standardization of na-22 by cnet method - lsc...

37
Standardization of Na-22 by CNET method LIU Haoran 1 , LIANG Juncheng 1 and YUAN Daqing 2 1. National Institute of Metrology ,China 2. China Institute of Atomic Energy, China

Upload: others

Post on 25-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Standardization of Na-22

    by CNET method

    LIU Haoran1, LIANG Juncheng1and YUAN Daqing2

    1. National Institute of Metrology ,China2. China Institute of Atomic Energy, China

  • Outline

    Disscusion 1: Influence of tSIE

    Results

    Process of standardization

    Sample preparation

    Disscusion 2: Influence of kB

    1

    2

    3

    4

    5

    6 Conclusions

  • 22Na master solution: Activity concentration of about 11.6 MBq/g Carrier: about 25μg/g NaCl in HCl (0.1 mol/L) Quenching agent: Nitromethane (CH3NO2) Scintillator: Ultima Gold LLT

    Sodium -22

    Preparation of LS Samples

    Tritium(tracer) A set of 3H samples were prepared in the same way

  • 0 2000 4000 6000 80001

    10

    100

    1000

    10000

    100000

    Channel

    Coun

    ts

    Impurity check of 22Na solution

    No γ-emitting impurity was detected.22Na: 511 keV

    22Na: 1274.5 keV

    40K: 1460.8 keV

    22Na: (1274.5 +511) keV

  • Outline

    Disscusion 1: Influence of tSIE

    Results

    Process of standardization

    Sample preparation

    Disscusion 2: Influence of kB values

    1

    2

    3

    4

    5

    6 Conclusions

  • The procedure of the CIEMAT/NIST Method

    Tracer: 3H

    Radionuclide to be analyzed: 22Na

  • 2.1 Measurement details

    LS spectrometers: PerkinElmer Tri-Carb 3100TR

    • Quench indicating parameter : tSIE

    • 5 cycles of 20 minutes per source

    • At least 106 counts for each source

  • Decay scheme of Na-22

    0.00098%

    9.64% 90.3%

    0.055%Stable

    0.00524 ns

    2.6029(8) a

    EC β+

    2+ 1274.577

    0+ 0

    3+ 0γ Emission intensities per 100 disintegrations

    2.2 Efficiency calculation

  • Decay data of Na-22

    Nuclear data of Na-22 (Cited from DDEP)

    2.2 Efficiency calculation

  • Atomic data of Na-22 for efficiency calculation using the KLM rearrangement model

    Name of parameter Symbol Value ReferenceωK 0.0152ωL 0.0001

    PKLL 1PKLM 0PKMM 0

    Relative probabilities of the L Augerelectrons (sum=1) PLMM 0

    PKL 1PKM 0

    Relative probabilities of the L X-rays(sum=1) PLM 0 Firestone (1998)

    EKLL 0.8268EKLM 0.8484EKMM 0.8701ELMM 0.0216 Larkins (1977)EKL 0.8486EKM 0.8701ELM 0.0216 Firestone (1998)

    Larkins (1977)

    Firestone (1998)

    Average energies of the Augerelectrons

    Average energies of the X-rays

    Fluorescence yield Bambynek-1972

    Relative probabilities of the K Augerelectrons (sum=1) E. Schönfeld and H. Janβ

    en-1996

    Relative probabilities of the K X-rays(sum=1) Firestone (1998)

    Decay data of Na-222.2 Efficiency calculation

    Sheet1

    Name of parameterSymbolValueReference

    Fluorescence yieldωK0.0152Bambynek-1972

    ωL0.0001

    Relative probabilities of the K Auger electrons (sum=1) PKLL1E. Schönfeld and H. Janβen-1996

    PKLM0

    PKMM0

    Relative probabilities of the L Auger electrons (sum=1) PLMM0

    Relative probabilities of the K X-rays (sum=1) PKL1Firestone (1998)

    PKM0

    Relative probabilities of the L X-rays (sum=1) PLM0Firestone (1998)

    Average energies of the Auger electronsEKLL0.8268Larkins (1977)

    EKLM0.8484

    EKMM0.8701

    ELMM0.0216Larkins (1977)

    Average energies of the X-raysEKL0.8486Firestone (1998)

    EKM0.8701

    ELM0.0216 Firestone (1998)

