stable distributions in the black-litterman approach to the asset allocation

Upload: bboyvn

Post on 08-Aug-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    1/38

    Stable distributions in the

    Black-Litterman approach to the

    asset allocation

    December 13, 2005

    Rosella Giacometti1, Marida Bertocchi1, Svetlozar T. Rachev2 and FrankJ. Fabozzi3

    Acknowledgments.The authors acknowledge the support given by researchprojects MIUR 60% 2003 Simulation models for complex portfolio alloca-tion and MIUR 60% 2004 Models for energy pricing, by research grantsfrom Division of Mathematical, Life and Physical Sciences, College of Let-

    ters and Science, University of California, Santa Barbara and the DeutschenForschungsgemeinschaft.

    1Department of Mathematics, Statistics,Computer Science and Applications, BergamoUniversity, Via dei Caniana, 2, Bergamo 24127, Italy

    2School of Economics and Business Engineering, University of Karlsruhe, Postfach6980, 76128 Karlasruhe, Germany and Department of Statistics and Applied Probability,University of California, Santa Barbara, CA 93106-3110, USA

    3Yale School of Management, 135 Prospect Street, Box 208200, New Haven, Connecti-cut 06520-8200, USA

    1

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    2/38

    Stable distributions in the Black-Litterman approach tothe asset allocation

    Abstract. The integration of quantitative asset allocation models and the

    judgment of portfolio managers and analysts (i.e., qualitative view) dates

    back to papers by Black and Litterman [4], [5], [6]. In this paper we improve

    the classical Black-Litterman model by applying more realistic models for

    asset returns (the normal, the t-student, and the stable distributions) and

    by using alternative risk measures (dispersion-based risk measures, value at

    risk, conditional value at risk). Results are reported for monthly data and

    goodness of the models are tested through a rolling window of fixed size along

    a fixed horizon. Finally, we find that incorporation of the views of investors

    into the model provides information as to how the different distributional

    hypotheses can impact the optimal composition of the portfolio.

    Key Words. Black-Litterman model, risk measures, return distributions.

    2

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    3/38

    Stable distributions in the Black-Litterman approach to

    the asset allocation

    1 Introduction

    The mean-variance model for portfolio management as formulated by Markowitz

    [18] is probably one of the most known and cited financial model. Despite

    its introduction in 1952, there are several reasons cited by academics and

    practitioners as why its use is not widespread. Some of the major reasons

    are the scarcity of diversification [12] or highly concentrated portfolios and

    the sensitivity of the solution to inputs (especially to estimation errors of the

    mean, see Kallberg and Ziemba [16], [17], Best and Grauer [3], Michaud [21])

    and the approximation errors in the solution of the maximization problem.

    The integration of quantitative asset allocation models and the judgment

    of portfolio managers and analysts (i.e., qualitative view) has been motivated

    by various discussions on increasing the usefulness of quantitative models for

    global portfolio management. The framework dates back to papers by Black

    and Litterman [4], [5], [6] that led to development of extensions of the frame-

    work proposed by members of both the academic and practitioner commu-

    nities. Subsequent research has explained the advantages of this framework,

    3

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    4/38

    what is now popularly referred to as Black-Litterman model (BL model here-

    after), as well as the models main characteristics 1.

    In most of these papers, there are explicit or implicit assumptions that

    logaritmic returns on N asset classes are multivariate Gaussian distributed,

    an assumption consistent with other mainstream theories in finance such as

    the standard Black-Scholes model [7]. However, there are numerous empirical

    studies 2 that show that in many cases logaritmic returns are quite far from

    being normally distributed, especially for high frequency data. Many recent

    papers (see Ortobelli et al. [24], [25], Bertocchi et al. [2]) show that sta-

    ble Paretian distributions are suitable for the autoregressive portfolio return

    process in the framework of asset allocation problem over a fixed horizon.

    In this paper we investigate whether the BL model can be enhanced

    by using the stable Paretian distributions as a statistical tool for asset re-

    turns. We use as a portfolio of assets a subset, duly constructed, of the

    S&P500 benchmark. We generalize the procedure of the BL model allowing

    the introduction of dispersion matrices obtained from multivariate Gaussian

    distribution, symmetric t-Student, and -stable distributions for computing1See the papers by Fusai and Meucci [10], Satchell and Scowcroft [30], He and Litterman

    [13] and the books by Litterman [15] and Meucci [23].2See Embrechts et al. [8], Rachev and Mittnik [28] and the references therein, Mittnick

    and Paolella [22], Panorska et al. [27], Tokat et al. [33], Tokat and Schwartz [32].

    4

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    5/38

    the equilibrium returns. Moreover, three different measures of risk (variance,

    value at risk and conditional value at risk) are considered. Results are re-

    ported for monthly data and goodness of the models are tested through a

    rolling window of fixed size along a fixed horizon. Finally, our analysis shows

    that the incorporation of the views of investors into the model provides in-

    formation as to how the different distributional hypotheses can impact the

    optimal composition of the portfolio.

    2 The -stable distribution

    The -stable distributions describe a general class of distribution functions.

    A random variable X is - stable distributed if it has a domain of attraction:

    that is, there exists a sequence of i.i.d. random variables {Yi}i, a sequenceof positive real values {di}i and a sequence of real values {ai}i such that

    as n +

    1

    dn

    ni=1

    Yi + andX (1)

    where

    d

    points out the convergence in the distribution. Thus, the -stable random variables describe a general class of distributions including the

    leptokurtic and asymmetric ones.

    5

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    6/38

    The -stable distribution is identified by four parameters: the index of

    stability (0, 2] which is the parameter of the kurtosis, the skewness pa-

    rameter [1, 1]; and + which are, respectively, the location

    and the dispersion parameter. If X is a random variable whose distribu-

    tion is -stable, we use the following notation to underline the parameter

    dependence

    Xd=S( , , ) (2)

    The stable distribution is normal, when = 2 and it is leptokurtotic

    when < 2. A positive skewness ( > 0) identifies distributions with right

    fat tails, while a negative skewness ( < 0) typically characterizes distrib-

    utions with left fat tails. Therefore, the stable density functions synthesize

    the distributional forms empirically observed in the real data. The Maximum

    Likelihood Estimation (MLE) procedure used to approximate stable parame-

    ters is described by Rachev and Mittnik [28]). Unfortunately the density of

    stable distributions cannot be express in closed form. Thus, in order to value

    the density function, it is necessary to invert the characteristic function.

    In the case where the vector r = [r1, r2, . . . rn] of returns is sub-Gaussian

    6

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    7/38

    -stable distributed with 1 < < 2, then the characteristic function of r

    assumes the following form:

    r(t) = E(exp(it

    r)) = exp((tVt) 2 + itE(r)) (3)

    For the dispersion matrix V = [v2ij ] we use the following estimation (see

    Ortobelli and al. [26] and Lamantia et al. [14])

    v2ij = ( vjj)2qA(q)

    1

    T

    Tk=1

    rik|rik|q1sgn( rjk) (4)

    where rjk = rjk E(rj) is the k-th centered observation of the j-th asset,

    A(q) =(1 q

    2)

    2q(1 q)( q+1

    2)

    and 1 < q <

    vjj = (A(p)1

    n

    nk=1

    |rjk |p)2p , 1 < p < 2 (5)

    where rjk = rjk E(rj) is the k-th centered observation of the j-th asset.

    2.1 t-Student distribution

    Analogously to the normal distribution, the t-Student distribution depends

    on an n - dimensional location parameter u which corresponds to the peak of

    the distribution and on a nn symmetric dispersion matrix V that influences

    7

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    8/38

    the shape of the distribution around the peak. Moreover, the degree of free-

    dom of the distribution, , provides information on the relation between the

    peak and the tails. However, as the number of degrees of freedom increases,

    the t-Student distribution approaches closely the normal distribution.

