stable stems and the chow-novikov t-structure in motivic stable … · 2020. 5. 5. · d2e3 m p3il...

96
Stable stems and the Chow-Novikov t -structure in motivic stable homotopy category Zhouli Xu MIT May 4, 2020

Upload: others

Post on 27-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Stable stems and the Chow-Novikov t-structurein motivic stable homotopy category

    Zhouli Xu

    MIT

    May 4, 2020

  • The Classical Adams Spectral Sequence

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 480

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    The classical Adams spectral sequence

    0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    22

    24

    26

    28

    30

    32

    34

    36

    38

    40

    42

    44

    46

    48

    h0 h1 h2 h3

    c0

    Ph1 Ph2

    h23

    d0

    h4

    Pc0

    e0

    P2h1

    f0

    c1

    P2h2

    g

    Pd0

    h4c0

    i

    P2c0

    Pe0

    P3h1

    j

    P3h2

    d20

    k

    h24

    ∆h22

    P2d0

    h5

    n

    d0e0+h70h5

    d1

    ∆h1h3

    l

    P3c0

    p

    P2e0

    P4h1

    e20

    Pj

    m

    P4h2

    t

    Pd20

    x

    e0g

    d0i

    h3h5

    e1

    ∆h23

    P3d0

    h5c0

    ∆h1d0

    Pd0e0

    P2i

    f1

    Ph1h5

    g2

    d0j

    P4c0

    c2

    ∆h20e0

    P3e0

    P5h1

    Ph2h5

    ∆h1e0

    d30

    P2j

    d0k

    P5h2

    g2

    ∆h22d0

    P2d20

    h23h5

    h5d0

    ∆h1g

    d20e0

    Pd0i

    Mh1

    ∆h2c1

    d0l

    i2

    P4d0

    Ph5c0

    ∆h22e0

    ∆h20iP∆h1d0

    P2d0e0

    h3c2

    h5e0

    Mh2

    d0e20

    Pd0j

    P5c0

    h5f0

    d0m

    ij

    P4e0

    P6h1

    h5c1

    C

    ∆h22g

    P∆h1e0

    Pd30

    P3j

    h3g2

    gn

    d0e0g

    d20i

    P6h2

    D1

    d1g

    e0m

    P∆h22d0

    P3d20

    Ph5d0

    MP

    ∆h1d20

    Pd20e0

    P2d0i

    G

    h5i

    ∆2h22

    e20g

    d20j+P∆c0d0

    P5d0

    gm

    il

    P2∆h1d0

    P3d0e0

    P4i

    Ph5e0

    gt∆2h1h3

    ∆h1d0e0

    d40

    P2d0j

    P6c0

    Q2

    h5j

    e0g2

    Pd0m

    Pij

    P5e0

    P7h1

    D2

    ∆h22d20

    P2∆h1e0

    P2d30

    P4j

    Md0

    ∆h1e20

    d30e0

    Pd20i

    P7h2

    Mh4

    B4

    g3

    d20l

    d0i2

    P4d20

    D3

    A′A+A′

    ∆x

    ∆h22n

    jm

    P∆h1d20

    P2d20e0

    P3d0i

    h25

    H1

    h5n

    ∆e1

    ∆e1+C0

    Me0∆2h23

    ∆h1e0g

    MP2h1

    d20e20

    Pd20j+P2∆c0d0

    P2i2

    P6d0

    h6

    C′ X2

    d20m

    d0ij

    P3∆h1d0

    P4d0e0

    A′′

    h3Q2

    ∆2h1h4

    ∆h22d0g

    ∆2h21d0

    P∆h1d0e0

    Pd40

    P3d0j

    P7c0

    h3D2

    Mg

    Ph5j

    ∆h22m

    ∆2h0e0

    d0e30

    P2d0m

    P2ij

    P6e0

    P8h1

    ∆1h23

    G0

    B5

    B5 + D′2

    nm

    d0e0m

    P∆h22d20

    P3∆h1e0

    P3d30

    P5j

    n1Q3

    X3 C′′

    ∆2c1

    lm MPd0

    ∆h1d30

    Pd30e0

    P2d20i

    P8h2

    d2

    h3A′

    ∆g2

    ∆2h0g

    e40

    d30j

    Pd0i2

    P5d20

    p′

    h3H1

    D′3+?h2G0

    P (A+A′)

