen (MSSL), Suetyi Chan (Nanjing),Brian Yu (MSSL)

IPMU, Tokyo – July 2019

HST and ALMA image of MACS1149-JD1 (z=9.11) – NASA/ESA, Hashimoto+ 2018

Page 2: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Outline

• Star-forming galaxies in the Universe• Cosmic rays in star-forming galaxies• Particle propagation• Energy deposition and heating by particles and radiation• Implications for star-formation and feedback• Summary

2

Page 3: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Star-forming Galaxies in the Universe

Image of simulated Lyman-alpha emission around a high redshift group of protogalaxies – credit: Geach et al.

Page 4: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Local Starbursts

4

Arp 220

NASA/ESA 2008 ESO 2010

NGC 253

NASA/ESA 2006

RSF

RSN

M 82

0.1 yr�1 4 yr�1 0.1 yr�1

See e.g. SN Rates: Fenech+2010, Lenc & Tingay 2006, Lonsdale+2006; SF Rate: Varenius+2016, Schreiber+2003, Bolatto+2013

⇠ 220 M� yr�1 ⇠ 10 M� yr�1⇠ 10 M� yr�1

Page 5: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

High-redshift starbursts (z~6+)

• Low mass, high SF rates– 10$M⨀

– 10s − 100sM⨀yr,-

– SF efficiencies ~ tens of %

• Some known to host Lyman-⍺haloes

– Multi-phase CGM…

• Simulation work suggests possibility of filamentary inflows of gas (cf. works by Keres, Dekel, Birnboim…)

EGSY8p7MACS1149-JD1

GN-z11 EGS-zs8-1

MACS1149-JD1 (HST/ALMA) – NASA/ESA, Hashimoto+ 2018EGSY8p7 (Hubble/Spitzer) – NASA, Labbe+ 2015

GN-z11 (HST) – NASA, Oesch+ 2015 EGSY-zs8-1(Hubble/Spitzer) – NASA/ESA, Oesch & Momcheva 2015

5

Page 6: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

The high-redshift CGM environment

6Figure based on Tumlinson+2017

Outflows

Cold inflows(operate mainly at high-redshift)

Birnboim + Dekel 2003; Keres+2005; Dekel 2009

ISM

Page 7: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Cosmic rays in star-forming galaxies

Image credit: Crab Nebula, NASA, ESA 2005

Page 8: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Knee

Knee

Ankle

Cosmic rays in the Milky Way

8Adapted from Gaisser 2007

Page 9: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Starbursts as cosmic ray factories

• Hillas criterion

• Cosmic rays sources– Galactic (internal) in orange

9

Emax

qBR

Fig. adapted from Owen 2019 (PhD thesis)See also Kotera & Olinto 2011; Hillas 1984

10-10

10-5

100

105

1010

1015

105 1010 1015 1020 1025

rsys/cm

!/G

Neutron stars

White dwarfs

AGN

GRBs

AGN jets

ISM hot spots

IGM shocksSupernova remnants

Page 10: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Cosmic ray acceleration

10

• Shocks, e.g. SNR– First order Fermi acceleration

• Each pass through the shock increases the energy

• After n crossings, energy is E = E0h⇠in

Magnetic shock

Downstream Upstream

Page 11: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Cosmic ray acceleration

11

• Some particles will escape after a crossing – take P as probability of remain, so number remaining after each crossing

• Eliminate n and rearrange

• Result is CRs accelerated to high energies, ~GeV and above, following a power-law

N = N0Pn

N

N0=

✓E

E0

◆ log Plogh⇠i

=

✓E

E0

◆��

� ⇡ 2.1

Page 12: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Cosmic ray interactions

12

+ pion multiplicities at higher energies

p+ � ! p+ e+ + e� .

p+ � ! �+ !(p+ ⇡0 ! p+ 2�

n+ ⇡+ ! n+ µ+ + ⌫µ

n+ e+ + ⌫e + ⌫̄µ + ⌫µ

Photopion Interaction

with radiation fields (p𝛄)

Photopair Interaction

Interaction by particles scattering off ambient photons (starlight, CMB…)

Page 13: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

p+ p !