    The multivariate t-Student probability density function is given by:

    v,u,V(x) = ()n

    2( +n

    2)

    (2

    )(|V|)12 (1 + 1

    (x u)V1(x u))(+n)2

    (6)

    where denotes the Gamma function

    (a) =+0

    ua1eudu (7)

    that for half integer arguments looks as follows

    (n

    2) =

    (n 2)(n 4) . . . n2

    n12

    . (8)

    The dispersion matrix is given by the following formula

    Vt = V 2

    . (9)

    8

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    9/38

    3 The Black-Litterman model for asset allo-

    cation and our extension

    As previously mentioned, the BL model overcomes the critical step of ex-

    pected return estimation, using the equilibrium returns defined as the returns

    implicit in the benchmark. If the Capital Asset Pricing Model holds and if

    the market is in equilibrium, the weights based on market capitalizations are

    also the weights of the optimal portfolio. If the benchmark is a good proxy

    for the market portfolio, its composition is the solution of an optimization

    problem for a vector of unknown equilibrium returns. Moreover, the equi-

    librium returns provide a neutral reference point for asset allocation. Black

    and Litterman argue that the only sensible definition of neutral returns is

    the set of expected returns that would clear the market if all investors had

    identical views. In fact, an investor with neutral views should select a passive

    strategy, tracking the benchmark portfolio. The equilibrium returns of the

    stocks comprising the benchmark are obtained by solving the unconstrained

    maximization problem faced by an investor with quadratic utility function

    or assuming normally distributed returns

    Max

    x xx (10)

    9

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    10/38

    where is the covariance matrix of our stocks returns.

    From Kuhn-Tucker conditions on (10), and solving the reverse optimiza-

    tion problem we get

    = x (11)

    The expected return E(r) is assumed to be normally distributed

    E(r) N(, ) with the covariance matrix proportional to the historical

    one, rescaled by a shrinkage factor; since uncertainty of the mean is lower

    than the uncertainty of the returns themselves, the value of should be close

    to zero.

    An active asset manager can deviate from the benchmark tracking strat-

    egy, according to his or her economic reasoning in the tactical asset alloca-

    tion. The major contribution of the BL model is to combine the equilibrium

    returns with uncertain views about expected returns. In particular, the op-

    timal portfolio weights are moved in the direction of assets favored by the

    investor. The investors views have the effect of modifying E(r) according to

    the degree of uncertainty. Greater the uncertainty less the deviation from the

    neutral views. To this aim the new vector of expected returns is computed

    10

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    11/38

    minimizing the Mahalanobis distance between the expected returns E(r) and

    the equilibrium returns which are additionally constrained by the investors

    view on the expected return. This brings us to the following model:

    min (E(r) )(E(r) ) (12)

    s.t. constraint

    PE(r) = q + e (13)

    where P is a matrix with each row corresponding to one view, q is the

    vector containing the specific investor views, and e a random vector of errors

    in the view. If all views are independent, the covariance matrix is diagonal.

    Its diagonal elements are collected in the vector e.

    In our analysis we consider different problems of optimal allocation among

    n risky assets with returns [r1, r2, . . . , rn] using different risk measures vari-

    ance, Value at Risk (V aR), and Conditional Value at Risk (C V a R). Assume

    that all portfolios r

    x are uniquely determined by the neutral mean

    x and

    by the risk measure () that is defined alternatively as the dispersion x

    Vx,

    the V aR(r

    x) and the CV aR(r

    x). This means that instead of (10) we

    11

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    12/38

    have

    Max

    x (rx). (14)

    We recall here that V aR(X) is implicitely defined by P(X V aR(X)) =

    , i.e. the percentile of the probability density function of the random vari-

    able X such that the probability that the random variable assumes a value

    less than x is greater than , where represents, in this framework, the

    maximum probability of loss that the investor would accept. We also recall

    that CV aR(X) is defined as E(X|X V aR(X)), i.e it measures the

    expected value of the tail of the distribution for values less than V aR. Note

    also that CV aR(X) is a coherent risk measure in the sense of Artzner et al.

    [1] while V aR(X) is not.3

    Notice that for elliptical distributions, following Embrechts et al [8] and

    Stoyanov et al. [31], the CV aR of portfolio returns is expressed as

    CVaR(r

    x) =

    x

    VtxCV aR(Y) xu (15)

    where CV aR(Y) for univariate t-distribution takes the following form

    3For detailed description of C V aR see for example Rockafeller and Uryasev [29] andfor -stable see Stoyanov et al. [31]. For comparisons between CV aR and V aR seeGaivoronski and Pflug [11].

    12

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    13/38

    CV aR(Y) =( +1

    2)

    ( 2

    )

    ( 1) (1 +V aR(Y)

    2

    )12 (16)

    where Y is distributed according to a t-student with > 1 degree of

    freedom.

    Using again Stoyanov et al. [31], we can represent the C V a R(X) for

    multivariate standardised -stable distribution, X S( , , ) as

    CVaR(X) =

    1 |V aR(X)|

    2

    0g()exp(|V aR(X)|

    1 v())d (17)

    where

    g() =sin((0 + ) 2)

    sin (0 + ) cos

    2

    sin2 (0 + ), (18)

    v() = (cos 0)1

    1 (cos

    sin (0 + ))

    1

    cos(0 + ( 1))cos

    , (19)

    and

    0 =1

    arctan(tan

    2), = sgn(V aR(X)). (20)

    13

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    14/38

    In the case where we have a non-standardized -stable, we need to use

    the following transformation

    CVaR(X + ) = CV aR(X) , (21)

    where

    X + S( , , ). (22)

    Properties similar to (15) and (21) hold for V aR too (see Lamantia et al.

    [14]).

    Notice that the optimization problem for C V a R risk measures using prop-

    erties (15) and (21), can be written as

    Max

    x

    (CVaR

    x

    Vx

    E(r)

    x) (23)

    Similar considerations apply to V aR.

    Applying first-order Kuhn-Tucker conditions to (23), the reverse opti-

    mization model, and using the three different measures of risks and the

    three different return distributions (Gaussian, t-student, stable) we obtain

    the following equilibrium returns for the three different dispersion measures

    V characterizing the three distributions:

    14

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    15/38

    Risk Measure: variance

    = Vx (24)

    Risk Measure: CVaR

    = (CVaRVxx

    Vx E(r)x) (25)

    Risk Measure: VaR

    = (V aRVxx

    Vx E(r)x) (26)

    In formulas (24), (25), and (26), we will substitute the convenient estimate

    for the dispersion matrix, CV aR and V aR depending on the corresponding

    distribution.

    Notice that the coefficient can be interpreted as a coefficient of risk

    aversion: if is zero the investor is risk neutral, if > 0, the investor is risk

    averse because investments with large dispersion are penalized, if < 0, the

    investor is a risk seeker because investments with large dispersion are favored.

    Once we found the neutral returns implied in the benchmark, we wanted to

    test the goodness of these equilibrium returns over a 20 month horizon. We

    thought that a reasonable way was to compute the sum of squared errors

    between the neutral view return suggested by our model and the day after

    15

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    16/38

    realization of return for 20 consecutive months, using a rolling window of

    110 months for the parameters estimation. We compare the equilibrium

    returns obtained under different distributional hypotheses and different risk

    measures with a naive forecast: the unconditional mean. We recall that

    for a stationary return process the best forecast of future realizations is the

    unconditional mean.

    But which is the optimal value of to be used? Black and Litterman

    suggest, under the normal distributional hypothesis, using the market risk

    premium which is 0.32 in our case. 4

    If we try to determine the value of which minimizes the distance between

    the optimal solution of the portfolio and the weight of the benchmark we get

    = 36.29, i.e. the risk aversion parameter becomes very large. This may

    be considered reasonable when we look at it from the equity premium puzzle

    side (see Fama and French [9], Mehra and Prescott [19], [20]). However since

    we consider three different risk measure we must consider different values of

    . Indeed, in (24)-(26), the coefficient acts as a scaling factor, i.e. a larger

    increases the equilibrium returns. Large values of will eventually scale

    all the equilbrium return to very large values that would not be realistic.

    4This is computed as the excess mean return divided by the variance.

    16

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    17/38

    We set the value of equal to the solution of an optimization problem.

    For each risk measure, we fix equal to the value that minimizes the sum

    of the squared error under all distributional hypothesis described before,

    computed for the first day of the out-of-sample analysis. We mantain the

    same values for all the out-of-sample analysis. Therefore, we choose = 0.5

    for the case where risk was measured by dispersion and = 0.15 for the

    other cases. Finally, we tested how the forcing of a special investor view

    (both under certainty and under incertainty) may influence the benchmark

    composition.

    4 Analysis of the data

    In this section we analyze the time series data for the benchmark used in the

    computational part and we estimate the parameters of the different distribu-

    tions (normal, symmetric t-student, and -stable) and the related dispersion

    matrices. We selected as the benchmark the S&P500 and we obtained daily,

    weekly, and monthly data from July 1995 to July 2005 from DataStream.

    The analysis was done for all the frequencies mentioned above. However,

    only results for the monthly data are reported here.

