star formation in the central molecular...

18
Star formation in the Central Molecular Zone Steve Longmore, Nate Bastian, Daniel Walker (Liverpool John Moores University), Jim Jackson (Boston University), Diederik Kruijssen (Heidelberg University), Joao Alves (University of Vienna), John Bally (University of Colorado), Jonathan Foster (Yale University), Guido Garay (Universidad de Chile), Leonardo Testi (ESO), Andrew Walsh (Curtin Universtity) YaneQ Contreras – Leiden University Jill Rathborne – CSIRO Astronomy and Space Science

Upload: others

Post on 13-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

Star formation in the Central

Molecular Zone

Steve  Longmore,  Nate  Bastian,  Daniel  Walker  (Liverpool  John  Moores  University), Jim  Jackson  (Boston  University),  Diederik  Kruijssen  (Heidelberg  University),   Joao  Alves  (University  of  Vienna),  John  Bally  (University  of  Colorado),   Jonathan  Foster  (Yale  University),  Guido  Garay  (Universidad  de  Chile), Leonardo  Testi  (ESO),  Andrew  Walsh  (Curtin  Universtity)  

YaneQ  Contreras  –  Leiden  University Jill  Rathborne  –  CSIRO  Astronomy  and  Space  Science

Page 2: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

Our current theoretical understanding of molecular cloud structure derived from solar neighborhood

clouds also holds in extreme, high-pressure environments

Take home message

Page 3: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

•  Stars form when small, dense cores within a molecular cloud becoming self-gravitating and collapse

•  Which pockets of gas collapse to form stars depends on a cloud’s internal kinematics and density structure

•  Theory predicts that gravitational collapse occurs once the gas reached a critical over–density with respect to the mean cloud density

•  Volume density Probability Density Function (PDF) is a statistical

measure used to describe the fraction of mass within a cloud at a given volume density

•  Determine the density and rate of star formation

•  Theoretical models of supersonically turbulent, isothermal media show that the volume density PDF follows a log-normal distribution

•  Enhancements that are dense enough to become self-gravitating undergo runaway collapse, causing the high-density end to develop a power-law tail

Turbulence and the initial gas structure

Vazquez-­‐‑Semadeni  1994;  Krumholz  &  McKee  2005;  Federrath  et  al.  2010;    Padoan  &  Nordlund  1999,  2011

Page 4: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

Lombardi  et  al.  2008;  Goodman  et  al.  2009;  Kainuleinen  et  al.  2009,  2013;  Padoan  et  al.  2013;  Schenider  et  al.  2014  

Dust  column  density  -­‐‑  Taurus

Despite  their  relative  simplicity,  the  predictions  of  these  theoretical  models  match  well  the   observed  gas  structure  and  star  formation  activity  within  solar  neighborhood  clouds

Theory  predicts,  and  observations  confirm,  a  density  threshold  for  star  formation  in  the  solar  

neighborhood  of  104  cm-­‐‑3

Column density PDFs for solar neighborhood clouds

Page 5: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

Applying these theories to understand star formation in the early Universe

•  Solar neighborhood : a relatively benign, low turbulent pressure environment (P/k < 105 K cm-3)

•  The peak epoch of star

formation in the Universe occurred in galaxies at redshift z>2 where the turbulent pressure was several orders of magnitude higher (P/k > 107 K cm-3)

Hopkins  &  Beacom  2006;  Swinbank  et  al.  2011;  Krumholz  et  al  2012;  Renaud  et  al.  2012;  Kruijssen  &  Longmore  2013;  Madau  and  Dickinson  2014

Most  stars  formed  when  the  Universe  was  much  ho4er  and  denser  than  it  is  today

Do  these  theories  also  describe  the  initial  cloud  structure  (and,  thus,  star  formation)  in  extreme,  high-­‐‑pressure  environments,  like  those  in  the  early  Universe?  