    Sheet2

    Sheet3

    Sheet4

  • 3H• Decay type : Pure Bata deacy

    • Code: CN2003

    22Na• Decay type : β+/EC decay

    • Code: CN2003• Electron-capture transition atomic

    rearrangement model: KLM

    • Computation of ionization quenching function

    (1) The ionization quenching parameter:KB=0.075

    (2) The stopping power values(default)

    (3) Scintillator composition, density (modify to Ultima Gold LLT)

    2.2 Efficiency calculation

    Code and parameters

  • 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0.55

    0.60

    Effciency of H-3 Polynomial Fit of Effciency of H-3

    Effc

    ienc

    y of

    H-3

    Free Parameter

    Model PolynomialAdj. R-Square 0.99999

    Value Standard ErrorEffciency of H-3 Intercept 93.5523 0.14887Effciency of H-3 B1 -48.09168 0.22889Effciency of H-3 B2 11.32439 0.11035Effciency of H-3 B3 -1.05462 0.01684

    (a) The theoretical counting efficiency curve of 3H

    The procedure to obtain the counting efficiency for Na-22

  • (b) Experimental quench-correction curve of 3H

    320 340 360 380 400 420 440 460 480 5000.28

    0.30

    0.32

    0.34

    0.36

    0.38

    0.40

    0.42

    0.44

    Effciency of H-3 Polynomial Fit of Effciency of H-3

    Effc

    ienc

    y of

    H-3

    tSIE

    Model PolynomialAdj. R-Square 0.99915

    Value Standard ErrorEffciency of H-3 Intercept -0.04748 0.17964Effciency of H-3 B1 0.00146 0.00135Effciency of H-3 B2 -1.43251E-6 3.33152E-6Effciency of H-3 B3 8.22707E-10 2.72347E-9

  • (c) “Universal” curve

    300 320 340 360 380 400 420 440 460 480 500

    1.5

    1.6

    1.7

    1.8

    1.9

    2.0

    2.1

    2.2

    Free Parameter Polynomial Fit of Free Parameter

    Free

    Par

    amet

    er

    tSIE

    Model PolynomialAdj. R-Squa 0.99915

    Value Standard ErFree Param Intercept 6.60128 0.92223Free Param B1 -0.02527 0.00691Free Param B2 4.51093E-5 1.71028E-5Free Param B3 -2.99366E- 1.39813E-8

  • (d) The theoretical counting efficiency curve of 22Na

    1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

    0.906

    0.907

    0.908

    0.909

    0.910

    0.911

    0.912

    0.913

    Effciency of Na-22 Polynomial Fit of Effciency of Na-22

    Effc

    ienc

    y of

    Na-

    22

    Free Parameter

    Model PolynomialAdj. R-Squar 0.99992

    Value Standard ErrEffciency of Intercept 92.38282 0.02495Effciency of B1 -1.8608 0.05218Effciency of B2 0.98428 0.03899Effciency of B3 -0.25794 0.01239Effciency of B4 0.02494 0.00142

  • (e) Computed quench correction curve of 22Na

    320 340 360 380 400 420 440 460 480 5000.28

    0.30

    0.32

    0.34

    0.36

    0.38

    0.40

    0.42

    0.44

    Effciency of H-3 Polynomial Fit of Effciency of H-3

    Effc

    ienc

    y of

    H-3

    tSIE

    Model PolynomialAdj. R-Square 0.99915

    Value Standard ErrorEffciency of H-3 Intercept -0.04748 0.17964Effciency of H-3 B1 0.00146 0.00135Effciency of H-3 B2 -1.43251E-6 3.33152E-6Effciency of H-3 B3 8.22707E-10 2.72347E-9