    ∆2h1g

    d0gm

    ∆h20d20e0

    MP3

    P2∆h1d20

    P3d20e0

    P4d0i

    h3h6

    p1+h20h3h6

    d1e1

    MPe0

    m2+∆2h21g

    ∆h1d20e0

    P∆2h0d0

    d50

    P2d20j+P3∆c0d0

    P7d0

    h6c0

    x71,6

    d0Q2

    ∆2h4c0

    ∆2h2g

    Mj

    g2n

    e30g

    d30k

    P2il

    P4∆h1d0

    P5d0e0

    P6i

    Ph1h6

    h23D2

    h4Q2+h23D2

    d0D2

    e0gm

    d0im

    P∆2h21d0

    P2∆h1d0e0

    P2d40

    P4d0j

    P8c0

    h4D2

    Md20

    P∆2h0e0 ∆h1d0e20

    d40e0

    P2d20k

    P3ij

    P7e0

    P9h1

    h3n1Ph2h6

    x74,8

    d0B4

    e20g2

    d30l

    P2im

    P4∆h1e0

    P4d30

    P6j

    h3d2

    x75,7

    Mh24

    ∆h3g2

    g2m

    d0jm

    MP2d0

    P∆h1d30

    P2d30e0

    P3d20i

    P9h2

    h4D3

    x76,6

    h23H1

    x76,9

    Md0e0

    g2t

    ∆2d20

    ∆h1e30

    MPi+∆2h0d20

    d30e20

    P2d20l

    P3ik

    P6d20

    h23h6

    h6d0

    x77,7m1

    x77,8

    gQ2

    M∆h1h3

    e0B4

    ∆2h0ke0g

    3

    d30m

    P2jm

    P3∆h1d20

    P4d20e0

    P5d0i

    h4h6

    t1

    x78,9

    x78,10

    e0A′

    MP2e0

    d0km

    P∆h1d20e0

    MP4h1

    Pd50

    P3d20j

    P4i2

    P8d0

    x1

    Ph6c0

    ∆2n

    Me20

    ∆2d0e0

    MPj+∆2h0d0e0

    ∆h1e20g

    d20e30

    P2d20m

    P3il

    P4∆h20i P5∆h1d0

    P6d0e0

    e2

    h6e0

    P2h1h6

    ∆2d1

    gB4

    ∆3h1h3

    ∆2h0lg4

    d20e0m

    P2km

    P2∆2h21d0

    P3∆h1d0e0

    P3d40

    P5d0j

    P9c0

    h6f0

    c1H1

    h3x74,8

    gA′

    ∆2p

    ∆h22gn

    MPd20

    ∆h22e30

    P2∆2h0e0

    ∆h1d40

    Pd40e0

    P3d20k

    P4ij

    P8e0

    P10h1

    h6c1

    h4Q3

    e1g2

    gH1

    P2h2h6

    gC0

    Me0g

    ∆2e20

    Md0i+∆2h0e

    20

    ∆h1e0g2+∆2h0e

    20

    d0e40

    P2d0e0m

    P3im

    P5∆h1e0

    P5d30

    P7j

    h6g+h2e2

    gC′

    ∆2m

    MP∆h22

    d0e20m

    MP3d0

    d20il

    P2∆h1d30

    P3d30e0

    P4d20i

    P10h2

    f2

    Px76,6

    ∆2t

    ∆h20B4

    M∆h1d0

    MPd0e0

    d0m2

    ∆h1d30e0

    P∆2h0d20

    d60

    P3d20l

    P4ik

    P7d20

    c3

    x85,6

    Ph6d0

    ∆2x

    Mg2

    ∆2e0g

    Md0j+∆2h0e0g

    ∆h22gm

    e50

    P∆2h1d20

    d40k

    MP5

    P3jm

    P4∆h1d20

    P5d20e0

    P6d0i

    h4h6c0

    h6i

    gG0

    ∆2e1

    ∆3h23

    B4j

    gnm

    e30m

    MP3e0

    ∆h22d40+P∆

    2h31d20

    P2∆h1d20e0

    ∆2P3h0d0

    P2d50

    P4d20j+h60 ·∆2P3h0d0

    P9d0

    x87,7

    gQ3

    ∆h1H1

    P2h6c0

    gC′′

    M∆h1e0

    ∆3h1d0

    Md30

    ∆h22e0g2

    P∆2d0e0

    MP2j

    ∆h1d20e

    20

    d50e0

    Pd40i

    P3d0ij

    P6∆h1d0

    P7d0e0

    P8i

    g22

    Ph6e0

    ∆g2g

    ∆2f1+?∆g2g

    P3h1h6

    ∆2g2

    Md0k

    ∆2h0e0i

    e40g

    d40l

    d30i2

    P3∆2h21d0

    P4∆h1d0e0

    P4d40

    P6d0j

    P10c0

    h6j

    ∆2c2

    M∆h22d0

    ∆3h20e0

    e20gm+∆3h31d0

    MP2d20

    ∆h22d30e0

    P3∆2h0e0

    P∆h1d40

    P2d40e0

    P3d30i

    P5ij

    P9e0

    P11h1

    x90,10

    M2

    P3h2h6

    M∆h1g

    ∆3h1e0

    Md20e0

    gm2

    ∆2d30

    MPd0i

    ∆h1d0e30

    d40e20

    Pd40j

    P4im

    P6∆h1e0

    P6d30

    P8j

    h24D3

    x91,8

    h6d20

    x91,11

    ∆h22A′

    Md0l+h60x91,11

    g3n

    ∆2h0e0j

    d0e0g3

    d40m

    MP4d0

    d30ij

    P3∆h1d30

    P4d30e0

    P5d20i

    P11h2

    g3

    h6k

    x92,10

    ∆h22H1

    ∆2g2

    mQ2

    M∆h22e0

    ∆3h22d0

    MP∆h1d0

    e0g2m

    MP2d0e0

    ∆h22d20e

    20

    P2∆2d20

    MP3i+P2∆2h0d20

    P∆h1d30e0

    Pd60

    P4d20l

    P5ik

    P8d20

    h24h6

    ∆h22h6

    x93,8

    ∆h3H1

    ∆∆1e0

    P2h6d0

    tQ2

    ∆3h1g

    Md0e20

    ∆2d20e0

    MPd0j

    ∆h1e40

    P∆2h0d0i

    d30e30

    d50i

    P4jm

    P5∆h1d20

    P6d20e0

    P7d0i

    h6n

    x94,8

    h6d0e0

    y94,10

    ∆2Mh1

    ∆3h2c1

    Md0m

    ∆2d0l

    MP∆h20e0

    e20g3

    ∆2i2

    d30e0m

    MP4e0+P2∆2h21d

    20

    d30ik+P2∆2h21d

    20

    P3∆h1d20e0

    MP6h1

    P3d50

    P5d20j+h130 ·∆2i2

    P6i2

    P10d0

    h6d1

    x95,7

    ∆h1h3h6

    h6l

    ∆x71,6

    P3h6c0

    M∆h22g

    ∆3h22e0

    MP∆h1e0

    g3m

    ∆3h20i

    P∆3h1d0

    MPd30

    ∆h22d20e0g

    P2∆2d0e0

    MP3j+P2∆2h0d0e0

    ∆h1d50

    Pd50e0

    P4d20m

    P5il

    P7∆h1d0

    P8d0e0+P6∆h50i

    7

  • The Classical Adams E8-page

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 480

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    The E∞-page of the classical Adams spectral sequence

    0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    22

    24

    26

    28

    30

    32

    34

    36

    38

    40

    42

    44

    46

    48

    h0 h1 h2 h3

    c0

    Ph1 Ph2

    h23

    d0 h30h4

    h1h4

    Pc0

    P2h1

    h2h4

    c1

    P2h2

    g

    Pd0

    h4c0

    h20i

    P2c0

    P3h1 P3h2

    d20

    h24

    n

    h100 h5

    h1h5

    d1

    ∆h1h3

    P3c0

    p

    P4h1

    h0h2h5

    d0g

    P4h2

    t

    h22h5

    x

    h20h3h5

    h1h3h5

    h5c0

    h3d1

    ∆h1d0

    P2h20i

    f1

    Ph1h5

    g2

    P4c0

    ∆h20e0

    P5h1

    Ph2h5

    d30

    P5h2

    g2

    h23h5

    h5d0

    ∆h1g

    Mh1

    ∆h2c1

    d0l

    Ph5c0

    ∆h22e0

    P∆h1d0

    h70Q′

    Mh2

    d20g

    P5c0

    P6h1

    h5c1

    C

    h3g2

    gn

    P6h2

    d1g

    e0m

    MP

    ∆h1d20

    h0h5i

    e20g

    P4h20i

    P6c0

    P7h1

    h1Q2

    Md0

    ∆h1d0g

    P7h2

    g3

    d20l

    h25

    h5n

    ∆e1+C0

    ∆2h23

    h1H1

    X2+C′

    h250 h6

    h1h6

    h2D3

    h2A′

    h3Q2

    ∆2h1h4

    P7c0

    Mg

    Ph5j

    ∆h1g2

    P8h1

    r1

    B5+D′2

    d0e0m

    Q3+n1

    ∆2c1

    P8h2

    h3A′

    h22h6

    p′

    h3(∆e1+C0)

    h30h3h6

    h1h3H1

    h1D′3

    m2+∆2h21g

    h1h3h6

    h6c0

    h1p1

    h3A′′

    h23Q2

    d0Q2

    ∆2h4c0

    ∆2h2g

    P6h20i

    Ph1h6

    h4Q2+h23D2

    h0d0D2

    e0gm

    P8c0

    h0h4D2

    Md20

    ∆h1d0e20

    P9h1

    h3(Q3+n1)

    Ph0h2h6

    x74,8

    e20g2

    h0h3d2

    P9h2

    h4A

    d1g2

    x76,9

    h23h6

    h6d0

    h1h4D3

    m1

    h1x76,6

    h0x77,7

    M∆h1h3

    h60h4h6

    x78,9

    e0A′

    h1h4h6

    h2x76,6

    Ph6c0

    h1x78,10

    ∆2n

    Me20

    P4h70Q′

    h1x1

    c1A′

    P2h1h6

    ∆2d1

    g4

    P9c0

    h2h4h6

    h23n1

    gD3

    ∆2p

    P10h1

    h6c1

    h25g

    e1g2

    P2h2h6

    h6g+h2e2

    gC′

    P10h2

    h2gD3

    Px76,6

    ∆2t

    M∆h1d0

    h1f2

    x85,6

    h2h4Q3

    Ph6d0

    ∆2x

    Mg2

    ∆h1g3

    h4h6c0

    h30h6i

    M∆h20e0

    h21c3

    x87,7

    gQ3

    ∆h1H1

    P2h6c0

    ∆2h3d1

    P8h20i

    h1x87,7 + g22

    ∆2f1+?∆g2g

    P3h1h6

    P10c0

    P11h1

    M2

    P3h2h6

    M∆h1g

    gm2

    h24D3

    ∆h22A′

    Md0l+h60x91,11

    P11h2

    h0g3

    h1x91,8

    x92,10

    ∆2g2

    M∆h22e0

    MP∆h1d0

    h30h24h6

    h30 · ∆h22h6

    P2h6d0

    e0x76,9

    Md0e20

    h1h24h6

    h21g3

    h6n

    x94,8

    d1H1

    y94,10

    ∆h1h3H1

    ∆2Mh1

    ∆3h2c1

    h2g3

    h6d1

    ∆h1h3h6

    e1Q2

    ∆2Mh21+?M∆h22g

    P3h6c0

    g3m

    P6h60Q′

    8

  • Adams differentials

    Theorem (Isaksen - Wang - X.)

    Up to 6 differentials, we have complete info on E8 through 90.

    § 71-stem, d5 on h1p1,

    § 77-stem, d2 on x77,7,

    § 83-stem, d9 on h6g ` h2e2,§ 85-stem, d9 on x85,6,

    § 87-stem, d6 on ∆h1H1,

    § 87-stem, d9 on x87,7.

    Theorem (Chua)

    d2px77,7q “ h30x76,6.

    Theorem (Burklund - Isaksen - X.)

    d5ph1p1q “ 0.

  • Adams differentials

    Theorem (Isaksen - Wang - X.)

    Up to 6 differentials, we have complete info on E8 through 90.

    § 71-stem, d5 on h1p1,

    § 77-stem, d2 on x77,7,

    § 83-stem, d9 on h6g ` h2e2,§ 85-stem, d9 on x85,6,

    § 87-stem, d6 on ∆h1H1,

    § 87-stem, d9 on x87,7.

    Theorem (Chua)

    d2px77,7q “ h30x76,6.

    Theorem (Burklund - Isaksen - X.)

    d5ph1p1q “ 0.

  • Adams differentials

    Theorem (Isaksen - Wang - X.)

    Up to 6 differentials, we have complete info on E8 through 90.

    § 71-stem, d5 on h1p1,

    § 77-stem, d2 on x77,7,

    § 83-stem, d9 on h6g ` h2e2,§ 85-stem, d9 on x85,6,

    § 87-stem, d6 on ∆h1H1,

    § 87-stem, d9 on x87,7.

    Theorem (Chua)

    d2px77,7q “ h30x76,6.

    Theorem (Burklund - Isaksen - X.)

    d5ph1p1q “ 0.

  • Hopf classes and Kervaire classes

    § hj : Hopf classes

    § h0, h1, h2, h3 survive and detect 2, η, ν, σ.

    § Adams: d2phjq “ h0h2j´1, for n ě 4.

    § h2j : Kervaire classes

    § h2j , 0 ď j ď 5 survive and detect θj .

    § Hill-Hopkins-Ravenel: For j ě 7, h2j supports a nonzero differential.

    § h26 is still open.

    Question

    What are the differentials that h2j , j ě 7 support?

  • Hopf classes and Kervaire classes

    § hj : Hopf classes

    § h0, h1, h2, h3 survive and detect 2, η, ν, σ.

    § Adams: d2phjq “ h0h2j´1, for n ě 4.

    § h2j : Kervaire classes

    § h2j , 0 ď j ď 5 survive and detect θj .

    § Hill-Hopkins-Ravenel: For j ě 7, h2j supports a nonzero differential.

    § h26 is still open.

    Question

    What are the differentials that h2j , j ě 7 support?

  • Hopf classes and Kervaire classes

    § hj : Hopf classes

    § h0, h1, h2, h3 survive and detect 2, η, ν, σ.

    § Adams: d2phjq “ h0h2j´1, for n ě 4.

    § h2j : Kervaire classes

    § h2j , 0 ď j ď 5 survive and detect θj .

    § Hill-Hopkins-Ravenel: For j ě 7, h2j supports a nonzero differential.

    § h26 is still open.

    Question

    What are the differentials that h2j , j ě 7 support?

  • Hopf classes and Kervaire classes

    Easy to show for all j ,

    § d2ph2j q “ 0,

    § d3ph2j q “ 0.

    Theorem (Burklund - X.)

    § d4ph2j q “ 0, for all j .

    Work in progress: For j large enough,

    § d5ph2j q “ 0,

    § d6ph2j q “ 0.

  • Hopf classes and Kervaire classes

    Easy to show for all j ,

    § d2ph2j q “ 0,

    § d3ph2j q “ 0.