    We divided the data in two samples: the first 110 data for the parameter

    17

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    18/38

    estimation and the remaining 20 data for out-of-sample analysis. The out-of-

    sample analysis is repeated for 20 consecutive months using a rolling window

    of length 110 to estimate the parameters for each month. In order to better

    analyze the results, we choose to reduce the dimension of the benchmark

    considering the most capitalized shares which account for about 50% of the

    index. We collected the data for the 50 most capitalized shares and rescaled

    the weights to sum up to 1. We use the new weights to construct a synthetic

    index that we will refer to as the S&P50 in the following. We also tested

    that S&P50 returns are almost perfectly correlated ( = 0.98) to the S&P500

    along the considered horizon.

    In Table 1 we report for each of the 50 shares included in the synthetic

    index, the ticker, the name of the company, the weight in the S&P500, the

    new weight in the S&P50, the mean, the volatility, the skewness, and the

    kurtosis of each share in the sample. Recall that we selected monthly data

    because in an asset allocation problem the reasonable time horizon should not

    be too short. Because of the frequency selected, we tested for the absence of

    autocorrelation in the returns and squared returns, but we found no evidence

    of it. Based on the Bera-Jarque test, we rejected for 19 of the 50 shares the

    null hypothesis of normal distribution at the 5% significance level, for 21

    18

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    19/38

    of the 50 at the 10% significance level, and for 23 of the 50 at the 15%

    significance level. From the results reported in Table 1 we can observe that

    about half of the 50 stocks could be well described by a normal distribution.

    In Table 2 we report the average of the estimated parameters , , for

    the -stable distribution and the average of the degree of freedom for the

    t-student computed as the mean of 20 estimations over the rolling window.

    A similar analysis is done for a rolling window of increasing size, with no

    significant changes in the results. Therefore, we do not report those results.

    From Table 2 we note that only 9 stocks show a value of the parameter

    equals to 2. The -stable distribution looks more appropriate in describing

    the behavior of the remaining stocks returns.

    In order to assess the hypothesis of non-normal behavior of the stocks

    and the statistical significance of the -stable parameters, we estimated the

    following AR(1, 1) model in order to construct a 90% confidence level for

    and

    yt = a1 + a2yt1 + t

    a32

    (27)

    where yt is the (or ) series, a1 and a2, a3 the parameters to be esti-

    19

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    20/38

    mated.

    The estimated coefficients, together with their statistical significance, are

    reported in Table 3 for and in Table 4 for . We do not consider stocks with

    =2 and =1 or = 1 for all the out-of-sample period. So we exclude

    9 stocks from Table 3 and 17 stocks from Table 4. Each table contains the

    ticker, the estimated coefficients of the AR(1, 1) process, the ratio between

    the value of the coefficients and the standard error, the value of the likelihood

    function, the 5-th, the 50-th, and the 95-th percentiles for the 40 stocks. We

    observe that the autoregressive coefficient is significant for 80% of the stocks

    for and for 70% of the stocks for (see columns Ta2 ). We used the model

    given by (27) to create 5000 scenarios for each of the parameters and

    and each stock in the benchmark, thus obtaining the related distributions:

    we report in Tables 3 and 4 the median, the 5-th and 95-th percentiles of

    those ones to costruct the 90% confidence level.

    The analysis of the 90% confidence interval confirms that for 82% of the

    stocks considered the true value of is less than 2, suggesting the presence

    of leptokurtic behavior. Only for 9 stocks is the normal distribution suitable.

    Moreover, the upper value of the confidence level of is less then 0 for 19

    stocks and is equal to -1 for 6 stocks, suggesting a left fat tail distribution

    20

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    21/38

    for 50% of the stocks. The lower value of the confidenze level of exceeds

    0 for 7 stocks and is equal to 1 for 2 stocks over the 50 stocks considered

    suggesting for a rigth fat tail for 18% of the stocks. Only for 7 stocks does

    the confidence interval include the null value suggesting that at most 16

    stocks can show a symmetric behavior. That explains the poor behavior of

    a symmetric t-student distributional model which indeed seems to give the

    same result as the normal distribution. This is a further confirmation that

    the -stable distribution is suitable to describe the returns of our data.

    5 Computational results

    In Table 5 we report the equilibrium returns for the different distributions and

    the different risk measures for January 28, 2004, computed with = 0.5 when

    risk is measured by dispersion and = 0.15 for the other cases. In Table 6 we

    report the optimal composition under equilibrium returns (or neutral views)

    for the different distributions and the different risk measures. We observe

    that equilibrium returns under the -stable hypothesis are in general less

    than the equilibrium returns under the normal and t-student distributions.

    Moreover, the corresponding optimal portfolio is less diversified involving

    17 stocks against the 29 stocks under normal and t-student distributions.

    21

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    22/38

    In general under the normal and t-student distributions we get very similar

    equilibrium returns and portfolio composition under all the different risk

    measures while the -stable hyphotesis implies different equilibrium returns

    and portfolio composition.

    We consider the equilibrium returns as a forecast of the future returns.

    Of course, we assume that when we compare the forecast with the future

    realizations, the data that we observe in the future are the products of a

    market in equilibrium. In Table 7 we report the sum of squared errors for

    20 months between the neutral view and realization of the day after using a

    rolling window of 110 months. Note that we reestimate the parameters of the

    distribution as we move the rolling window. We observe that the hypothesis

    of a stable distribution and the use of dispersion as a risk measure gives the

    best combination 5. For 13 months of the 20 months, it is the combination

    that gives the best forecast (65% success rate). The second best combination

    is the -stable distribution and the use ofC V a R as a risk measure. For this

    combination 3 of the 20 months gives the best forecast (15% success rate).

    5The use of a symmetric risk measure is not particularly surprising since we are dealing

    with a model of strategic allocation to find the optimal composition of our portfolio ona relative long time horizon. Generally this phase is followed by a tactical allocationstrategy where it is more likely that a relative V aR can be considered by the market,i.e. the additional tail risk that we accept when we move from the benchmark replicationstrategy assuming specific risk.

    22

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    23/38

    The third best combination is the unconditional mean which resulted in 2 of

    the 20 months (10% success rate). Finally, following Satchell and Scowcroft

    [30], we report again in Table 8 the optimal composition for the January

    28, 2004 under a specific view (asset 2 overperforming asset 5 by 0.1%)

    for the different distributions and the different risk measures with absolute

    certainty. In Table 9 we report again the optimal composition for the same

    date (January 28, 2004) under the same view (asset 2 overperforming asset

    5 by 0.1%) but this time we are not absolutely certaint about our view

    (with uncertainty of 0.61). According to neutral view, asset 2 is expected to

    overperform asset 5 for an average of 3.45% with a maximum of 4.85% for

    dispersion under the normal distribution and a minimum of 1.62% under the

    same risk measure but -stable hypothesis (see Table 5). If we compute the

    equilibrium return with the additional constraint that the difference between

    the two returns is 0.1% with certainty, we get the equilibrium return in

    Table 10. We can observe that the difference between the new returns and

    neutral view equilibrium are larger for the dispersion measure and normal

    returns. Indeed, this is the case with the highest variation in the portfolio

    composition. Once again the -stable hypothesis with the same risk measure

    lead to a more stable portfolio. If we consider the same view with uncertainty,

    23

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    24/38

    we have effects similar but mitigated by the uncertainty that we put in our

    view.

    6 Conclusions

    The purpose of our work is twofold. The first is to improve the classical BL

    model by applying more realistic models for asset returns. We compare the

    BL model under the normal, t-student, and the stable distributions for asset

    returns. The second is to enhance the BL model by using alternative risk

    measures which are currently used in risk management and portfolio analysis.

    They include dispersion-based risk measures, value at risk, and conditional

    value at risk.

    For the stocks in our sample, only a minority can be characterized as

    having a normal return distribution based on statistical tests we performed.

    As a result of incorporating heavy-tailed distribution models for asset re-

    turns and alternative risk measures, we obtained the following results: (1)

    the appropriateness of the -stable distributional hypothesis is more evident

    when we compute the equilibrium returns and (2) the combination of -

    stable distribution and the choice of dispersion risk measure provides the

    best forecast.

    24

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    25/38

    References

    [1] Artzner, P., F. Delbaen, J.M. Eber and D. Heath (1998) Coherent measuresof risk, Mathematical Finance, 9 (3), 203-228.

    [2] Bertocchi, M., R. Giacometti, S. Ortobelli and S.T. Rachev (2005) Theimpact of different distributional hypothesis on returns in asset allocation ,Financial Letters, 3 (1), 17-27.