Page 6: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

The Central Molecular Zone (CMZ)

Molinari  et  al.  2011;  Walmsley  et  al.  1986,  Ao  et  al.  2013

The   central   500   pc   of   our   Galaxy   is   extreme:   the   column   density,   gas  temperature,   velocity   dispersion,   interstellar   radiation   field,   pressure   and  cosmic  ray  ionization  rate  range  from  being  factors  of  a  few  to  several  orders  of  magnitude  higher  compared  to  the  solar  neighborhood  

Herschel  70µm  image  –  dust  continuum  emission

Page 7: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

CMZ : an extreme, high-pressure environment

•  The ISM in the Central Molecular Zone is extreme compared to the ISM in the solar neighborhood but is more similar to the ISM in high-z galaxies (gas temperature, turbulent Mach number, pressure)

•  There is a modest metallicity difference between the CMZ and

rapidly star-forming, high-redshift galaxies (< a factor of 2-3) •  CMZ clouds have the potential to be used as local analogues

of clouds in z > 2 galaxies

•  CMZ clouds can be studied in a level of detail that is unachievable for clouds in other galaxies

Erb  et  al.  2006;  Longmore  et  al.  2013a;  Kruijssen  &  Longmore  2013  

Detailed  studies  of  CMZ  clouds  are  relevant  for  understanding  star  formation  in  high-­‐‑pressure  environments

Page 8: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

The Central Molecular Zone (CMZ) Herschel  70µm  image  –  dust  continuum  emission

“The  Brick”

Page 9: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

G0.253+0.016: a cold, dense, high-mass clump

                 SpiFer  3-­‐‑8µm                                                                                Herschel  70µm                                                                                      JCMT  450µm

Lis  et  al.  1994;  Lis  &  Menten  1998;  Lis  et  al.  2001;  Molinari  et  al.  2011;    Longmore  et  al.  2012,  Johnston  et  al,  2014,  Pillai  etal,  2015    

Its  low  dust  temperature  (<20K),  high  mass  (~105  M¤),  and  high  volume  density  (>104  cm-­‐‑3)  combined  with  its  lack  of  star-­‐‑formation,  makes  it  an  excellent  candidate  for  a  high-­‐‑mass  cluster  in  a  very  early  

stage  of  formation  à  initial  conditions  for  cluster  formation

Its  location  in  the  Central  Molecular  Zone  makes  its  detailed  study  relevant  for  understanding  star  formation  in  high-­‐‑pressure  environments

Page 10: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

Thermal  dust  emission                (H2  column  density)

Map  coverage  :  3’  x  1.5’ Resolution  :  1.7”  (0.07pc)

The  power  of  ALMA

Rathborne  et  al.  2014,  2015

Page 11: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

Complex morphology, chemistry

SiO HNCO C2H

Page 12: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

Small-scale structure : testing cluster formation scenarios

End  product  -­‐‑  Arches   Precursor  ?  

?

Stellar  distributions  are  smooth  and  centrally  condensed

Is  the  stellar  distribution  observed  in  massive  clusters  set  by  the  initial  gas  structure?

Page 13: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

Small-scale structure : fragmented

The gas and dust emission is highly fractal with marginally higher values (Dp ~ 1.6) compared to solar neighborhood molecular clouds (Dp ~ 1.35)

Mandelbrot  1977;  Falgarone  et  al.  1991;  Federrath  et  al.  2009;  Sanchez  et  al.  2005;  Rathborne  et  al.  2015

Small-­‐‑scale  structure  within  G0.253+0.016  

Perimeter

Area

Smooth  gaussian  profile

Highly  fractal Dust  continuum                                                  Shocked  gas

Page 14: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

Stellar  distribution  –  Arches  (>104  M⊙  in  stars  in  0.5pc) Protostellar  distribution  –  Sgr  

B2 Natal  gas  distribution  –  The  Brick

Mass surface density profile : diffuse and extended

Walker  et  al.  2015

End  product  -­‐‑  Arches  

Precursor?  