    Theorem (Burklund - X.)

    § d4ph2j q “ 0, for all j .

    Work in progress: For j large enough,

    § d5ph2j q “ 0,

    § d6ph2j q “ 0.

  • Hopf classes, Kervaire classes and ???

    Question

    What about h3j , h4j , ¨ ¨ ¨ ?

    § h4j “ 0 in Ext for j ě 1.ñ Only need to discuss h3j .

    § h3j survives for 0 ď j ď 4.

    Theorem (Isaksen - Wang - X.)

    § d4ph35q “ h30g3.§ h20g3 detects θ4θ5.

    Theorem (Burklund - X.)

    § d4ph3j q “ h30gj´2` possible other classes, for j ě 6.

  • Hopf classes, Kervaire classes and ???

    Question

    What about h3j , h4j , ¨ ¨ ¨ ?

    § h4j “ 0 in Ext for j ě 1.ñ Only need to discuss h3j .

    § h3j survives for 0 ď j ď 4.

    Theorem (Isaksen - Wang - X.)

    § d4ph35q “ h30g3.§ h20g3 detects θ4θ5.

    Theorem (Burklund - X.)

    § d4ph3j q “ h30gj´2` possible other classes, for j ě 6.

  • Hopf classes, Kervaire classes and ???

    Question

    What about h3j , h4j , ¨ ¨ ¨ ?

    § h4j “ 0 in Ext for j ě 1.ñ Only need to discuss h3j .

    § h3j survives for 0 ď j ď 4.

    Theorem (Isaksen - Wang - X.)

    § d4ph35q “ h30g3.§ h20g3 detects θ4θ5.

    Theorem (Burklund - X.)

    § d4ph3j q “ h30gj´2` possible other classes, for j ě 6.

  • Hopf classes, Kervaire classes and ???

    Question

    What about h3j , h4j , ¨ ¨ ¨ ?

    § h4j “ 0 in Ext for j ě 1.ñ Only need to discuss h3j .

    § h3j survives for 0 ď j ď 4.

    Theorem (Isaksen - Wang - X.)

    § d4ph35q “ h30g3.§ h20g3 detects θ4θ5.

    Theorem (Burklund - X.)

    § d4ph3j q “ h30gj´2` possible other classes, for j ě 6.

  • Hopf classes, Kervaire classes and ???

    Question

    What about h3j , h4j , ¨ ¨ ¨ ?

    § h4j “ 0 in Ext for j ě 1.ñ Only need to discuss h3j .

    § h3j survives for 0 ď j ď 4.

    Theorem (Isaksen - Wang - X.)

    § d4ph35q “ h30g3.§ h20g3 detects θ4θ5.

    Theorem (Burklund - X.)

    § d4ph3j q “ h30gj´2` possible other classes, for j ě 6.

  • The open case θ6Theorem (Isaksen - Wang - X.)

    § h30h35 survives and detects xθ4, 2, θ5y .

    § For any α P xθ4, 2, θ5y, if ηα “ 0, and 0 P xα, η, 2y, then θ6 exists.

    126

    2 $$

    η

    !!126

    θ5

    125

    α2

    θ563

    2

    312

    124

    α

    62

    θ5 22

    30 θ4((0

    S126f // X

    g // S0

  • The open case θ6Theorem (Isaksen - Wang - X.)

    § h30h35 survives and detects xθ4, 2, θ5y .

    § For any α P xθ4, 2, θ5y, if ηα “ 0, and 0 P xα, η, 2y, then θ6 exists.

    126

    2 $$

    η

    !!126

    θ5

    125

    α2

    θ563

    2

    312

    124

    α

    62

    θ5 22

    30 θ4((0

    S126f // X

    g // S0

  • The open case θ6Theorem (Isaksen - Wang - X.)

    § h30h35 survives and detects xθ4, 2, θ5y .

    § For any α P xθ4, 2, θ5y, if ηα “ 0, and 0 P xα, η, 2y, then θ6 exists.

    126

    2 $$

    η

    !!126

    θ5

    125

    α2

    θ563

    2

    312

    124

    α

    62

    θ5 22

    30 θ4((0

    S126f // X

    g // S0

  • Cellular Motivic Stable Homotopy Category SHpkqcell

    § S1,0: simplicial sphere S1

    § S1,1: A1 ´ t0u “ Gm

    § Stabilization with respect to S2,1

    § 1: the motivic sphere spectrum

    § HFp: motivic mod p Eilenberg-Mac Lane spectrum

    § p1: HFp-completed sphere

    § MGL: algebraic cobordism spectrum

    § Motivic analogue of classical computational tools exist!

  • Cellular Motivic Stable Homotopy Category SHpkqcell

    § S1,0: simplicial sphere S1

    § S1,1: A1 ´ t0u “ Gm§ Stabilization with respect to S2,1

    § 1: the motivic sphere spectrum

    § HFp: motivic mod p Eilenberg-Mac Lane spectrum

    § p1: HFp-completed sphere

    § MGL: algebraic cobordism spectrum

    § Motivic analogue of classical computational tools exist!

  • Cellular Motivic Stable Homotopy Category SHpkqcell

    § S1,0: simplicial sphere S1

    § S1,1: A1 ´ t0u “ Gm§ Stabilization with respect to S2,1

    § 1: the motivic sphere spectrum

    § HFp: motivic mod p Eilenberg-Mac Lane spectrum

    § p1: HFp-completed sphere

    § MGL: algebraic cobordism spectrum

    § Motivic analogue of classical computational tools exist!

  • Cellular Motivic Stable Homotopy Category SHpkqcell

    § S1,0: simplicial sphere S1

    § S1,1: A1 ´ t0u “ Gm§ Stabilization with respect to S2,1

    § 1: the motivic sphere spectrum

    § HFp: motivic mod p Eilenberg-Mac Lane spectrum

    § p1: HFp-completed sphere

    § MGL: algebraic cobordism spectrum

    § Motivic analogue of classical computational tools exist!

  • Cellular Motivic Stable Homotopy Category SHpkqcell

    § S1,0: simplicial sphere S1

    § S1,1: A1 ´ t0u “ Gm§ Stabilization with respect to S2,1

    § 1: the motivic sphere spectrum

    § HFp: motivic mod p Eilenberg-Mac Lane spectrum

    § p1: HFp-completed sphere

    § MGL: algebraic cobordism spectrum

    § Motivic analogue of classical computational tools exist!

  • Over Spec CTheorem (Voevodsky)

    π˚,˚HFp “ Fprτ s, |τ | “ p0,´1q.

    § τ : Σ0,´1p1Ñ p1.§ p1{τ : the cofiber of τ .

    Theorem (Isaksen)

    motAdamsNovikovSSpp1{τq collapses at E2.

    Theorem (Gheorghe - Wang - X.)

    p1{τ -Modcell » StablepBP˚BP-Comodq

    Alternative proofs: Krause, and Pstra̧gowski.

  • Over Spec CTheorem (Voevodsky)

    π˚,˚HFp “ Fprτ s, |τ | “ p0,´1q.

    § τ : Σ0,´1p1Ñ p1.§ p1{τ : the cofiber of τ .

    Theorem (Isaksen)

    motAdamsNovikovSSpp1{τq collapses at E2.

    Theorem (Gheorghe - Wang - X.)

    p1{τ -Modcell » StablepBP˚BP-Comodq

    Alternative proofs: Krause, and Pstra̧gowski.

  • Over Spec CTheorem (Voevodsky)

    π˚,˚HFp “ Fprτ s, |τ | “ p0,´1q.

    § τ : Σ0,´1p1Ñ p1.§ p1{τ : the cofiber of τ .

    Theorem (Isaksen)

    motAdamsNovikovSSpp1{τq collapses at E2.

    Theorem (Gheorghe - Wang - X.)

    p1{τ -Modcell » StablepBP˚BP-Comodq

    Alternative proofs: Krause, and Pstra̧gowski.

  • Over Spec CTheorem (Voevodsky)

    π˚,˚HFp “ Fprτ s, |τ | “ p0,´1q.

    § τ : Σ0,´1p1Ñ p1.§ p1{τ : the cofiber of τ .

    Theorem (Isaksen)

    motAdamsNovikovSSpp1{τq collapses at E2.

    Theorem (Gheorghe - Wang - X.)

    p1{τ -Modcell » StablepBP˚BP-Comodq

    Alternative proofs: Krause, and Pstra̧gowski.

  • Isomorphism of spectral sequences

    Theorem (Gheorghe - Wang - X.)

    algNovikovSSpBP˚q – motAdamsSSpp1{τq.

    Exts,2wBP˚BPpFp, Ia´s{I a´s`1q

    Algebraic Novikov SS

    ��

    – // Exta,2w´s`a,wA pFprτ s,Fpq

    Motivic Adams SS

    ��Exts,2wBP˚BPpBP˚,BP˚q

    – // π2w´s,w pp1{τq.

  • Strategy of Stem-wise Computations

    § Compute Ext over C.§ Compute algNovikovSSpBP˚q, including all differentials.

    § algNovikovSSpBP˚q – motAdamsSSpp1{τq§

    p1 ÝÑ p1{τ ÝÑ Σ1,´1p1

    pull back Adams differentials from p1{τ to p1.§ Apply ad hoc arguments such as shuffling Toda brackets.

    § Invert τ .

  • Strategy of Stem-wise Computations

    § Compute Ext over C.§ Compute algNovikovSSpBP˚q, including all differentials.§ algNovikovSSpBP˚q – motAdamsSSpp1{τq

    §p1 ÝÑ p1{τ ÝÑ Σ1,´1p1

    pull back Adams differentials from p1{τ to p1.§ Apply ad hoc arguments such as shuffling Toda brackets.

    § Invert τ .