  • Outline

    Disscusion 1: Influence of tSIE and kB

    Results

    Process of standardization

    Sample preparation

    Disscusion 2: Influence of kB values

    1

    2

    3

    4

    5

    6 Conclusions

  • 3.1 The stability of the counter

    a. The stability of tSIE in the measurement

    0 2 4 6 8 10

    396.0

    396.5

    397.0

    397.5

    398.0

    398.5

    399.0

    399.5

    tSIE

    Number of repeats

    Sample H6

  • a. The stability of tSIE in the measurement

    0 2 4 6 8 10

    466.0

    466.5

    467.0

    467.5 H1 Stirling of tSIE

    tSIE

    Number of repeats0 2 4 6 8 10

    447

    448

    449

    450 H2 ExpDec1 of tSIE

    tSIE

    Number of repeats0 2 4 6 8 10

    433

    434

    435 H3 ExpDec1 of tSIE

    tSIE

    Number of repeats

    0 2 4 6 8 10418

    420

    422 H4 ExpDec1 of tSIE

    tSIE

    Number of repeats0 2 4 6 8 10

    413

    414

    415

    416

    H5 ExpDec1 of tSIE

    tSIE

    Number of repeats0 2 4 6 8 10

    396

    397

    398

    399

    400 H6 ExpDec1 of tSIE

    tSIE

    Number of repeats

    0 2 4 6 8 10385

    386

    387

    388

    389

    H7 ExpDec1 of tSIE

    tSIE

    Number of repeats0 2 4 6 8 10

    378

    379

    380

    381

    H8 ExpDec1 of tSIE

    tSIE

    Number of repeats0 2 4 6 8 10

    366

    367

    368

    369

    370 H9 ExpDec1 of tSIE

    tSIE

    Number of repeats

    3.1 The stability of the counter

  • 0 2 4 6 8 10

    153000

    153500

    154000

    154500

    155000 H1

    tSIE

    Number of repeats0 2 4 6 8 10

    155500

    156000

    156500

    157000

    157500 H2

    tSIE

    Number of repeats0 2 4 6 8 10

    191500

    192000

    192500

    193000

    193500 H3

    tSIE

    Number of repeats

    0 2 4 6 8 10132500

    133000

    133500

    134000

    134500 H4

    tSIE

    Number of repeats0 2 4 6 8 10

    127200

    127400

    127600

    127800

    128000

    128200

    128400

    128600

    128800

    129000

    129200 H5

    tSIE

    Number of repeats0 2 4 6 8 10

    151800

    152000

    152200

    152400

    152600

    152800

    153000 H6

    tSIE

    Number of repeats

    0 2 4 6 8 10

    105800

    106000

    106200

    106400

    106600

    106800

    107000

    107200

    107400 H7

    tSIE

    Number of repeats0 2 4 6 8 10

    92200

    92400

    92600

    92800

    93000

    93200

    93400 H8

    tSIE

    Number of repeats0 2 4 6 8 10

    110500

    111000

    111500

    112000

    112500

    113000 H9

    tSIE

    Number of repeats

    b. The stability of counting rates in the measurement3.1 The stability of the counter

  • The activity concentration of 22Na

    Sample No. tSIE EfficiencyCounting

    rate(min-1) Mass(mg) A(kBq.g-1)

    Blank 491.8 --- 258 --- ---N1 518.5 0.9106 550407 31.96 315.07N2 507.5 0.9105 601448 36.42 302.17N3 465.4 0.9102 386208 23.82 296.68N4 447.6 0.9101 360278 22.23 296.58N5 424.4 0.9099 509733 31.46 296.62N6 396.5 0.9097 373332 23.04 296.66N7 369.2 0.9095 341983 21.12 296.51

    Relatively standard deviation of N3 to N7 0.02%

    3.2 Results and uncertainty

  • 360 380 400 420 440 460 480 500 520 5400.905

    0.910

    0.915

    0.920

    Efficiency

    Effic

    ienc

    y

    tSIE

    N3 N1N2N4N5N6N7

    360 380 400 420 440 460 480 500 520 540

    294

    300

    306

    312

    318

    N7 N6 N5 N4 N3

    N2

    N1

    ActivityAc

    ticity

    Con

    cent

    ratio

    n (k

    Bq/g

    )

    tSIE

    3.2 Results and uncertainty

  • 3.2 Results and uncertaintyUncertainty components*, in % of the activity concentration, due to:

    Factor U(a)/a in% Remarks

    Counting statistics 0.05 Standard deviation of mean of 5 samples, including the source dispersion.

    Weighing 0.09

    Background 0.03

    Dead time 0.10

    Quenching 0.04

    Tracer(H-3)

  • Outline

    Disscusion 1: Influence of tSIE

    Results

    Process of standardization

    Sample preparation

    Disscusion 2: Influence of kB values

    1

    2

    3

    4

    5

    6 Conclusion

  • Sample No. tSIE CH3NO2(μl) Efficiency

    Blank 491.8 0 ---N1 518.5 0 0.9106N2 507.5 20 0.9105N3 465.4 50 0.9102N4 447.6 70 0.9101N5 424.4 100 0.9099N6 396.5 150 0.9097N7 369.2 200 0.9095

    (1) The tSIE seems to be affected by the γ rays from Na-22 source.