8>>>>>><

>>>>>>:

p+�+ !

8><

>:

p+ p+ ⇡0

p+ p+ ⇡+

p+ n+ ⇡+

n+�++ !(n+ p+ ⇡+

n+ n+ 2(⇡+)

Cosmic ray interactions

13

+ pion multiplicities at higher energies

Neutron and photon interactions produce pions

Pions decay to photons, muons, neutrinos, electrons, positrons,

antineutrinosn+ � ! ⇡’s ⇡ ! �, µ, e, ⌫ . . .

with matter (pp)

Page 14: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Cosmic ray interactions

14

CMB & cosmological

losses

Interactions with stellar radiation

fields

Interactions with typical ISM density fields Adapted from Owen+ 2018 (1808.07837)

Page 15: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Particle propagation

Image credit: M25 Motorway, Carillon UK Transport

Page 16: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

The transport equation (hadrons)

16

• The transport equation for protons (cooling/momentum diffusion assumed negligible)

– Diffusion dominated, i.e. 𝒗 = 0

– Advection dominated, i.e. 𝐷 𝐸, 𝐱 = 0 10-10

10-5

100

105

1010

1015

105 1010 1015 1020 1025

rsys/cm

!/G

Neutron stars

White dwarfs

AGN

GRBs

AGN jets

ISM hot spots

IGM shocksSupernova remnants

@n

@t= r · [D(E,x)rn] +

@

@E[b(E, r)n]�r · [vn] +Q(E,x)� S(E,x)

Page 17: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

The diffusion zone (‘stationary’ ISM)

17M82 in H⍺ (WIYN) and optical (HST)

Smith+ 2005

@n

@t= r · [D(E,x)rn] +

@

@E[b(E, r)n]�r · [vn] +Q(E,x)� S(E,x)

Page 18: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

The diffusion zone (‘stationary’ ISM)

• Approximate ISM as a sphere• Absorption depends on

– density of CRs– density of ISM gas – interaction cross section (dominated by pp process)

• CR injection as a BC (for now) – restate problem as individual linearly independent events (t’ since inj. event)

18

@n

@t=

1

r2@

@r

r2D(E, r)

@n

@r

�� cn �̂p⇡ nISM

@n

@t= r · [D(E,x)rn] +

@

@E[b(E, r)n]�r · [vn] +Q(E,x)� S(E,x)

n =

n0

[4⇡D(E, r0)t0]3/2exp

(�Z t0

0cdt �̂p⇡ nISM

)exp

⇢� r02

4D(E, r0)t0

Page 19: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

The diffusion zone (‘stationary’ ISM)

19

• Solution for steady-state from continuous injection from single source (time integral)

• Numerically convolve with a source ensemble (MC distribution)– Follows ISM gas profile

x

x

xx

x x

xx

xx

x x

xxx

x

x

xx

x

x

x

x

Page 20: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

The diffusion zone (‘stationary’ ISM)

20

10�1 100 101 102

r/kpc

10�27

10�26

10�25

10�24

10�23

10�22

10�21

E·d

NdE

dV/e

rg·c

m�

3 eV

�1

• Solution for steady-state from continuous injection from single source (time integral)

• Numerically convolve with a source ensemble (MC distribution)– Follows ISM gas profile

Page 21: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Secondary electrons

21

pp !�⇡0,⇡+,⇡�

@ne

@t= r · [D(E,x)rne] +

@

@E[b(E, r)ne]�r · [vne] +Qe(E,x)� Se(E,x)

• Injection by the pp attenuation process

⇡+ ! e+ + ⌫e + ⌫̄µ + ⌫µ

⇡� ! e� + ⌫̄e + ⌫µ + ⌫̄µ

• Transport equation (electrons)