  • Strategy of Stem-wise Computations

    § Compute Ext over C.§ Compute algNovikovSSpBP˚q, including all differentials.§ algNovikovSSpBP˚q – motAdamsSSpp1{τq§

    p1 ÝÑ p1{τ ÝÑ Σ1,´1p1

    pull back Adams differentials from p1{τ to p1.§ Apply ad hoc arguments such as shuffling Toda brackets.

    § Invert τ .

  • Strategy of Stem-wise Computations

    § Compute Ext over C.§ Compute algNovikovSSpBP˚q, including all differentials.§ algNovikovSSpBP˚q – motAdamsSSpp1{τq§

    p1 ÝÑ p1{τ ÝÑ Σ1,´1p1

    pull back Adams differentials from p1{τ to p1.§ Apply ad hoc arguments such as shuffling Toda brackets.

    § Invert τ .

  • General Questions

    Questions

    § Can this p1{τ method be applied to other fields?

    § What about the non-cellular part?

  • General Questions

    Questions

    § Can this p1{τ method be applied to other fields?§ What about the non-cellular part?

  • Chow-Novikov t-structure on SHpkq

    § X : smooth projective scheme over k ,

    § ξ: virtual vector bundle over X ,

    § ThpX , ξq: its Thom spectrum.

    Definition (Chow-Novikov t-structure)

    § SHpkqtě0: full subcategory generated by ThpX , ξqunder colimits and extensions.

    § SHpkqtă0: objects Y such that for any object X P SHpkqtě0,

    rX ,Y sSHpkq “ 0.

    This defines a t-structure.

  • Chow-Novikov t-structure on SHpkq

    § X : smooth projective scheme over k ,

    § ξ: virtual vector bundle over X ,

    § ThpX , ξq: its Thom spectrum.

    Definition (Chow-Novikov t-structure)

    § SHpkqtě0: full subcategory generated by ThpX , ξqunder colimits and extensions.

    § SHpkqtă0: objects Y such that for any object X P SHpkqtě0,

    rX ,Y sSHpkq “ 0.

    This defines a t-structure.

  • Chow-Novikov t-structure on SHpkq

    § X : smooth projective scheme over k ,

    § ξ: virtual vector bundle over X ,

    § ThpX , ξq: its Thom spectrum.

    Definition (Chow-Novikov t-structure)

    § SHpkqtě0: full subcategory generated by ThpX , ξqunder colimits and extensions.

    § SHpkqtă0: objects Y such that for any object X P SHpkqtě0,

    rX ,Y sSHpkq “ 0.

    This defines a t-structure.

  • Chow-Novikov t-structure on SHpkq

    § X : smooth projective scheme over k ,

    § ξ: virtual vector bundle over X ,

    § ThpX , ξq: its Thom spectrum.

    Definition (Chow-Novikov t-structure)

    § SHpkqtě0: full subcategory generated by ThpX , ξqunder colimits and extensions.

    § SHpkqtă0: objects Y such that for any object X P SHpkqtě0,

    rX ,Y sSHpkq “ 0.

    This defines a t-structure.

  • Chow-Novikov t-structure on SHpkq

    § X : smooth projective scheme over k ,

    § ξ: virtual vector bundle over X ,

    § ThpX , ξq: its Thom spectrum.

    Definition (Chow-Novikov t-structure)

    § SHpkqtě0: full subcategory generated by ThpX , ξqunder colimits and extensions.

    § SHpkqtă0: objects Y such that for any object X P SHpkqtě0,

    rX ,Y sSHpkq “ 0.

    This defines a t-structure.

  • Chow-Novikov t-structure on SHpkq§ Hopkins-Morel, Levine:

    MGL˚,˚ is in ě 0 Chow-Novikov degrees.Chow-Novikov degree 0 part “ MU˚.

    § X P SHpkqtě0 ñMGL˚,˚X is in ě 0 Chow-Novikov degrees.

    § Y P SHpkqtă0 ñ

    MGL˚,˚Y “ colim π˚,˚Σ´2n,´nThpGr ,V q ^ Y“ colim rΣ˚,˚1^ Σ2n,nDpThpGr ,V qq,Y sSHpkq“ 0 on ě 0 Chow-Novikov degrees.

    MGL˚,˚Y is in ă 0 Chow-Novikov degrees.§ X P SHpkq♥ ñ MGL˚,˚X is in Chow-Novikov degree 0.

    Question

    What is this heart?

  • Chow-Novikov t-structure on SHpkq§ Hopkins-Morel, Levine:

    MGL˚,˚ is in ě 0 Chow-Novikov degrees.Chow-Novikov degree 0 part “ MU˚.

    § X P SHpkqtě0 ñMGL˚,˚X is in ě 0 Chow-Novikov degrees.

    § Y P SHpkqtă0 ñ

    MGL˚,˚Y “ colim π˚,˚Σ´2n,´nThpGr ,V q ^ Y“ colim rΣ˚,˚1^ Σ2n,nDpThpGr ,V qq,Y sSHpkq“ 0 on ě 0 Chow-Novikov degrees.

    MGL˚,˚Y is in ă 0 Chow-Novikov degrees.§ X P SHpkq♥ ñ MGL˚,˚X is in Chow-Novikov degree 0.

    Question

    What is this heart?

  • Chow-Novikov t-structure on SHpkq§ Hopkins-Morel, Levine:

    MGL˚,˚ is in ě 0 Chow-Novikov degrees.Chow-Novikov degree 0 part “ MU˚.

    § X P SHpkqtě0 ñMGL˚,˚X is in ě 0 Chow-Novikov degrees.

    § Y P SHpkqtă0 ñ

    MGL˚,˚Y “ colim π˚,˚Σ´2n,´nThpGr ,V q ^ Y“ colim rΣ˚,˚1^ Σ2n,nDpThpGr ,V qq,Y sSHpkq“ 0 on ě 0 Chow-Novikov degrees.

    MGL˚,˚Y is in ă 0 Chow-Novikov degrees.§ X P SHpkq♥ ñ MGL˚,˚X is in Chow-Novikov degree 0.

    Question

    What is this heart?

  • Chow-Novikov t-structure on SHpkq§ Hopkins-Morel, Levine:

    MGL˚,˚ is in ě 0 Chow-Novikov degrees.Chow-Novikov degree 0 part “ MU˚.

    § X P SHpkqtě0 ñMGL˚,˚X is in ě 0 Chow-Novikov degrees.

    § Y P SHpkqtă0 ñ

    MGL˚,˚Y “ colim π˚,˚Σ´2n,´nThpGr ,V q ^ Y“ colim rΣ˚,˚1^ Σ2n,nDpThpGr ,V qq,Y sSHpkq“ 0 on ě 0 Chow-Novikov degrees.

    MGL˚,˚Y is in ă 0 Chow-Novikov degrees.

    § X P SHpkq♥ ñ MGL˚,˚X is in Chow-Novikov degree 0.

    Question

    What is this heart?

  • Chow-Novikov t-structure on SHpkq§ Hopkins-Morel, Levine:

    MGL˚,˚ is in ě 0 Chow-Novikov degrees.Chow-Novikov degree 0 part “ MU˚.

    § X P SHpkqtě0 ñMGL˚,˚X is in ě 0 Chow-Novikov degrees.

    § Y P SHpkqtă0 ñ

    MGL˚,˚Y “ colim π˚,˚Σ´2n,´nThpGr ,V q ^ Y“ colim rΣ˚,˚1^ Σ2n,nDpThpGr ,V qq,Y sSHpkq“ 0 on ě 0 Chow-Novikov degrees.

    MGL˚,˚Y is in ă 0 Chow-Novikov degrees.§ X P SHpkq♥ ñ MGL˚,˚X is in Chow-Novikov degree 0.

    Question

    What is this heart?

  • Chow-Novikov t-structure on SHpkq§ Hopkins-Morel, Levine:

    MGL˚,˚ is in ě 0 Chow-Novikov degrees.Chow-Novikov degree 0 part “ MU˚.

    § X P SHpkqtě0 ñMGL˚,˚X is in ě 0 Chow-Novikov degrees.

    § Y P SHpkqtă0 ñ

    MGL˚,˚Y “ colim π˚,˚Σ´2n,´nThpGr ,V q ^ Y“ colim rΣ˚,˚1^ Σ2n,nDpThpGr ,V qq,Y sSHpkq“ 0 on ě 0 Chow-Novikov degrees.

    MGL˚,˚Y is in ă 0 Chow-Novikov degrees.§ X P SHpkq♥ ñ MGL˚,˚X is in Chow-Novikov degree 0.

    Question

    What is this heart?

  • Chow-Novikov t-structure on SHpkq

    MGL-ModU // SHpkqF

    oo // τtď01-Mod

    Theorem (Bachmann - Kong - Wang - X.)

    § MGL-Mod♥ » FunˆphPMopMGL,Setq,

    § SHpkq♥ » τtď01-Mod♥ » C -Comod, C “ FU.

    Restricting to cellular subcategories,

    Theorem (Bachmann - Kong - Wang - X.)

    § MGL-Mod♥cell » MU˚-Mod,

    § SHpkq♥cell » MU˚MU-Comod,§ τtď01cell-Modcell » StablepMU˚MU-Comodq

  • Chow-Novikov t-structure on SHpkq

    MGL-ModU // SHpkqF

    oo // τtď01-Mod

    Theorem (Bachmann - Kong - Wang - X.)

    § MGL-Mod♥ » FunˆphPMopMGL,Setq,

    § SHpkq♥ » τtď01-Mod♥ » C -Comod, C “ FU.

    Restricting to cellular subcategories,

    Theorem (Bachmann - Kong - Wang - X.)

    § MGL-Mod♥cell » MU˚-Mod,

    § SHpkq♥cell » MU˚MU-Comod,§ τtď01cell-Modcell » StablepMU˚MU-Comodq

  • Chow-Novikov t-structure on SHpkq

    MGL-ModU // SHpkqF

    oo // τtď01-Mod

    Theorem (Bachmann - Kong - Wang - X.)