    [3] Best, M. J. and R.R. Grauer (1991) On the sensitivity of mean-varianceefficient portfolios to changes in asset means. Some analytical and computa-tional results, The Review of Financial Studies, January, 315-342.

    [4] Black, F., R. Litterman (1990) Asset allocation: combining investors viewswith market equilibrium, Fixed Income Research, Goldman, Sachs & Com-pany, September.

    [5] Black, F., R. Litterman (1991) Global asset allocation with equities, bondsand currencies, Fixed Income Research, Goldman, Sachs & Company, Octo-ber.

    [6] Black, F., R. Litterman (1992) Global portfolio optimization, Financial An-alysts Journal, September/October, 28-43.

    [7] Black, F., M. Scholes (1973) The pricing of options and corporate liabilities,

    The Journal of Political Economy 81, 637-659.

    [8] Embrechts, P., F. Lindskog and A. McNeil (2003) Modelling dependencewith copulas and application to risk management, Handbook of Heavy TailedDistributions in Finance, S.T. Rachev ed., Elsevier/North Holland, 329-385.

    [9] Fama, E. F. and K.R. French (2002)The equity premium, Journal of Finance,57, 637-659.

    [10] Fusai, G. and A. Meucci (2003)Assesing views, Risk, March, S18-S21.

    [11] Gaivoronski A. and G. Ch. Pflug (2005) Value-at-risk in portfolio optimiza-

    tion: properties and computational approach, Journal of Risk, 7(2) Winter2004/05, 1-31.

    [12] Green, R.C. and B. Hollifield (1992) When will mean-variance efficient port-folios be well diversified?, Journal of Finance,47 (5), 1785-1810.

    25

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    26/38

    [13] He, G. and R. Litterman (1999) The intuition behind Black-Litterman modelportfolios, Investment Management Research, Goldman, Sachs & Company,December.

    [14] Lamantia, F, S. Ortobelli and S.T. Rachev (2005) Value at risk, conditionalvalue at risk and time rules with elliptical and asymmetric stable distributedreturns: theoretical advances, Technical Report, Institute of Statistics andMathematical Economic Theory, University of Karlsruhe.

    [15] Litterman, B. (2003) Modern Investment Management: An Equilibrium Ap-proach, Wiley & Sons.

    [16] Kallberg, J. G. and W. T. Ziemba (1981) Remarks on optimal portfolio

    selection, in Methods of Operations Research, G. Bamberg and O. Optizeds., Cambridge MA, Oelgeschlager, Gunn & Hain, 507-520.

    [17] Kallberg, J. G. and W. T. Ziemba (1984) Mis-specification in portfolio se-lection problems, in Risk and Capital, G. Bamberg and O. Optiz eds., NewYork, Springer Verlag, 74-87.

    [18] Markowitz, H. (1952) Portfolio Selection, Journal of Finance, March, 77-91.

    [19] Mehra, R. and E.C. Prescott (1985) The equity premium: a puzzle, Journalof Monetary Economy, 15, 145-161.

    [20] Mehra, R. and E.C. Prescott (2003) The equity premium in retropect, Hand-book of the Economics of Finance, G.M. Constantinides, M. Harrius and R.Stulz eds., Elsevier North-Holland, 887-936.

    [21] Michaud, R.O. (1989) The Markowitz optimization enigma: is Optimizedoptimal?, Financial Analists Journal, 45(1), 31-42.

    [22] Mittnik, S. and M. S. Paolella (2000) Conditional density and value-at-riskprediction of Asian currency exchange rates, Journal of Forecasting 19, 313-333.

    [23] Meucci, A. (2005) Risk and Asset Allocation, Springer.

    [24] Ortobelli, S., I. Huber, S.T. Rachev and E. Schwartz (2002) Portfolio choicetheory with non-Gaussian distributed returns, in Handbook of Heavy TailedDistributions in Finance, S.T. Rachev ed., North Holland, Ch. 14, 547-594.

    26

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    27/38

    [25] Ortobelli, S., S.T. Rachev, and E. Schwartz (2002) The problem of optimalasset allocation with stable distributed returns, in Stochastic Processes andFunctional Analysis: Recent Advances, in Honor of Prof. M.M. Rao, MarcelDekker Inc., 238, 295-347.

    [26] Ortobelli, S., S.T. Rachev, I. Huber, A. Biglova (2004) Optimal portfolioselection and risk management: a comparison between the stable Paretianapproach and the Gaussian one, in Handbook of Computational and Numer-ical Methods in Finance, S.T. Rachev ed., North Holland, Ch. 6, 197-252,

    [27] Panorska, A., S. Mittnik and S.T. Rachev (1995) Stable GARCH models forfinancial time series, Mathematical and Computer Modelling 29, 263-274.

    [28] Rachev, S. T. and S. Mittnik, (2000) Stable Paretian models in finance,Wiley, Chichester.

    [29] Rockafeller, T. and S.Uryasev (2000), Optimization of conditional value-at-risk, Journal of Risk, 2(3), 21-41.

    [30] Satchell, S. and A. Scowcroft, (2000) A demystification of Black-Littermanmodel: Managing quantitative and traditional portfolio construction, Jour-nal of Asset Management, 1 (2), 138-150.

    [31] Stoyanov, S., G. Samorodnitsky, S.T. Rachev and S. Ortobelli (2004), Com-puting the portfolio Conditional Value-at-Risk in the -stable case, Technical

    Report,Institute of Statistics and Mathematical Economic Theory, Univer-sity of Karlsruhe.

    [32] Tokat, Y. and E. Schwartz (2002) The impact of fat tailed returns on assetallocation, Mathematical Methods of Operations Research 55, 165-185.

    [33] Tokat, Y., S. T. Rachev and E. Schwartz (2003) The stable non-Gaussianasset allocation: a comparison with the classical Gaussian approach, Journalof Economic Dynamics & Control 27, 937-969.

    27

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    28/38

    ticker company % of SP500 % of SP50 mea n v ol atil ity s kewn es s kurtosis BJ (p-vaXOM Exxon Mobil Corp. 3.33 6.86 11.73% 0.90 0.20 3.90 0.361

    GE General Electric 3.31 6.82 10.96% 0.60 0.12 2.93 0.870MSFT Microsoft Corp. 2.4 4.94 13.41% 1.24 0.19 5.58 0.000

    C CityGroup Inc. 2.16 4.45 17.07% 1.08 0.02 4.23 0.246WMT Wal-Mart Stores 1.81 3.73 12.15% 0.84 0.39 3.28 0.128PFE Pfizer Inc. 1.81 3.73 11.46% 0.89 0 2.68 0.811JNJ Johnson & Johnson 1.73 3.56 11.97% 0.67 0.08 3.16 0.930

    BAC Bank of America Corp. 1.62 3.34 10.79% 1.06 0.41 4.46 0.057INTC Intel Corp. 1.45 2.99 10.85% 1.50 0.88 5.74 0.000AIG American Intl Group 1.37 2.82 11.44% 0.87 0.01 3.40 0.600MO Altria Group Inc. 1.21 2.49 8.92% 1.11 0.33 3.85 0.216PG Procter & Gamble 1.18 2.43 10.61% 0.85 1.69 11.18 0.000

    JPM JPMorgan Chase & Co. 1.11 2.29 6.62% 1.25 0.18 5.41 0.001CSCO Cisco Systems 1.09 2.24 16.87% 1.62 0.63 4.60 0.000

    IBM Int. Business Machines 1.08 2.22 10.11% 1.17 0.37 4.86 0.003CVX Chevron Corp. 1.07 2.20 7.87% 0.63 0.38 3.31 0.140WFC Wells Fargo 0.93 1.92 13.53% 0.80 0.05 3.82 0.737

    KO Coca Cola Co. 0.91 1.87 2.36% 0.84 0.29 3.02 0.376VZ Verizon Communications 0.86 1.77 1.56% 0.83 0.00 3.32 0.990

    DELL Dell Inc. 0.85 1.75 33.87% 1.72 0.66 4.89 0.000PEP PepsiCO Inc. 0.8 1.65 8.67% 0.73 0.02 4.14 0.183HD Home Depot 0.76 1.57 13.12% 1.08 0.67 4.38 0.001

    COP Conoco Philips 0.74 1.52 11.47% 0.76 0.18 3.32 0.839

    SBC SBC Communications Inc. 0.71 1.46 0.09% 0.93 0.08 4.91 0.017TWX Time Warner Inc. 0.7 1.44 20.97% 1.96 0.43 3.72 0.340UPS United Parcel Service 0.69 1.42 6.86% 0.95 0.60 4.39 0.008ABT Abbot Labs 0.68 1.40 8.89% 0.76 0.32 3.70 0.162