– Negligible advection– No absorption– Diffusion coefficient same as for protons (depends on charge)

Page 22: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Cosmic ray distribution in ‘stationary’ ISM

22

10�1 100 101 102

r/kpc

10�27

10�26

10�25

10�24

10�23

10�22

10�21

E·d

NdE

dV/e

rg·c

m�

3 eV

�1

• Electrons calculated for each proton injection diffusion profile (MC distribution)

• Then convolved across proton source distribution (i.e. the SN events)

Page 23: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

The advection zone (outflows)

23M82 in H⍺ (WIYN) and optical (HST)

Smith+ 2005

@n

@t= r · [D(E,x)rn] +

@

@E[b(E, r)n]�r · [vn] +Q(E,x)� S(E,x)

Page 24: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

2 4 6 8 10

h/kpc

0

50

100

150

200

250

300

v/km

·s�

1

Outflow velocity, vCircular velocity, Vc

The advection zone (outflows)Hydrodynamical outflow model

24Owen+ 2019a; Samui+ 2010

Page 25: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

The advection zone (outflows)Particle propagation

25

• Steady state solutions to transport equation, i.e. @n@t

= 0

100 101 102 103 104 105 106

E/GeV

10�22

10�18

10�14

10�10

10�6

10�2

102

d�

dE

d⌦

/G

eV�

1cm

�2

s�1

sr�

1

Ep/GeV

50 kpc

Owen+ 2019a

Page 26: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Energy deposition and heating

Image credit: National Bunsen Burner Day (March 31st), McGill University 2016

Page 27: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Heating mechanisms & global impacts

27

• Direct Coulomb (DC)

“quenching”Also operates in magnetized CGM via CR streaming instability + Alfvén wave dissipation (similar rate)

• Indirect Inverse Compton X-rays (IX)

“strangulation”Also advected CRs may also slow inflows, or heat filaments in CGM by DC, Alfvén dissipation… Figure based on Tumlinson+ 2017

Page 28: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Direct Coulomb heatingZone comparisons

Adapted from Owen+ 2019a (1901.01411) 28

10�1 100 101

h/kpc

10�44

10�41

10�38

10�35

10�32

10�29

10�26

dE

dV

dtd⌦/e

rg·c

m�

3s�

1sr

�1

Zone A

Zone B Zone B

Outflow schematic

Extended injection region

CRs (extended injection)Advection Zone A

CRs(Thermal) X-raysStellar radiationFree-streaming CRs

Diffusion Zone B

Page 29: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Indirect heatingISM reference case

10�1 100 101 102

r/kpc

10�41

10�38

10�35

10�32

10�29

10�26

dE

dV

dt/

erg

·cm

�3

s�1

Nowz = 0; t = 13.7 Gyr

z = 12; t = 370 Myr

Owen+ 2019b (1905.00338) 29

CGM minimum shown here: value in inflow filaments would be higher (proportional to density)

Page 30: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

CGM structure and implications

Cold inflowing filaments

Protogalaxy Interstellar

mediumH II region

Circum-galactic medium

AB

H II region

Owen+ 2019b (1905.00338)

Strangulation vs. quenching

30

10�1 100 101 102

r/kpc

10�41

10�38

10�35

10�32

10�29

10�26

dE

dV

dt/

erg

·cm

�3

s�1

Nowz = 0; t = 13.7 Gyr

z = 12; t = 370 Myr

• Scaling relation to deal with filaments• Effective heating power ~1-2 orders of

magnitude lower than ISM value

Page 31: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Timescales

31

⌧Q = ⌧mag + ⌧DC

⌧S = ⌧mag + ⌧IX

Time for ISM to exceeddue to DC heating

Tvir

Time for filament region to exceeddue to IX heating

Tvir

Magnetic containment time; required for CR effects to develop

⌧mag / SFR�1

• Estimate by considering condition for them to no longer be gravitationally bound –upper-limit

Application to real galaxies…

Page 32: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Feedback and star-formation