    § MGL-Mod♥ » FunˆphPMopMGL,Setq,

    § SHpkq♥ » τtď01-Mod♥ » C -Comod, C “ FU.

    Restricting to cellular subcategories,

    Theorem (Bachmann - Kong - Wang - X.)

    § MGL-Mod♥cell » MU˚-Mod,

    § SHpkq♥cell » MU˚MU-Comod,§ τtď01cell-Modcell » StablepMU˚MU-Comodq

  • Chow-Novikov t-structure on SHpkq

    MGL-ModU // SHpkqF

    oo // τtď01-Mod

    Theorem (Bachmann - Kong - Wang - X.)

    § MGL-Mod♥ » FunˆphPMopMGL,Setq,

    § SHpkq♥ » τtď01-Mod♥ » C -Comod, C “ FU.

    Restricting to cellular subcategories,

    Theorem (Bachmann - Kong - Wang - X.)

    § MGL-Mod♥cell » MU˚-Mod,

    § SHpkq♥cell » MU˚MU-Comod,§ τtď01cell-Modcell » StablepMU˚MU-Comodq

  • Chow-Novikov t-structure on SHpkq

    MGL-ModU // SHpkqF

    oo // τtď01-Mod

    Theorem (Bachmann - Kong - Wang - X.)

    § MGL-Mod♥ » FunˆphPMopMGL,Setq,

    § SHpkq♥ » τtď01-Mod♥ » C -Comod, C “ FU.

    Restricting to cellular subcategories,

    Theorem (Bachmann - Kong - Wang - X.)

    § MGL-Mod♥cell » MU˚-Mod,

    § SHpkq♥cell » MU˚MU-Comod,

    § τtď01cell-Modcell » StablepMU˚MU-Comodq

  • Chow-Novikov t-structure on SHpkq

    MGL-ModU // SHpkqF

    oo // τtď01-Mod

    Theorem (Bachmann - Kong - Wang - X.)

    § MGL-Mod♥ » FunˆphPMopMGL,Setq,

    § SHpkq♥ » τtď01-Mod♥ » C -Comod, C “ FU.

    Restricting to cellular subcategories,

    Theorem (Bachmann - Kong - Wang - X.)

    § MGL-Mod♥cell » MU˚-Mod,

    § SHpkq♥cell » MU˚MU-Comod,§ τtď01cell-Modcell » StablepMU˚MU-Comodq

  • Motivic Adams and Adams-Novikov spectral sequences

    § p1: HFp-completed sphere,

    § p1t“0: cellularization of τtď0p1,

    § p1t“0-Modcell » StablepBP˚BP-Comodq,§ X P p1t“0-Mod♥cell ñ BPGL˚,˚X is a BP˚BP-comodule.

    Work in progress: (Bachmann - Kong - Wang - X.)For X P p1t“0-Mod♥,

    § motAdamsNovikovSSpX q collapses,§ motAdamsSSpX q – algNovikovSSpBPGL˚,˚X q.

  • Motivic Adams and Adams-Novikov spectral sequences

    § p1: HFp-completed sphere,

    § p1t“0: cellularization of τtď0p1,

    § p1t“0-Modcell » StablepBP˚BP-Comodq,

    § X P p1t“0-Mod♥cell ñ BPGL˚,˚X is a BP˚BP-comodule.

    Work in progress: (Bachmann - Kong - Wang - X.)For X P p1t“0-Mod♥,

    § motAdamsNovikovSSpX q collapses,§ motAdamsSSpX q – algNovikovSSpBPGL˚,˚X q.

  • Motivic Adams and Adams-Novikov spectral sequences

    § p1: HFp-completed sphere,

    § p1t“0: cellularization of τtď0p1,

    § p1t“0-Modcell » StablepBP˚BP-Comodq,§ X P p1t“0-Mod♥cell ñ BPGL˚,˚X is a BP˚BP-comodule.

    Work in progress: (Bachmann - Kong - Wang - X.)For X P p1t“0-Mod♥,

    § motAdamsNovikovSSpX q collapses,§ motAdamsSSpX q – algNovikovSSpBPGL˚,˚X q.

  • Motivic Adams and Adams-Novikov spectral sequences

    § p1: HFp-completed sphere,

    § p1t“0: cellularization of τtď0p1,

    § p1t“0-Modcell » StablepBP˚BP-Comodq,§ X P p1t“0-Mod♥cell ñ BPGL˚,˚X is a BP˚BP-comodule.

    Work in progress: (Bachmann - Kong - Wang - X.)For X P p1t“0-Mod♥,

    § motAdamsNovikovSSpX q collapses,§ motAdamsSSpX q – algNovikovSSpBPGL˚,˚X q.

  • Motivic Adams and Adams-Novikov spectral sequences

    § p1: HFp-completed sphere,

    § p1t“0: cellularization of τtď0p1,

    § p1t“0-Modcell » StablepBP˚BP-Comodq,§ X P p1t“0-Mod♥cell ñ BPGL˚,˚X is a BP˚BP-comodule.

    Work in progress: (Bachmann - Kong - Wang - X.)For X P p1t“0-Mod♥,

    § motAdamsNovikovSSpX q collapses,

    § motAdamsSSpX q – algNovikovSSpBPGL˚,˚X q.

  • Motivic Adams and Adams-Novikov spectral sequences

    § p1: HFp-completed sphere,

    § p1t“0: cellularization of τtď0p1,

    § p1t“0-Modcell » StablepBP˚BP-Comodq,§ X P p1t“0-Mod♥cell ñ BPGL˚,˚X is a BP˚BP-comodule.

    Work in progress: (Bachmann - Kong - Wang - X.)For X P p1t“0-Mod♥,

    § motAdamsNovikovSSpX q collapses,§ motAdamsSSpX q – algNovikovSSpBPGL˚,˚X q.

  • Postnikov Tower

    Postnikov tower for p1 w.r.t. the Chow-Novikov t-structure:

    ��p1tě2

    ��

    //p1t“2

    p1tě1

    ��

    //p1t“1

    p1 p1 // p1t“0

    § p1t“n: cellular spectrum such that

    BPGL˚,˚p1t“n “ Chow-Novikov degree n part of BPGL˚,˚.

  • Postnikov Tower

    Postnikov tower for p1 w.r.t. the Chow-Novikov t-structure:

    ��p1tě2

    ��

    //p1t“2

    p1tě1

    ��

    //p1t“1

    p1 p1 // p1t“0

    § p1t“n: cellular spectrum such that

    BPGL˚,˚p1t“n “ Chow-Novikov degree n part of BPGL˚,˚.

  • Computing Stable Stems over k

    Apply the motivic Adams spectral sequences:

    ��motASSpp1tě2q

    ��

    // motASSpp1t“2q algNSSpBPGL˚,˚p1t“2q

    motASSpp1tě1q

    ��

    // motASSpp1t“1q algNSSpBPGL˚,˚p1t“1q

    motASSpp1q motASSpp1q // motASSpp1t“0q algNSSpBPGL˚,˚p1t“0q

  • Stable Stems over C

    § π˚,˚BPGL “ Zprτ, v1, v2, ¨ ¨ ¨ s,

    § Chow-Novikov degree: |τ | “ 2, |vi | “ 0.§ Chow-Novikov degree 2k: Σ0,´kBP˚,

    § Chow-Novikov degree 2k ` 1: 0.§ p1“2k “ Σ0,´kp1{τ , k ě 0§ p1“2k`1 “ ˚.

    motASSpΣ0,´2p1q

    ��

    // motASSpΣ0,´2p1{τq algNSSpΣ0,´2BP˚q

    motASSpΣ0,´1p1q

    ��

    // motASSpΣ0,´1p1{τq algNSSpΣ0,´1BP˚q

    motASSpp1q motASSpp1q // motASSpp1{τq algNSSpBP˚q

  • Stable Stems over C

    § π˚,˚BPGL “ Zprτ, v1, v2, ¨ ¨ ¨ s,§ Chow-Novikov degree: |τ | “ 2, |vi | “ 0.

    § Chow-Novikov degree 2k: Σ0,´kBP˚,

    § Chow-Novikov degree 2k ` 1: 0.§ p1“2k “ Σ0,´kp1{τ , k ě 0§ p1“2k`1 “ ˚.

    motASSpΣ0,´2p1q

    ��

    // motASSpΣ0,´2p1{τq algNSSpΣ0,´2BP˚q

    motASSpΣ0,´1p1q

    ��

    // motASSpΣ0,´1p1{τq algNSSpΣ0,´1BP˚q

    motASSpp1q motASSpp1q // motASSpp1{τq algNSSpBP˚q

  • Stable Stems over C

    § π˚,˚BPGL “ Zprτ, v1, v2, ¨ ¨ ¨ s,§ Chow-Novikov degree: |τ | “ 2, |vi | “ 0.§ Chow-Novikov degree 2k : Σ0,´kBP˚,

    § Chow-Novikov degree 2k ` 1: 0.