    AMGN Amgen 0.68 1.40 17.35% 1.05 0.58 4.64 0.002MRK Merck & Co. 0.61 1.26 2.68% 1.00 0.69 5.34 0.691

    ORCL Oracle Corp. 0.61 1.26 13.80% 1.68 0.13 3.41 0.752HPQ Hewlett-Packard 0.61 1.26 4.03% 1.46 0.25 4.76 0.021

    CMCSA Compcast Corp. 0.6 1.24 10.99% 1.22 0.06 5.52 0.000UNH United Health Group Inc. 0.6 1.24 20.27% 1.27 2.31 14.11 0.000AXP Amercian Express 0.6 1.24 13.44% 0.94 0.34 4.26 0.059LLY Lilly (Eli) & Co. 0.56 1.15 9.80% 0.97 0.03 3.48 0.654

    MDT Medtronic Inc. 0.56 1.15 15.04% 0.97 0.07 3.89 0.698WYE Wyeth 0.54 1.11 7.69% 1.13 1.69 12.61 0.000TYC Tyco International 0.53 1.09 14.57% 1.43 1.00 6.17 0.000

    MWD Morgan Stanley 0.52 1.07 13.5% 1.35 0.33 3.85 0.174FNM Fannie Mae 0.51 1.05 8.61% 0.79 0.36 2.98 0.280

    MMM 3M Company 0.5 1.03 9.47% 0.71 0.20 3.17 0.559QCOM Qualcomm Inc. 0.49 1.01 23.8% 1.97 0.16 4.11 0.353

    BA Boeing Company 0.48 0.99 6.28% 1.04 0.35 3.87 0.198UTX United Technologies 0.47 0.97 14.82% 0.89 0.13 5.50 0.000MER Merryl Linch 0.47 0.97 13.20% 1.30 0.36 4.80 0.007

    VIA.B Viacom Inc. 0.47 0.97 2.23% 1.11 0.08 3.10 0.870DIS Walt Disney Co. 0.46 0.95 2.81% 1.05 0.01 3.40 0.940

    G Gillette Co. 0.45 0.93 3.94% 0.94 0.50 4.05 0.004BMY Bristol-Myers Squibb 0.44 0.91 7.94% 0.41 0.36 3.67 0.264BLS Bell South 0.44 0.91 4.32% 0.80 0.13 3.54 0.769

    Table 1: Statistics on the single time seriesNote: From the table we observe the skewness and kurtosis of the single stocks on the complete sample. We performe

    Bera-Jarque test and we cannot reject the null hypothesis of normal distribution for 19 over 50 at 5% significance level,for 21 over 50 at 10% significance level, and for 23 over 50 at 15% significance level.

    28

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    29/38

    numbering ticker company % of SP500 % of SP50 degree offreedom

    1 XOM Exxon Mobil Corp. 3.33 6.86 1.95 -0.91 0.64 182 GE General Electric 3.31 6.82 2.00 0.96 0.42 1003 MSFT Microsoft Corp. 2.4 4.94 1.71 0.49 0.79 74 C CityGroup Inc. 2.16 4.45 1.88 -0.18 0.74 105 WMT Wal-Mart Stores 1.81 3.73 1.85 -1.00 0.58 226 PFE Pfizer Inc. 1.81 3.73 2.00 -0.85 0.64 1007 JNJ Johnson & Johnson 1.73 3.56 2.00 -0.14 0.48 548 BAC Bank of America Corp. 1.62 3.34 1.48 -0.44 0.58 49 INTC Intel Corp. 1.45 2.99 1.81 -0.86 0.97 6

    10 AIG American Intl Group 1.37 2.82 2.00 -0.20 0.61 1711 MO Altria Group Inc. 1.21 2.49 1.90 -0.84 0.78 1012 PG Procter & Gamble 1.18 2.43 1.82 -1.00 0.51 413 JPM JPMorgan Chase & Co. 1.11 2.29 1.69 -0.14 0.76 514 CSCO Cisco Systems 1.09 2.24 1.77 -0.69 1.05 515 IBM Int. Business Machines 1.08 2.22 1.77 0.39 0.73 616 CVX Chevron Corp. 1.07 2.20 1.86 1.00 0.42 1117 WFC Wells Fargo 0.93 1.92 1.87 -0.01 0.56 818 KO Coca Cola Co. 0.91 1.87 1.95 -1.00 0.59 9219 VZ Verizon Communications 0.86 1.77 2.00 -0.19 0.61 3720 DELL Dell Inc. 0.85 1.75 1.76 -0.69 1.08 521 PEP PepsiCO Inc. 0.8 1.65 1.80 -0.02 0.47 622 HD Home Depot 0.76 1.57 1.83 -1.00 0.72 9

    23 COP Conoco Philips 0.74 1.52 2.00 0.57 0.53 1024 SBC SBC Communications Inc. 0.71 1.46 1.81 -0.36 0.61 725 TWX Time Warner Inc. 0.7 1.44 1.82 0.91 1.30 1426 UPS United Parcel Service 0.69 1.42 1.46 -0.45 0.51 427 ABT Abbot Labs 0.68 1.40 1.94 -0.93 0.53 1828 AMGN Amgen 0.68 1.40 1.84 0.88 0.69 429 MRK Merck & Co. 0.61 1.26 1.93 -1.00 0.67 1630 ORCL Oracle Corp. 0.61 1.26 2.00 -0.40 1.26 3631 HPQ Hewlett-Packard 0.61 1.26 1.74 0.05 0.94 532 CMCSA Compcast Corp. 0.6 1.24 1.73 -0.16 0.75 433 UNH United Health Group Inc. 0.6 1.24 1.54 0.15 0.54 334 AXP Amercian Express 0.6 1.24 1.53 -0.84 0.54 835 LLY Lilly (Eli) & Co. 0.56 1.15 1.94 -0.22 0.68 1436 MDT Medtronic Inc. 0.56 1.15 1.81 0.27 0.62 637 WYE Wyeth 0.54 1.11 1.65 -0.56 0.62 438 TYC Tyco International 0.53 1.09 1.71 -0.59 0.87 439 MWD Morgan Stanley 0.52 1.07 1.82 -0.75 0.92 1040 FNM Fannie Mae 0.51 1.05 1.91 -1.00 0.54 10041 MMM 3M Company 0.5 1.03 1.96 1.00 0.50 5742 QCOM Qualcomm Inc. 0.49 1.01 1.76 0.19 1.28 643 BA Boeing Company 0.48 0.99 1.72 -0.42 0.67 644 UTX United Technologies 0.47 0.97 1.67 -0.43 0.53 545 MER Merryl Linch 0.47 0.97 1.81 -0.35 0.86 646 VIA.B Viacom Inc. 0.47 0.97 2.00 -0.55 0.83 10047 DIS Walt Disney Co. 0.46 0.95 2.00 0.89 0.78 6148 G Gillette Co. 0.45 0.93 1.84 -0.87 0.65 749 BMY Bristol-Myers Squibb 0.44 0.91 1.87 -0.97 0.60 750 BLS Bell South 0.44 0.91 1.97 0.69 0.57 19

    Table 2: Estimated parameters with -stable and t-student distributionsNote: In this table we report the average estimate of the -stable computed on a rolling window.