Image credit: HST image of N90 Star forming region in SMC, NASA/ESA 2007

Page 33: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Inferred behavior of MACS1149-JD1

HST and ALMA image of MACS1149-JD1 (z=9.11) – NASA/ESA, Hashimoto+ 2018

• Spectroscopic z=9.11 (t = 550 Myr)

• Two populations of stars– One from observed SF activity– Other from activity ~100 Myr earlier

• Earlier burst of Star-formation at z=15.4; t=260 Myr (Hashimoto+2018)

• Quenched fairly quickly– distinct inferred age of older stellar

population – SED, size of Balmer break

RSF ⇡ 4.2+0.8�1.1 M� yr�1

33

Can CRs account for the rapid 100 Myr quenching after initial burst?

Page 34: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Can CRs do the job?

200 300 400 500 600

t/Myr

1

3

10

30

100

300

RSF

/M�

yr�

1

⌧dyn

10�10

10�8

10�6

10�4

10�2

100

hBi/

G

• Hashimoto+ 2018 star-formation burst models (intense, medium, slow).• Schober+ 2013 magnetic field growth, traces cosmic ray containment.

• Consistent with CR strangulation + quenching working together.– Radiative heating timescales not consistent with rapid ‘quenching’

Owen+ 2019a (1901.01411) 34

Page 35: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Why not other mechanisms?

35

Owen+ 2019b (1905.00338)

• Dependence on only intrinsic (internal) parameters – Internal feedback not external trigger

2 4 6 8 10 12

M⇤ / 109 M�

100

200

300

400

500

t qui/

Myr

MACS1149-JD1

0.5 1.0 1.5 2.0 2.5 3.0 3.5

rgal /kpc

100

200

300

400

500

t qui/

Myr

0 10 20 30 40 50 60 70

⌧dyn /Myr

100

200

300

400

500

t qui/

Myr

Intrinsic parameters

No clear correlation

• 11 more systems selected from literature, post-SB with relatively high stellar mass, but low SFR (plus availability of measured quantities…)

– Indicative of being in a quiescent stage of their evolution

Page 36: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Why not other mechanisms?

36

Owen+ 2019b (1905.00338)

2 4 6 8 10 12

M⇤ / 109 M�

100

200

300

400

500

t qui/

Myr

MACS1149-JD1

0.5 1.0 1.5 2.0 2.5 3.0 3.5

rgal /kpc

100

200

300

400

500

t qui/

Myr

0 10 20 30 40 50 60 70

⌧dyn /Myr

100

200

300

400

500

t qui/

Myr

Extrinsic parameters

No clear correlation100 200 300 400 500

⌧Q / Myr

100

200

300

400

500

t qui/

Myr

100 200 300 400 500

⌧s / Myr

100

200

300

400

500

t qui/

Myr

Negative correlation

• Clear trend, not predominantly sudden/stochastic (i.e. mechanical hypernovae, etc)

– Progressive heating (e.g. by CRs) consistent here too

Page 37: Star-forming Galaxies at High Redshift · 2019. 7. 19. · Star-forming Galaxies at High Redshift The feedback impact of energetic cosmic rays Ellis Owen MullardSpace Science Laboratory

Summary and outlook• Cosmic rays are presumably abundant in high redshift starbursts• Can deposit energy into ISM and multi-component CGM with

implications for star-formation quenching/strangulation• Able to account for the “bursty” star-formation histories in high-z

starburst/post-starbursts• Next steps: sub-galactic and super-galactic scales

– Detail of internal feedback in molecular clouds/observable signatures– Impacts on CGM and flows of matter/energy– Impacts on external environment (e.g. cosmic reionisation, gamma-ray background)

• Selected publications: – Owen+ 2018 MNRAS 481 666 (arXiv:1808.07837)– Owen+ 2019a MNRAS 484 1645 (arXiv:1901.01411)– Owen+ 2019b A&A 626 A85 (arXiv:1905.00338)

37