    § p1“2k “ Σ0,´kp1{τ , k ě 0§ p1“2k`1 “ ˚.

    motASSpΣ0,´2p1q

    ��

    // motASSpΣ0,´2p1{τq algNSSpΣ0,´2BP˚q

    motASSpΣ0,´1p1q

    ��

    // motASSpΣ0,´1p1{τq algNSSpΣ0,´1BP˚q

    motASSpp1q motASSpp1q // motASSpp1{τq algNSSpBP˚q

  • Stable Stems over C

    § π˚,˚BPGL “ Zprτ, v1, v2, ¨ ¨ ¨ s,§ Chow-Novikov degree: |τ | “ 2, |vi | “ 0.§ Chow-Novikov degree 2k : Σ0,´kBP˚,

    § Chow-Novikov degree 2k ` 1: 0.§ p1“2k “ Σ0,´kp1{τ , k ě 0§ p1“2k`1 “ ˚.

    motASSpΣ0,´2p1q

    ��

    // motASSpΣ0,´2p1{τq algNSSpΣ0,´2BP˚q

    motASSpΣ0,´1p1q

    ��

    // motASSpΣ0,´1p1{τq algNSSpΣ0,´1BP˚q

    motASSpp1q motASSpp1q // motASSpp1{τq algNSSpBP˚q

  • Stable Stems over C

    § π˚,˚BPGL “ Zprτ, v1, v2, ¨ ¨ ¨ s,§ Chow-Novikov degree: |τ | “ 2, |vi | “ 0.§ Chow-Novikov degree 2k : Σ0,´kBP˚,

    § Chow-Novikov degree 2k ` 1: 0.§ p1“2k “ Σ0,´kp1{τ , k ě 0§ p1“2k`1 “ ˚.

    motASSpΣ0,´2p1q

    ��

    // motASSpΣ0,´2p1{τq algNSSpΣ0,´2BP˚q

    motASSpΣ0,´1p1q

    ��

    // motASSpΣ0,´1p1{τq algNSSpΣ0,´1BP˚q

    motASSpp1q motASSpp1q // motASSpp1{τq algNSSpBP˚q

  • Stable Stems over R

    § π˚,˚HFp “ Fprρ, τ s|τ | “ p0,´1q, |ρ| “ p´1,´1q.

    § ρ : Σ´1,´11Ñ 1, ρ : Σ´1,´1p1Ñ p1§ p1{ρ: cofiber of ρ

    § τ : Σ0,´1p1{ρ ÝÑ p1{ρ§ p1{pρ, τq: its cofiber - a 4 cell complex.

    § p1t“0 » p1{pρ, τq.

  • Stable Stems over R

    § π˚,˚HFp “ Fprρ, τ s|τ | “ p0,´1q, |ρ| “ p´1,´1q.

    § ρ : Σ´1,´11Ñ 1, ρ : Σ´1,´1p1Ñ p1§ p1{ρ: cofiber of ρ

    § τ : Σ0,´1p1{ρ ÝÑ p1{ρ§ p1{pρ, τq: its cofiber - a 4 cell complex.

    § p1t“0 » p1{pρ, τq.

  • Stable Stems over R

    § π˚,˚HFp “ Fprρ, τ s|τ | “ p0,´1q, |ρ| “ p´1,´1q.

    § ρ : Σ´1,´11Ñ 1, ρ : Σ´1,´1p1Ñ p1§ p1{ρ: cofiber of ρ

    § τ : Σ0,´1p1{ρ ÝÑ p1{ρ

    § p1{pρ, τq: its cofiber - a 4 cell complex.

    § p1t“0 » p1{pρ, τq.

  • Stable Stems over R

    § π˚,˚HFp “ Fprρ, τ s|τ | “ p0,´1q, |ρ| “ p´1,´1q.

    § ρ : Σ´1,´11Ñ 1, ρ : Σ´1,´1p1Ñ p1§ p1{ρ: cofiber of ρ

    § τ : Σ0,´1p1{ρ ÝÑ p1{ρ§ p1{pρ, τq: its cofiber - a 4 cell complex.

    § p1t“0 » p1{pρ, τq.

  • Stable Stems over R

    § π˚,˚HFp “ Fprρ, τ s|τ | “ p0,´1q, |ρ| “ p´1,´1q.

    § ρ : Σ´1,´11Ñ 1, ρ : Σ´1,´1p1Ñ p1§ p1{ρ: cofiber of ρ

    § τ : Σ0,´1p1{ρ ÝÑ p1{ρ§ p1{pρ, τq: its cofiber - a 4 cell complex.

    § p1t“0 » p1{pρ, τq.

  • Stable Stems over R at p “ 2

    Theorem (Hu-Kriz, Hill)

    BPGL˚,˚ “ Z2

    »

    ρ,v0, τ

    2v0, τ4v0, τ

    6v0, τ8v0, ¨ ¨ ¨

    v1, τ4v1, τ

    8v1, ¨ ¨ ¨v2, τ

    8v2, ¨ ¨ ¨¨ ¨ ¨

    fi

    ffi

    ffi

    ffi

    ffi

    fl

    {

    »

    v0 “ 2ρv0 “ 0ρ3v1 “ 0ρ7v2 “ 0¨ ¨ ¨

    fi

    ffi

    ffi

    ffi

    ffi

    fl

    and the generators satisfy the further relations

    τ 2i`1¨jvi ¨ τ 2

    k`1¨lvk “ τ 2i`1pj`2k´i lqvivk

    when i ď k, as if the class τ were an element in this ring.

  • Low Chow-Novikov degrees over R§ Chow-Novikov = 0: Z2rv0, v1, ¨ ¨ ¨ s “ BP˚.

    § Chow-Novikov = 1: ρ ¨ Z2rv0, v1, ¨ ¨ ¨ s{ρv0 “ Σ´1,´1BP˚{2.§ Chow-Novikov = 2: ρ2 ¨ Z2rv0, v1, ¨ ¨ ¨ s{ρv0 “ Σ´2,´2BP˚{2.§ Chow-Novikov = 3:ρ3 ¨ Z2rv0, v1, ¨ ¨ ¨ s{pρv0, ρ3v1q “ Σ´3,´3BP˚{p2, v1q.

    § Chow-Novikov = 4:ρ4BP˚ ‘ τ 2v0BP˚ “ Σ´4,´4BP˚{p2, v1q ‘ Σ0,´2BP˚.

    § Chow-Novikov = 5:ρ5BP˚ ‘ ppρ ¨ τ 2v0 “ 0qBP˚ “ Σ´5,´5BP˚{p2, v1q.

    § Chow-Novikov = 6: ρ6BP˚ ‘ ρ2 ¨ τ 2v0BP˚ “ Σ´6,´6BP˚{p2, v1q.§ Chow-Novikov = 7: ρ7BP˚ “ Σ´7,´7BP˚{p2, v1, v2q.

    § Chow-Novikov = 8: ρ8BP˚ ‘ τ4v0BP˚‘τ 4v1BP˚τ 4v0¨v1´τ 4v1¨v0

    “ Σ´8,´8BP˚{p2, v1, v2q ‘ pΣ0,´4BP˚ ` Σ2,´3BP˚{2q.

  • Low Chow-Novikov degrees over R§ Chow-Novikov = 0: Z2rv0, v1, ¨ ¨ ¨ s “ BP˚.§ Chow-Novikov = 1: ρ ¨ Z2rv0, v1, ¨ ¨ ¨ s{ρv0 “ Σ´1,´1BP˚{2.

    § Chow-Novikov = 2: ρ2 ¨ Z2rv0, v1, ¨ ¨ ¨ s{ρv0 “ Σ´2,´2BP˚{2.§ Chow-Novikov = 3:ρ3 ¨ Z2rv0, v1, ¨ ¨ ¨ s{pρv0, ρ3v1q “ Σ´3,´3BP˚{p2, v1q.

    § Chow-Novikov = 4:ρ4BP˚ ‘ τ 2v0BP˚ “ Σ´4,´4BP˚{p2, v1q ‘ Σ0,´2BP˚.

    § Chow-Novikov = 5:ρ5BP˚ ‘ ppρ ¨ τ 2v0 “ 0qBP˚ “ Σ´5,´5BP˚{p2, v1q.

    § Chow-Novikov = 6: ρ6BP˚ ‘ ρ2 ¨ τ 2v0BP˚ “ Σ´6,´6BP˚{p2, v1q.§ Chow-Novikov = 7: ρ7BP˚ “ Σ´7,´7BP˚{p2, v1, v2q.

    § Chow-Novikov = 8: ρ8BP˚ ‘ τ4v0BP˚‘τ 4v1BP˚τ 4v0¨v1´τ 4v1¨v0

    “ Σ´8,´8BP˚{p2, v1, v2q ‘ pΣ0,´4BP˚ ` Σ2,´3BP˚{2q.

  • Low Chow-Novikov degrees over R§ Chow-Novikov = 0: Z2rv0, v1, ¨ ¨ ¨ s “ BP˚.§ Chow-Novikov = 1: ρ ¨ Z2rv0, v1, ¨ ¨ ¨ s{ρv0 “ Σ´1,´1BP˚{2.§ Chow-Novikov = 2: ρ2 ¨ Z2rv0, v1, ¨ ¨ ¨ s{ρv0 “ Σ´2,´2BP˚{2.

    § Chow-Novikov = 3:ρ3 ¨ Z2rv0, v1, ¨ ¨ ¨ s{pρv0, ρ3v1q “ Σ´3,´3BP˚{p2, v1q.

    § Chow-Novikov = 4:ρ4BP˚ ‘ τ 2v0BP˚ “ Σ´4,´4BP˚{p2, v1q ‘ Σ0,´2BP˚.

    § Chow-Novikov = 5:ρ5BP˚ ‘ ppρ ¨ τ 2v0 “ 0qBP˚ “ Σ´5,´5BP˚{p2, v1q.

    § Chow-Novikov = 6: ρ6BP˚ ‘ ρ2 ¨ τ 2v0BP˚ “ Σ´6,´6BP˚{p2, v1q.§ Chow-Novikov = 7: ρ7BP˚ “ Σ´7,´7BP˚{p2, v1, v2q.

    § Chow-Novikov = 8: ρ8BP˚ ‘ τ4v0BP˚‘τ 4v1BP˚τ 4v0¨v1´τ 4v1¨v0

    “ Σ´8,´8BP˚{p2, v1, v2q ‘ pΣ0,´4BP˚ ` Σ2,´3BP˚{2q.