    29

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    30/38

    numbering ticker a1 a2 a3 Ta1 Ta2 Ta3 LLF perc.5% perc.50% perc.95%

    1 XOM 0.724 0 .629 - 1.997 3 .376 2.136 79.249 1.9357 1.9433 1.9507

    2 GE - - - - - - - - - -3 MSFT 0.349 0.793 0.005 0.831 3.497 3.406 25.658 1.4907 1.5982 1.70954 C 0.072 0.961 - 0.345 8.717 3.338 82.661 1.8551 1.8614 1.86805 WMT 0.361 0.805 - 1.130 4.677 1 .543 70.703 1.8483 1.8598 1.87116 PFE - - - - - - - - - -7 JNJ - - - - - - - - - -8 BAC 0.232 0.842 - 0.962 5.265 2.959 47.765 1.4178 1.4538 1.49059 INTC 0.600 0.668 - 1.192 2.403 2.805 62.988 1.7805 1.7978 1.8144

    10 AIG - - - - - - - - - -11 MO 0.122 0.934 - 0.297 4.306 3.432 49.386 1.7882 1.8219 1.856712 PG 0.015 0.993 - 0.062 7.664 1.876 78.473 1.8378 1.8457 1.853413 JPM 0.187 0.889 - 0.612 4.949 3.775 59.791 1.6460 1.6667 1.687314 CSCO 0.827 0.532 - 2.981 3.400 2 .789 48.111 1.7286 1.7640 1.799115 IBM 0.145 0 .917 - 0.366 4 .103 3.847 6 0.213 1.7101 1.7295 1.749116 CVX 0.991 0.468 - 3.667 3.203 3 .582 64.867 1.8459 1.8610 1.877117 WFC 0.096 0.946 0.001 0.262 4.979 3.766 37.453 1.7114 1.7738 1.834818 KO 0.674 0.655 - 1.560 2.967 2.501 82.666 1.9445 1.9510 1.957519 VZ - - - - - - - - - -20 DELL 0.025 0.980 0.003 0.031 2.158 2.347 29.273 1.4427 1.5345 1.626721 PEP 0.296 0.834 - 1.214 6.148 1.750 58.839 1.7261 1.7466 1.768022 HD 0.505 0.724 - 1.671 4.380 1.710 73.083 1.8217 1.8320 1.842123 COP - - - - - - - - - -

    24 SBC 0.275 0 .848 - 1.880 4 .920 3.815 77.941 1.8063 1.8145 1.822825 TWX 0.191 0.894 0.001 0.434 3.700 3.648 46.213 1.7440 1.7825 1.820626 UPS 0.181 0.877 0.001 0.900 6.435 2.987 45.839 1.4429 1.4828 1.522727 ABT 1.853 0.045 - 0.620 0.029 1.511 57.538 1.9183 1.9411 1.963028 AMGN 0.695 0.622 0.002 1.501 2.358 2.351 33.662 1.7800 1.8543 1.929829 MRK 0.258 0.866 - 0.176 1.149 1.944 51.033 1.8728 1.9033 1.934130 ORCL - - - - - - - - - -31 HPQ 0.133 0.922 - 0.519 6.250 3.758 57.519 1.6797 1.7025 1.724832 CMCSA 1.107 0.358 - 2.150 1.203 3.041 57.611 1.7001 1.7224 1.745233 UNH 0.412 0.733 0.001 0.791 2.153 2.913 43.604 1.4799 1.5252 1.571334 AXP 0.258 0.832 - 1.178 5.811 2.236 53.223 1.5128 1.5392 1.567535 LLY 0.168 0.912 0.001 0.411 4.361 3.423 44.314 1.8213 1.8654 1.908536 MDT 0.210 0.880 0.003 0.477 3.724 3.118 29.431 1.5760 1.6674 1.759837 WYE 0.484 0.706 - 0.806 1.943 3.730 51.040 1.6047 1.6354 1.665938 TYC 0.166 0.903 - 0.622 5.778 3 .323 56.193 1.6705 1.6939 1.717839 MWD 0.675 0.630 0.001 1.041 1.808 1.784 40.896 1.7651 1.8172 1.870240 FNM 0.545 0.716 - 1.616 4.065 2.147 65.505 1.9010 1.9161 1.932141 MMM 0.456 0.767 - 1.552 5 .105 2 .480 73.090 1.9474 1.9578 1.968342 QCOM 0.268 0.847 0.001 0.619 3.463 3.689 44.868 1.6753 1.7170 1.759343 BA 0.647 0.624 0.001 2.402 3.948 2.584 45.355 1.6726 1.7132 1.753844 UTX 0.464 0.723 - 1.491 3.890 2.847 58.561 1.6539 1.6762 1.697345 MER 0.243 0.865 - 0.546 3.524 4.650 69.746 1.7862 1.7982 1.810346 VIA.B - - - - - - - - - -47 DIS - - - - - - - - - -48 G 1.100 0.401 - 1.505 1.011 2.053 55.033 1.8080 1.8329 1.857849 BMY 1.618 0.135 0.001 0.256 0.040 1.787 37.088 1.7882 1.8497 1.911250 BLS 1.299 0 .339 - 2.196 1 .143 1.333 54.315 1.9363 1.9633 1.9895

    Table 3: Estimated parameters of the AR(1,1) process on valuesNote: The analysis of the 90% confidence interval confirm that for the 82% of the stocks considered (i.e. those with

    different from 2) the true value of is smaller than 2, suggesting the presence of leptokurtic behavior. Only for 9 stocksthe normal distribution is suitable.

    30

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    31/38

    numbering ticker a1 a2 a3 Ta1 Ta2 Ta3 LLF perc.5% perc.50% perc.95%

    1 XOM 0.016 0.990 0.014 0.060 2.859 2.032 14.274 -0.5791 -0.3036 -0.1924

    2 GE - - - - - - - - - -3 MSFT 0.261 0.472 0.192 1.036 1.658 1.895 -11.859 -0.1468 0.5880 1.31064 C -0.066 0.623 0.002 - 1.289 2.198 3.043 35.618 -0.2072 -0.1405 -0.07465 WMT - - - - - - - - - -6 PFE - - - - - - - - - -7 JNJ - - - - - - - - - -8 BAC -0.014 0.959 - -0.151 4.331 3.426 48.559 -0.4008 -0.3660 -0.33139 INTC -0.015 0.975 0.001 -0.091 5.404 2.399 37.926 -0.7761 -0.7170 -0.6570

    10 AIG - - - - - - - - - -11 MO -0.192 0.757 0.017 -0.720 2.353 1.905 12.488 -0.7972 -0.5816 -0.370912 PG - - - - - - - - - -13 JPM -0.037 0.737 0.001 -1.552 4.105 3.456 47.167 -0.1706 -0.1342 -0.096414 CSCO -0.195 0.712 0.005 -1.527 4.227 2.171 24.582 -0.7508 -0.6355 -0.519215 IBM 0.004 0.966 0.003 0.041 3.872 4.751 30.636 0.1086 0.1927 0.279416 CVX - - - - - - - - - -17 WFC 0.096 0.946 0.001 0.262 4.979 3.766 37.453 1.7114 1.7738 1.834818 KO - - - - - - - - - -19 VZ - - - - - - - - - -20 DELL -0.011 0.936 0.051 -0.011 0.703 1.182 1.441 -0.3535 0.0161 0.379121 PEP -0.008 0.599 0.001 -0.884 1.510 3.668 38.309 -0.0925 -0.0346 0.026222 HD - - - - - - - - - -23 COP - - - - - - - - - -

    24 SBC -0.120 0.668 - -1.930 3.780 3.230 47.633 -0.3885 -0.3516 -0.313825 TWX 0.199 0.785 0.005 0.782 2.638 2.198 23.887 0.8665 0.9836 1.104626 UPS -0.190 0.577 - -2.036 2.759 3.232 54.503 -0.4741 -0.4477 -0.421927 ABT -0.977 -0.055 0.104 -0.056 -0.003 0.390 -5.739 -1.4412 -0.9204 -0.392628 AMGN 0.333 0.624 0.055 1.732 1.612 1.853 0.586 0.5667 0.9582 1.343229 MRK - - - - - - - - - -30 ORCL - - - - - - - - - -31 HPQ 0.012 0.728 0.001 0.848 3.593 1.909 43.827 -0.0299 0.0151 0.060432 CMCSA 0.005 0.980 0.002 0.146 5.190 5.146 34.298 -0.0683 0.0044 0.079033 UNH 0.026 0.860 0.003 0.405 2.431 3.941 29.404 0.1545 0.2446 0.335134 AXP -0.179 0.788 - -0.600 2.217 2.260 63.458 -0.8579 -0.8406 -0.824235 LLY 0.007 0.897 0.110 0.095 5.689 4.415 -6.319 -0.1457 0.4035 0.952036 MDT 0.196 0.259 0.006 3.042 1.386 2.744 23.535 0.1365 0.2571 0.378937 WYE -0.176 0.687 0.001 -1.140 2.481 3.373 47.454 -0.6063 -0.5695 -0.531238 TYC -0.036 0.930 0.002 -0.241 3.828 4.387 35.015 -0.5459 -0.4764 -0.408139 MWD -0.255 0.653 0.013 -0.392 0.910 0.878 15.149 -0.8484 -0.6553 -0.464740 FNM - - - - - - - - - -41 MMM - - - - - - - - - -42 QCOM 0.034 0.808 0.001 0.815 3.773 3.859 37.019 0.0862 0.1486 0.211043 BA -0.321 0.244 - -2.092 0.681 2.442 57.426 -0.4422 -0.4200 -0.397544 UTX -0.150 0.648 0.001 -1.570 2.889 2.430 45.302 -0.4441 -0.4042 -0.362845 MER -0.049 0.852 0.001 -0.520 3.123 3.812 45.335 -0.3261 -0.2847 -0.245246 VIA.B - - - - - - - - - -47 DIS - - - - - - - - - -48 G -0.249 0.708 0.004 -0.955 2.390 2.783 25.784 -0.8737 -0.7651 -0.651649 BMY -1.972 -1.000 0.014 -0.001 -0.001 0.109 14.410 -1.7079 -1.5127 -1.321250 BLS 0.496 0.287 0.359 0.918 0.378 0.503 -18.137 -0.2001 0.7659 1.7537

    Table 4: Estimated parameters of the AR(1,1) process on valuesNote: We can observe that, at 90% percent confidence level, the 50% of the stocks show a left fat tail, 18% a rigth

    fat tail. Since for 9 stocks, that account for 18% of the total, = 0 by definition since = 2, and only for 7 stocks theconfidence interval include the null value, we can suggest that at most 16 stocks can show a symmetric behavior.