    The problem of quench indicating parameter tSIE

  • The influence of quench(tSIE) for Na-22 effciencies

    The contribution of γ-rays to overall effciency was taken into

    account in efficiency calculation.

    But the deviation of tSIE due to γ-rays was not considerded.

  • The influence of tSIE for Na-22 effciencies

    The tSIE was varied over a range from 321-494, which correspondsto 22Na efficiencies from 90.95% to 91.06%.

    320 360 400 440 480 5200.9075

    0.9100

    0.9125

    Effic

    iency

    of N

    a-22

    tSIE

    only a very small impact

  • 300 320 340 360 380 400 420 440 460 480 500 5200.28

    0.30

    0.32

    0.34

    0.36

    0.38

    0.40

    0.42

    0.44

    tSIE

    Effc

    ienc

    y of

    Mn-

    55

    The influence of tSIE for EC-γ nuclides

    The tSIE was varied over a range from 321-494, which correspondsto 22Na efficiencies from 30.0% to 42.2%.

    significant impact which can not be ignored

    for example: Mn-54

  • (2) The tSIE of N1 and N2 are over the upper bound of quench correction curve

    The problem of tSIE

    320 340 360 380 400 420 440 460 480 500 520290

    295

    300

    305

    310

    315

    320

    N1

    N2

    N3N4N6N7

    tSIE upper bound:494

    tSIE

    Actic

    ity C

    once

    ntra

    tion

    (kBq

    /g) Acticity Concentration (kBq/g)

    tSIE lower bound:321

    N5

    What can we do?

  • Outline

    Disscusion: Influence of QIP tSIE

    Results

    Process of standardization

    Preparation of LS Samples

    Disscusion: Influence of kB values

    1

    2

    3

    4

    5

    6 Conclusions

  • The influence of kB values for CIEMAT/NIST method

    In some of the early CIEMAT/NIST method literatures, differentvalues of Birks’ parameter, kB, have been reported by variousauthors.

    But it doesn’t matter for pure β-emitters, because theefficiencies were calculated twice in the procedure and enabledus to establish a link between the counting efficiencies of thetwo radionuclides (tracer and nuclide under study).

    Owing to cross-correlations, relative calculations are more likelyto exhibit less uncertainty than absolute estimations due to thecancelation effects.

  • The influence of kB values for CIEMAT/NIST method

    For CIEMAT/NIST method, although sometimes the kB value usedin the calculation may be not the optimal one, but it has little effecton the result for pure β-emitters.

    25 30 35 40 45 50 55 6089

    90

    91

    92

    93

    94

    95

    96

    kB=0.0075kB=0.012

    Eff(C

    -14)

    Eff(H-3)

    The effect of kB can be neglected

  • The influence of kB values for CIEMAT/NIST method

    However, for EC decay nuclides:

    0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    Effc

    ienc

    y of

    Ca-

    41

    Effciency of Fe-55

    kB=0.0075 fe55trac kB=0.012 fe55trac kB=0.0075 CN2003 kB=0.012 CN2003

    0.05 0.10 0.15 0.20 0.25 0.300.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0.55

    0.60

    kB=0.0075 kB=0.012

    Effc

    ienc

    y of

    Ca-

    41

    Efficiency of H-3

    for example: Ca-41

    The effect of kB can be neglected The effect of kB is obvious

  • The influence of kB values for 22Na effciencies

    0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.600.9070

    0.9075

    0.9080

    0.9085

    0.9090

    0.9095

    0.9100

    0.9105

    kB=0.0060 kB=0.0075 kB=0.0120 kB=0.0140E

    ffcie

    ncy

    of N

    a-22

    Effciency of H-3

    only a very small impact

    There is a very small difference of using different kB values, within 0.03% in the whole interval..

  • Outline

    Disscusion: Influence of tSIE

    Results

    Process of standardization

    Preparation of LS Samples

    Disscusion: Influence of kB values

    1

    2

    3

    4

    5

    6 Conclusions

  • Conclusions

    Influence of tSIE

    (1) If tSIE values are in the interval of quench correction curve,

    the influence of tSIE to 22Na can be neglected.

    (2) If tSIE values are out of range of quench correction curve, the

    data could not be used.

    Influence of kB values(1) The kB values are of only minor importance for 22Na effciency

    calculation.

  • Thank you for your attention!

    Standardization of Na-22 �by CNET methodSlide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37