  • Low Chow-Novikov degrees over R§ Chow-Novikov = 0: Z2rv0, v1, ¨ ¨ ¨ s “ BP˚.§ Chow-Novikov = 1: ρ ¨ Z2rv0, v1, ¨ ¨ ¨ s{ρv0 “ Σ´1,´1BP˚{2.§ Chow-Novikov = 2: ρ2 ¨ Z2rv0, v1, ¨ ¨ ¨ s{ρv0 “ Σ´2,´2BP˚{2.§ Chow-Novikov = 3:ρ3 ¨ Z2rv0, v1, ¨ ¨ ¨ s{pρv0, ρ3v1q “ Σ´3,´3BP˚{p2, v1q.

    § Chow-Novikov = 4:ρ4BP˚ ‘ τ 2v0BP˚ “ Σ´4,´4BP˚{p2, v1q ‘ Σ0,´2BP˚.

    § Chow-Novikov = 5:ρ5BP˚ ‘ ppρ ¨ τ 2v0 “ 0qBP˚ “ Σ´5,´5BP˚{p2, v1q.

    § Chow-Novikov = 6: ρ6BP˚ ‘ ρ2 ¨ τ 2v0BP˚ “ Σ´6,´6BP˚{p2, v1q.§ Chow-Novikov = 7: ρ7BP˚ “ Σ´7,´7BP˚{p2, v1, v2q.

    § Chow-Novikov = 8: ρ8BP˚ ‘ τ4v0BP˚‘τ 4v1BP˚τ 4v0¨v1´τ 4v1¨v0

    “ Σ´8,´8BP˚{p2, v1, v2q ‘ pΣ0,´4BP˚ ` Σ2,´3BP˚{2q.

  • Low Chow-Novikov degrees over R§ Chow-Novikov = 0: Z2rv0, v1, ¨ ¨ ¨ s “ BP˚.§ Chow-Novikov = 1: ρ ¨ Z2rv0, v1, ¨ ¨ ¨ s{ρv0 “ Σ´1,´1BP˚{2.§ Chow-Novikov = 2: ρ2 ¨ Z2rv0, v1, ¨ ¨ ¨ s{ρv0 “ Σ´2,´2BP˚{2.§ Chow-Novikov = 3:ρ3 ¨ Z2rv0, v1, ¨ ¨ ¨ s{pρv0, ρ3v1q “ Σ´3,´3BP˚{p2, v1q.

    § Chow-Novikov = 4:ρ4BP˚ ‘ τ 2v0BP˚ “ Σ´4,´4BP˚{p2, v1q ‘ Σ0,´2BP˚.

    § Chow-Novikov = 5:ρ5BP˚ ‘ ppρ ¨ τ 2v0 “ 0qBP˚ “ Σ´5,´5BP˚{p2, v1q.

    § Chow-Novikov = 6: ρ6BP˚ ‘ ρ2 ¨ τ 2v0BP˚ “ Σ´6,´6BP˚{p2, v1q.§ Chow-Novikov = 7: ρ7BP˚ “ Σ´7,´7BP˚{p2, v1, v2q.

    § Chow-Novikov = 8: ρ8BP˚ ‘ τ4v0BP˚‘τ 4v1BP˚τ 4v0¨v1´τ 4v1¨v0

    “ Σ´8,´8BP˚{p2, v1, v2q ‘ pΣ0,´4BP˚ ` Σ2,´3BP˚{2q.

  • Low Chow-Novikov degrees over R§ Chow-Novikov = 0: Z2rv0, v1, ¨ ¨ ¨ s “ BP˚.§ Chow-Novikov = 1: ρ ¨ Z2rv0, v1, ¨ ¨ ¨ s{ρv0 “ Σ´1,´1BP˚{2.§ Chow-Novikov = 2: ρ2 ¨ Z2rv0, v1, ¨ ¨ ¨ s{ρv0 “ Σ´2,´2BP˚{2.§ Chow-Novikov = 3:ρ3 ¨ Z2rv0, v1, ¨ ¨ ¨ s{pρv0, ρ3v1q “ Σ´3,´3BP˚{p2, v1q.

    § Chow-Novikov = 4:ρ4BP˚ ‘ τ 2v0BP˚ “ Σ´4,´4BP˚{p2, v1q ‘ Σ0,´2BP˚.

    § Chow-Novikov = 5:ρ5BP˚ ‘ ppρ ¨ τ 2v0 “ 0qBP˚ “ Σ´5,´5BP˚{p2, v1q.

    § Chow-Novikov = 6: ρ6BP˚ ‘ ρ2 ¨ τ 2v0BP˚ “ Σ´6,´6BP˚{p2, v1q.§ Chow-Novikov = 7: ρ7BP˚ “ Σ´7,´7BP˚{p2, v1, v2q.

    § Chow-Novikov = 8: ρ8BP˚ ‘ τ4v0BP˚‘τ 4v1BP˚τ 4v0¨v1´τ 4v1¨v0

    “ Σ´8,´8BP˚{p2, v1, v2q ‘ pΣ0,´4BP˚ ` Σ2,´3BP˚{2q.

  • Low Chow-Novikov degrees over R§ Chow-Novikov = 0: Z2rv0, v1, ¨ ¨ ¨ s “ BP˚.§ Chow-Novikov = 1: ρ ¨ Z2rv0, v1, ¨ ¨ ¨ s{ρv0 “ Σ´1,´1BP˚{2.§ Chow-Novikov = 2: ρ2 ¨ Z2rv0, v1, ¨ ¨ ¨ s{ρv0 “ Σ´2,´2BP˚{2.§ Chow-Novikov = 3:ρ3 ¨ Z2rv0, v1, ¨ ¨ ¨ s{pρv0, ρ3v1q “ Σ´3,´3BP˚{p2, v1q.

    § Chow-Novikov = 4:ρ4BP˚ ‘ τ 2v0BP˚ “ Σ´4,´4BP˚{p2, v1q ‘ Σ0,´2BP˚.

    § Chow-Novikov = 5:ρ5BP˚ ‘ ppρ ¨ τ 2v0 “ 0qBP˚ “ Σ´5,´5BP˚{p2, v1q.

    § Chow-Novikov = 6: ρ6BP˚ ‘ ρ2 ¨ τ 2v0BP˚ “ Σ´6,´6BP˚{p2, v1q.§ Chow-Novikov = 7: ρ7BP˚ “ Σ´7,´7BP˚{p2, v1, v2q.

    § Chow-Novikov = 8: ρ8BP˚ ‘ τ4v0BP˚‘τ 4v1BP˚τ 4v0¨v1´τ 4v1¨v0

    “ Σ´8,´8BP˚{p2, v1, v2q ‘ pΣ0,´4BP˚ ` Σ2,´3BP˚{2q.

  • Low Chow-Novikov degrees over R

    0 // Σ|vn`1|BP˚{Invn`1 // BP˚{In // BP˚{In`1 // 0.

    BP˚{In can be inductively realized by p1{pρ, τ, 2, v1, ¨ ¨ ¨ , vnq.§ p1t“0 » p1{pρ, τq.§ p1t“1 » Σ´1,´1p1{pρ, τ, 2q.§ p1t“2 » Σ´2,´2p1{pρ, τ, 2q.§ p1t“3 » Σ´3,´3p1{pρ, τ, 2, v1q.§ p1t“4 » Σ´4,´4p1{pρ, τ, 2, v1q _ Σ0,´2p1{pρ, τq.§ p1t“5 » Σ´5,´5p1{pρ, τ, 2, v1q.§ p1t“6 » Σ´6,´6p1{pρ, τ, 2, v1q.§ p1t“7 » Σ´7,´7p1{pρ, τ, 2, v1, v2q.§ p1t“8 » Σ´8,´8p1{pρ, τ, 2, v1, v2q _ X , X “ cofiber of:

    Σ´2,´3p1{pρ, τqpv0,v1q // Σ´2,´3p1{pρ, τq _ Σ0,´4p1{pρ, τq

  • Low Chow-Novikov degrees over R

    0 // Σ|vn`1|BP˚{Invn`1 // BP˚{In // BP˚{In`1 // 0.

    BP˚{In can be inductively realized by p1{pρ, τ, 2, v1, ¨ ¨ ¨ , vnq.

    § p1t“0 » p1{pρ, τq.§ p1t“1 » Σ´1,´1p1{pρ, τ, 2q.§ p1t“2 » Σ´2,´2p1{pρ, τ, 2q.§ p1t“3 » Σ´3,´3p1{pρ, τ, 2, v1q.§ p1t“4 » Σ´4,´4p1{pρ, τ, 2, v1q _ Σ0,´2p1{pρ, τq.§ p1t“5 » Σ´5,´5p1{pρ, τ, 2, v1q.§ p1t“6 » Σ´6,´6p1{pρ, τ, 2, v1q.§ p1t“7 » Σ´7,´7p1{pρ, τ, 2, v1, v2q.§ p1t“8 » Σ´8,´8p1{pρ, τ, 2, v1, v2q _ X , X “ cofiber of:

    Σ´2,´3p1{pρ, τqpv0,v1q // Σ´2,´3p1{pρ, τq _ Σ0,´4p1{pρ, τq

  • Low Chow-Novikov degrees over R

    0 // Σ|vn`1|BP˚{Invn`1 // BP˚{In // BP˚{In`1 // 0.