    31

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    32/38

    dispersion VaR CVaR uncond. meanticker normal t-stud stable normal t-stud stable normal t-stud stable

    XOM 22.64 21.80 9.21 16.35 15.98 16.26 20.98 20.73 25.13 12.48GE 8.81 8.48 3.98 5.76 5.62 6.51 7.56 7.46 10.34 8.85

    MSFT 25.30 24.36 11.56 17.88 17.47 20.27 23.05 22.78 31.41 16.56C 30.17 29.05 12.08 21.16 20.67 20.66 27.33 27.00 32.30 20.82

    WMT 13.66 13.15 5.60 8.75 8.53 8.78 11.54 11.39 14.17 14.98PFE 16.83 16.21 7.60 11.09 10.82 12.50 14.53 14.35 19.81 16.38JNJ 10.77 10.37 4.49 6.91 6.73 7.08 9.11 8.99 11.40 11.73

    BAC 22.17 21.36 8.17 16.15 15.79 14.39 20.68 20.44 22.26 11.34INTC 28.46 27.41 11.11 20.74 20.28 19.70 26.56 26.25 30.41 14.45AIG 20.37 19.62 8.04 14.22 13.89 13.65 18.39 18.17 21.39 14.50MO 7.11 6.85 2.39 4.45 4.34 3.43 5.91 5.83 5.73 8.47PG 6.01 5.79 3.10 3.11 3.01 4.37 4.34 4.27 7.36 11.56

    JPM 32.61 31.41 12.16 25.02 24.49 22.70 31.69 31.34 34.41 8.19CSCO 35.21 33.91 13.25 25.04 24.46 22.78 32.24 31.85 35.55 22.05

    IBM 24.67 23.76 9.14 17.86 17.46 15.98 22.90 22.63 24.79 13.35CVX 7.36 7.09 2.76 5.00 4.88 4.50 6.50 6.42 7.16 6.18WFC 14.86 14.32 6.31 9.64 9.40 10.09 12.68 12.52 16.17 15.48

    KO 10.46 10.07 4.57 7.73 7.56 8.30 9.87 9.75 12.70 4.61VZ 13.07 12.59 4.80 10.22 10.01 9.16 12.89 12.75 13.78 2.01

    DELL 26.80 25.81 10.65 15.85 15.42 15.25 21.34 21.04 25.51 38.14PEP 10.70 10.30 4.37 7.34 7.17 7.33 9.53 9.41 11.54 8.47HD 21.27 20.48 8.68 15.03 14.68 15.00 19.38 19.14 23.36 13.94

    COP 9.48 9.13 3.51 6.63 6.47 5.90 8.56 8.46 9.28 6.69SBC 17.00 16.37 6.28 13.56 13.28 12.23 17.03 16.85 18.28 0.85

    TWX 44.13 42.50 18.82 31.64 30.93 33.17 40.67 40.19 51.30 25.87UPS 17.54 16.89 6.36 13.05 12.77 11.46 16.64 16.45 17.59 7.12ABT 10.51 10.12 4.56 7.03 6.86 7.54 9.18 9.06 11.93 9.54

    AMGN 11.57 11.14 4.40 6.42 6.23 5.77 8.78 8.66 10.00 19.30MRK 16.74 16.13 7.27 12.38 12.11 13.22 15.81 15.62 20.22 7.30

    ORCL 18.72 18.03 8.85 12.71 12.40 15.05 16.54 16.33 23.57 15.72HPQ 25.94 24.98 8.71 20.27 19.84 16.54 25.57 25.29 24.93 4.10

    CMCSA 19.82 19.09 7.09 13.90 13.58 11.90 17.96 17.74 18.73 13.69UNH 10.49 10.11 3.50 5.78 5.61 4.22 7.93 7.82 7.59 17.74AXP 24.65 23.74 9.52 17.64 17.24 16.54 22.68 22.41 25.72 14.66LLY 11.68 11.25 5.48 7.30 7.11 8.69 9.69 9.56 13.98 13.99

    MDT 15.09 14.54 6.90 9.59 9.35 11.03 12.68 12.52 17.68 17.04WYE 21.58 20.78 7.98 16.10 15.75 14.44 20.51 20.27 22.13 8.49TYC 28.17 27.13 10.63 20.29 19.83 18.54 26.05 25.74 28.78 15.90

    MWD 35.17 33.87 14.18 25.78 25.21 25.39 32.98 32.59 39.05 16.82FNM 12.14 11.69 5.43 7.86 7.66 8.77 10.34 10.21 14.00 12.74

    MMM 8.22 7.92 3.68 4.74 4.60 5.37 6.42 6.33 8.92 12.54QCOM 24.31 23.41 10.80 15.77 15.38 17.46 20.75 20.48 27.87 25.31

    BA 16.61 16.00 6.75 12.95 12.69 12.86 16.35 16.17 19.36 2.77UTX 19.05 18.34 6.83 12.84 12.53 10.95 16.73 16.52 17.53 16.62MER 32.03 30.84 12.68 23.41 22.89 22.60 29.96 29.61 34.82 15.82

    VIA.B 19.41 18.70 7.73 14.75 14.43 14.34 18.72 18.51 21.79 5.86DIS 18.02 17.35 6.70 14.16 13.87 12.86 17.85 17.65 19.32 2.26

    G 17.52 16.87 6.86 13.17 12.89 12.58 16.76 16.56 19.19 6.17BMY 9.68 9.33 4.12 6.97 6.81 7.28 8.95 8.84 11.25 5.53BLS 11.67 11.24 4.76 8.54 8.35 8.52 10.93 10.80 13.11 5.68

    Table 5: Equilibrium returnsNote: The Table shows equilibrium returns for the different distributions and the different risk measures for January

    28, 2004 computed with = 0.5 when risk is measured by dispersion and = 0.15 for the other cases. We observe thatequilibrium returns under the -stable hypothesis are in general smaller that the equilibrium returns under normal andt-student distributions.

    32

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    33/38

    dispersion VaR CVaRnumbering ticker normal t-stud stable normal t-stud stable normal t-stud stable

    1 XOM - - - 11.96% 11.59 3.01 13.99 13.89 7.252 GE 5.89 5.52 5.74 - - 4.38 - - -3 MSFT 5.52 5.37 3.19 3.57 3.61 13.08 3.30 3.31 14.084 C - - - - - - 3.39 2.94 11.515 WMT 4.35 4.30 3.30 0.20 0.59 - - - -6 PFE 0.07 - - - - 5.56 - - 3.007 JNJ 0.77 0.58 - - - - - - -8 BAC 2.81 2.63 - 0.78 0.90 3.426 - - -9 INTC 1.25 1.14 - 3.32 3.19 2.31 3.44 3.44 1.91

    10 AIG - - - - - - - - -11 MO 2.02 2.02 1.66 - - - - - -12 PG 7.32 7.65 11.00 - - - - - -13 JPM - - - 12.04 11.57 2.50 16.76 16.69 -14 CSCO - - - - - - - - -15 IBM - - - 3.88 3.92 - 3.65 3.68 -16 CVX 12.43 13.03 20.89 - 0.21 - - - -17 WFC 3.26 3.08 - - - 3.8 - - -18 KO - - - 8.25 8.56 9.67 2.39 2.76 1.0819 VZ - - - 5.19 5.43 - 0.16 0.43 -20 DELL 1.67 1.77 2.04 - - - - - -21 PEP 1.65 1.60 - - - - - - -22 HD - - - - - 3.55 - - 0.17