Initially,  the  gas  is  diffuse,  with  a  density  profile  much  flaQer  compared  to  the  stellar  distribution If  this  clump  is  going  to  form  an  Arches-­‐‑like  cluster,  then  the  final  cluster  must  acquire  its  central  concentrated  profile  as  the  cluster  forms  and  evolves              

Page 15: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

Column density PDF – pinpointing star-forming cores

Vazquez-­‐‑Semadeni  1994;  Padoan  et  al.  1999;  Kainulainen  et  al.  2009,  2013;  Ballesteros-­‐‑Paredes  et  al.  2011;   Kritsuk  et  al.  2011;  Schneider  et  al.  2014;  Lis  &  Carlstrom  1994;  Rathborne  et  al.  2014

M  =  50-­‐‑100  M¤ R  <  0.04  pc n  >  few  x  106  cm-­‐‑3 SFR  =  0.06%

Active  star  formation

Deviation  at  low  column  densities  arises  from  the  large-­‐‑scale  diffuse  medium

Log-­‐‑normal  distribution  is  predicted  when  turbulence  sets  the  initial  gas  structure

Deviation  from  log-­‐‑normal  at  high  column  densities  pinpoints  self-­‐‑gravitating  gas  where  star  formation  can  progress

Page 16: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

•  Recent observations of solar neighborhood clouds suggest a ‘universal’ column density threshold of ~1.4 x 1022 cm-2 (correspond to volume densities of ~104 cm-3)

•  Although this threshold accurately describes the onset of star formation in clouds in the solar neighborhood, it does not hold for the environment within the CMZ •  the gas has a much higher column density than 1.4 x 1022 cm-2, yet it is

forming stars 1-2 orders of magnitude less efficiently than predicted

•  The column density PDF for G0.253+0.016 confirms this result - while the majority of the mass lies at column densities >1.4 x 1022 cm-2 only one region, corresponding to 0.06% of the total mass, shows evidence for star formation

•  The derived lower limit on the volume density (>106 cm-3) is consistent with the theoretically predicted, environmentally dependent volume density threshold (108 cm-3), which is orders of magnitude higher than derived for solar neighborhood clouds

An environmentally dependent volume density threshold for star formation

Lada  et  al.  2010,  2012;  Longmore  et  al.  2013;  Krumholz  and  McKee  2005;  Padoan  and  Nordlund  2011;  Johnstone  et  al,  2014,  Rathborne  et  al.  2014

Page 17: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

Implications : star formation in the

early Universe

Predicted density threshold for star formation is orders of magnitude higher in the early Universe compared to the solar neighborhood

Cannot simply apply the same predictions derived from the solar neighborhood to describe star formation in other galaxies •  Must consider : gas temperature, velocity dispersion, mean density •  Specific predictions for galaxies; if resolved, at many locations within a

galaxy Star formation was harder in the early Universe

•  Have to accumulate a lot more material before gravity can begin to form stars

•  May explain why star formation happens in merger events

This  is  one  example  –  clearly  we  need  to  extend  this  to  include  other  clouds  in  the  CMZ  and  those  that  are  resolvable  in  nearby  galaxies

Page 18: Star formation in the Central Molecular Zoneconference.astro.ufl.edu/STARSTOMASSIVE/eproceedings/talks/contreras_y.pdf · Star formation in the Central Molecular Zone Steve Longmore,NateBastian,DanielWalker(LiverpoolJohn

Identified a high-mass clump showing little star formation that is located within the extreme, high-pressure environment of the CMZ Its internal structure appears to be highly fractal and dispersed Its lack of star formation is consistent with an environmentally dependent volume density threshold for star formation

Summary

Our  current  theoretical  understanding  of  gas  structure  derived  from  solar  neighborhood  clouds  also  holds  in  

extreme,  high-­‐‑pressure  environments