    BP˚{In can be inductively realized by p1{pρ, τ, 2, v1, ¨ ¨ ¨ , vnq.§ p1t“0 » p1{pρ, τq.§ p1t“1 » Σ´1,´1p1{pρ, τ, 2q.§ p1t“2 » Σ´2,´2p1{pρ, τ, 2q.§ p1t“3 » Σ´3,´3p1{pρ, τ, 2, v1q.§ p1t“4 » Σ´4,´4p1{pρ, τ, 2, v1q _ Σ0,´2p1{pρ, τq.§ p1t“5 » Σ´5,´5p1{pρ, τ, 2, v1q.§ p1t“6 » Σ´6,´6p1{pρ, τ, 2, v1q.§ p1t“7 » Σ´7,´7p1{pρ, τ, 2, v1, v2q.§ p1t“8 » Σ´8,´8p1{pρ, τ, 2, v1, v2q _ X , X “ cofiber of:

    Σ´2,´3p1{pρ, τqpv0,v1q // Σ´2,´3p1{pρ, τq _ Σ0,´4p1{pρ, τq

  • Stable Stems over R at p “ 2

    motASSpp1tě3q

    ��

    // motASSpΣ´3,´3p1{pρ, τ, 2, v1qq

    algNSSpΣ´3,´3BP˚{p2, v1qq

    motASSpp1tě2q

    ��

    // motASSpΣ´2,´2p1{pρ, τ, 2qq

    algNSSpΣ´2,´2BP˚{2q

    motASSpp1tě1q

    ��

    // motASSpΣ´1,´1p1{pρ, τ, 2qq

    algNSSpΣ´1,´1BP˚{2q

    motASSpp1q motASSpp1q // motASSpp1{pρ, τqq algNSSpBP˚q

    More purely algebraic parts!

  • Stable Stems over R at p “ 2

    motASSpp1tě3q

    ��

    // motASSpΣ´3,´3p1{pρ, τ, 2, v1qq

    algNSSpΣ´3,´3BP˚{p2, v1qq

    motASSpp1tě2q

    ��

    // motASSpΣ´2,´2p1{pρ, τ, 2qq

    algNSSpΣ´2,´2BP˚{2q

    motASSpp1tě1q

    ��

    // motASSpΣ´1,´1p1{pρ, τ, 2qq

    algNSSpΣ´1,´1BP˚{2q

    motASSpp1q motASSpp1q // motASSpp1{pρ, τqq algNSSpBP˚q

    More purely algebraic parts!

  • Stable Stems over Fq at p “ 2

    § q: power of an odd prime,

    § Fq: finite field with q elements,

    § π˚,˚HF2 “#

    F2rτ, us{u2, Sq1τ “ 0 if q ” 1 mod 4,F2rτ, ρs{ρ2, Sq1τ “ ρ if q ” 3 mod 4.

    |τ | “ p0,´1q, |u| “ |ρ| “ p´1,´1q.

    § π˚,˚HZ2 “#

    Z2 if p˚, ˚q “ p0, 0q,pZ{pqw ´ 1qq^2 if p˚, ˚q “ p´1,´wq and w ě 0.

    § π˚,˚BPGL “ π˚,˚HZ2 b BP˚.

  • Stable Stems over Fq at p “ 2

    § q: power of an odd prime,

    § Fq: finite field with q elements,

    § π˚,˚HF2 “#

    F2rτ, us{u2, Sq1τ “ 0 if q ” 1 mod 4,F2rτ, ρs{ρ2, Sq1τ “ ρ if q ” 3 mod 4.

    |τ | “ p0,´1q, |u| “ |ρ| “ p´1,´1q.

    § π˚,˚HZ2 “#

    Z2 if p˚, ˚q “ p0, 0q,pZ{pqw ´ 1qq^2 if p˚, ˚q “ p´1,´wq and w ě 0.

    § π˚,˚BPGL “ π˚,˚HZ2 b BP˚.

  • Stable Stems over Fq at p “ 2

    § q: power of an odd prime,

    § Fq: finite field with q elements,

    § π˚,˚HF2 “#

    F2rτ, us{u2, Sq1τ “ 0 if q ” 1 mod 4,F2rτ, ρs{ρ2, Sq1τ “ ρ if q ” 3 mod 4.

    |τ | “ p0,´1q, |u| “ |ρ| “ p´1,´1q.

    § π˚,˚HZ2 “#

    Z2 if p˚, ˚q “ p0, 0q,pZ{pqw ´ 1qq^2 if p˚, ˚q “ p´1,´wq and w ě 0.

    § π˚,˚BPGL “ π˚,˚HZ2 b BP˚.

  • Stable Stems over Fq at p “ 2

    § q: power of an odd prime,

    § Fq: finite field with q elements,

    § π˚,˚HF2 “#

    F2rτ, us{u2, Sq1τ “ 0 if q ” 1 mod 4,F2rτ, ρs{ρ2, Sq1τ “ ρ if q ” 3 mod 4.

    |τ | “ p0,´1q, |u| “ |ρ| “ p´1,´1q.

    § π˚,˚HZ2 “#

    Z2 if p˚, ˚q “ p0, 0q,pZ{pqw ´ 1qq^2 if p˚, ˚q “ p´1,´wq and w ě 0.

    § π˚,˚BPGL “ π˚,˚HZ2 b BP˚.

  • Stable Stems over Fq at p “ 2

    § π˚,˚HZ2 “#

    Z2 if p˚, ˚q “ p0, 0q,pZ{pqw ´ 1qq^2 if p˚, ˚q “ p´1,´wq and w ě 0.

    § π˚,˚BPGL “ π˚,˚HZ2 b BP˚.

    § Chow-Novikov degree 1 part of π˚,˚BPGL “$

    &

    %

    Σ´1,´1BP˚{2 if q ” 3 mod 4,Σ´1,´1BP˚{4 if q ” 5 mod 8,Σ´1,´1BP˚{8 ¨ 2m if q ” 1 mod 8.

  • Stable Stems over Fq at p “ 2

    § π˚,˚HZ2 “#

    Z2 if p˚, ˚q “ p0, 0q,pZ{pqw ´ 1qq^2 if p˚, ˚q “ p´1,´wq and w ě 0.

    § π˚,˚BPGL “ π˚,˚HZ2 b BP˚.§ Chow-Novikov degree 1 part of π˚,˚BPGL “

    $

    &

    %

    Σ´1,´1BP˚{2 if q ” 3 mod 4,Σ´1,´1BP˚{4 if q ” 5 mod 8,Σ´1,´1BP˚{8 ¨ 2m if q ” 1 mod 8.

  • Stable Stems over Fq at p “ 2§ Hoyois-Kelly-Østvær computed the mod 2 Steenrod algebra over Fq,

    § Wilson-Østvær computed πn,0 for#

    0 ď n ď 20 if q ” 1 mod 4,0 ď n ď 18 if q ” 3 mod 4.

    Proposition (Wilson-Østvær)

    § d2pτgq “ uh20g , if q ” 5 mod 8,§ d2pτgq “ 0, if q ” 1 mod 8,§ d2pτ 2gq “ ρτh20g or 0, if q ” 3 mod 4.

    Using Chow-Novikov degree ď 3 part of π˚,˚BPGL,

    Proposition (Bachmann-Kong-Wang-X.)

    When q ” 3 mod 4, d2pτ 2gq “ 0.

  • Stable Stems over Fq at p “ 2§ Hoyois-Kelly-Østvær computed the mod 2 Steenrod algebra over Fq,§ Wilson-Østvær computed πn,0 for

    #

    0 ď n ď 20 if q ” 1 mod 4,0 ď n ď 18 if q ” 3 mod 4.

    Proposition (Wilson-Østvær)

    § d2pτgq “ uh20g , if q ” 5 mod 8,§ d2pτgq “ 0, if q ” 1 mod 8,§ d2pτ 2gq “ ρτh20g or 0, if q ” 3 mod 4.

    Using Chow-Novikov degree ď 3 part of π˚,˚BPGL,

    Proposition (Bachmann-Kong-Wang-X.)

    When q ” 3 mod 4, d2pτ 2gq “ 0.

  • Stable Stems over Fq at p “ 2§ Hoyois-Kelly-Østvær computed the mod 2 Steenrod algebra over Fq,§ Wilson-Østvær computed πn,0 for

    #

    0 ď n ď 20 if q ” 1 mod 4,0 ď n ď 18 if q ” 3 mod 4.

    Proposition (Wilson-Østvær)

    § d2pτgq “ uh20g , if q ” 5 mod 8,§ d2pτgq “ 0, if q ” 1 mod 8,

    § d2pτ 2gq “ ρτh20g or 0, if q ” 3 mod 4.

    Using Chow-Novikov degree ď 3 part of π˚,˚BPGL,

    Proposition (Bachmann-Kong-Wang-X.)

    When q ” 3 mod 4, d2pτ 2gq “ 0.

  • Stable Stems over Fq at p “ 2§ Hoyois-Kelly-Østvær computed the mod 2 Steenrod algebra over Fq,§ Wilson-Østvær computed πn,0 for

    #

    0 ď n ď 20 if q ” 1 mod 4,0 ď n ď 18 if q ” 3 mod 4.

    Proposition (Wilson-Østvær)

    § d2pτgq “ uh20g , if q ” 5 mod 8,§ d2pτgq “ 0, if q ” 1 mod 8,§ d2pτ 2gq “ ρτh20g or 0, if q ” 3 mod 4.

    Using Chow-Novikov degree ď 3 part of π˚,˚BPGL,

    Proposition (Bachmann-Kong-Wang-X.)

    When q ” 3 mod 4, d2pτ 2gq “ 0.

  • Stable Stems over Fq at p “ 2§ Hoyois-Kelly-Østvær computed the mod 2 Steenrod algebra over Fq,§ Wilson-Østvær computed πn,0 for

    #

    0 ď n ď 20 if q ” 1 mod 4,0 ď n ď 18 if q ” 3 mod 4.

    Proposition (Wilson-Østvær)

    § d2pτgq “ uh20g , if q ” 5 mod 8,§ d2pτgq “ 0, if q ” 1 mod 8,§ d2pτ 2gq “ ρτh20g or 0, if q ” 3 mod 4.

    Using Chow-Novikov degree ď 3 part of π˚,˚BPGL,

    Proposition (Bachmann-Kong-Wang-X.)

    When q ” 3 mod 4, d2pτ 2gq “ 0.

  • Thank you!