    23 COP 7.42 7.60 5.95 - - - - - -24 SBC - - - 7.76 7.74 2.60 8.09 8.10 -25 TWX - - - 2.43 2.12 5.41 5.75 5.58 12.0526 UPS - - - 2.90 3.01 0.02 - - -27 ABT 0.61 0.57 0.79 - 0.02 2.99 - - -28 AMGN 4.22 4.32 4.53 - - - - - -29 MRK - - - 5.43 5.35 15.02 5.60 5.63 17.7330 ORCL 4.24 4.28 5.29 - - 3.19 - - 1.5931 HPQ 0.25 0.16 - 4.30 4.33 - 5.02 4.98 -32 CMCSA 0.21 0.09 - - - - - - -33 UNH - - - - - - - - -34 AXP - - - - - - - - -35 LLY 5.22 5.25 6.03 - - - - - -36 MDT 3.11 3.15 2.74 - - 0.18 - - -37 WYE - - - 6.45 6.35 - 7.47 7.47 -38 TYC - - - - - - - - 0 .2239 MWD - - - 4.88 4.69 11.29 6.93 6.884 19.2140 FNM 4.80 4.73 4.37 - - - - - -41 MMM 5.43 5.69 9.67 - - - - - -42 QCOM 0.72 0.64 - - - - - - -43 BA - - - 6.22 6.15 9.22 7.29 7.26 10.1844 UTX - - - - - - - - -45 MER 0.17 - - - - - - - -46 VIA.B 1.07 1.00 - 1.99 2.15 0.81 - - -47 DIS 3.28 3.32 0.38 4.28 4.38 - 1.94 2.13 -48 G - - - 4.17 4.14 - 4.83 4.84 -49 BMY 4.11 4.13 5.64 - - 1.41 - - -50 BLS 6.13 6.36 6.78 - - - - - -

    Table 6: Optimal composition with neutral viewNote: We observe that the optimal composition under the -stable hypothesis are in general different from optimal

    composition under normal and t-student distributions. The last two are very similar. Moreover, optimal portfolio is lessdiversified involving 17 stocks against the 29 stocks under normal and t-student distributions. In general under normaland t-student distributions we get similar equilibrium returns and portfolio composition under the three different riskmeasures.

    33

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    34/38

    dispersion VaR CVaR unc. meanDate normal t-stud stable normal t-stud stable normal t-stud stable

    01/28/04 9.08 9.04 9.18 8.90 8.91 9.03 8.99 8.98 9.37 9.1802/25/04 22.89 22.77 21.74 22.24 22.21 22.07 22.71 22.68 23.01 21.8103/24/04 47.70 47.09 38.47 43.12 42.87 42.89 46.35 46.18 49.26 41.7204/21/04 16.34 16.36 17.26 16.81 16.84 16.64 16.57 16.58 16.19 15.8705/19/04 22.58 22.21 17.26 19.81 19.67 19.60 21.70 21.60 23.29 19.6306/16/04 10.60 10.78 14.26 12.19 12.29 12.30 11.05 11.10 10.23 12.7507/14/04 27.42 26.98 20.90 24.27 24.10 23.97 26.55 26.42 28.54 22.6908/11/04 29.53 29.15 24.04 26.63 26.48 26.62 28.60 28.49 30.69 26.5909/08/04 17.30 17.44 20.40 18.74 18.83 18.79 17.79 17.84 17.04 18.2310/06/04 44.86 44.79 44.51 44.49 44.48 44.61 44.74 44.72 45.32 44.4711/03/04 15.68 15.55 14.38 14.77 14.73 14.88 15.33 15.30 16.29 15.3212/01/04 14.33 14.42 16.59 15.31 15.37 15.54 14.69 14.72 14.49 14.7312/29/04 9.31 9.37 11.13 10.01 10.05 10.11 9.51 9.53 9.24 10.1501/05/05 25.65 25.23 19.38 22.54 22.37 22.39 24.72 24.60 27.27 21.7602/23/05 22.58 22.41 20.54 21.36 21.31 21.35 22.15 22.10 23.32 21.7103/23/05 19.71 19.42 15.55 17.58 17.47 17.39 19.05 18.97 20.85 17.2304/20/05 35.37 34.96 29.25 32.27 32.11 31.85 34.38 34.26 36.63 32.2605/18/05 15.82 16.03 20.07 17.71 17.81 18.01 16.42 16.49 15.31 17.5806/15/05 12.24 12.13 11.22 11.53 11.50 11.61 12.00 11.97 12.92 11.5907/13/05 11.21 11.11 10.19 10.59 10.57 10.54 11.04 11.01 11.74 10.23

    Table 7: Squared errors among the optimal composition and the unconditional meanover the rolling window horizon

    Note:The hypothesis of stable distribution and the use of dispersion as risk measure gives the best combination.For 13 of the 20 considered months, it is the combination that gives the b est forecast(65% success rate). The second bestcombination is the -stable distribution and the use of C V a R as risk measure. For this combination 3 of the 20 monthsgives the best forecast (15% success rate). The third best combination is the unconditional mean resulted in the bestforecast in 2 of the 20 months(10% success rate).

    34

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    35/38

    dispersion VaR CVaRnumbering ticker normal t-stud stable normal t-stud stable normal t-stud stable

    1 XOM - - - 11.85% 11.60 3.44 13.39 13.35 7.432 GE 10.41 10.34 7.70 0.25 0.29 10.11 - - -3 MSFT 5.38 4.70 3.10 3.54 3.65 11.57 2.66 2.75 13.914 C - - - - - - 2.02 1.56 9.345 WMT - 0.23 1.63 - - - - - -6 PFE 0.12 0.21 - - - 6.40 - - 4.467 JNJ 1.12 1.86 - - - - - - -8 BAC 2.64 2.07 - - - - - - -9 INTC 1.28 1.32 - 2.26 2.23 2.91 2.22 2.23 1.93

    10 AIG - - - - - - - - -11 MO 2.08 1.98 1.76 - - - - - -12 PG 7.34 6.92 10.89 - - - - - -13 JPM - - - 11.21 10.93 1.92 15.71 15.49 -14 CSCO - - - - - - - - -15 IBM - - - 6.00 5.74 - 7.09 7.07 -16 CVX 12.61 12.55 2 1.05 1.37 1.95 - - - -17 WFC 2.88 1.96 - - - 3.8 - - -18 KO - 0.42 - 9.15 9.31 11.51 4.23 4.58 3.5019 VZ - 0.72 - 3.31 3.61 - - - -20 DELL 1.72 1.96 2.06 - - - - - -21 PEP 1.82 2.20 - - - - - - -22 HD - - - - - - - - -

    23 COP 7.26 7.20 5.76 - 0.11 - - - -24 SBC - - - 10.24 10.12 2.40 10.58 10.66 -25 TWX - - - 1.95 1.67 5.05 4.95 4.79 10.8426 UPS - 0.78 - 3.92 3.96 1.91 - 0.17 -27 ABT 0.22 0.47 0.81 - - 1.28 - - -28 AMGN 4.07 4.46 4.46 - - - - - -29 MRK - - - 7.89 7.83 14.81 8.31 8.34 17.8230 ORCL 4.22 4.13 5.39 - - 3.09 - - 0.4231 HPQ 0.32 0.24 - 4.52 4.55 - 4.37 4.37 -32 CMCSA 0.15 0.40 - - - - - - -33 UNH - - - - - - - - -34 AXP - - - - - - - - -35 LLY 5.06 4.61 6.24 - - - - - -36 MDT 3.10 2.88 2.65 - - 0.12 - - -37 WYE - - - 4.18 4.11 - 5.02 4.99 -38 TYC - - - - - - - - -39 MWD - - - 4.03 3.81 12.12 6.49 6.47 20.3040 FNM 5.14 4.77 4.35 - - 0.42 - - -41 MMM 5.59 5.86 9.41 - - - - - -42 QCOM 0.65 0.78 - - - - - - -43 BA - - - 4.71 4.64 9.75 5.30 5.31 10.0744 UTX - - - - - - - - -45 MER 0.31 0.20 - - - - - - -46 VIA.B 1.02 0.95 - 0.51 0.67 0.16 - - -47 DIS 3.35 3.34 0.39 6.73 6.80 1.01 4.91 5.07 -48 G - - - 2.38 2.42 - 2.74 2.80 -49 BMY 4.03 4.10 5.79 - - - - - -50 BLS 6.10 5.41 6.57 - - - - - -

    Table 8: Optimal composition with a view of asset 2 overperforming asset 5of 0.1% with certainty

    35

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    36/38

    dispersion VaR CVaRnumbering ticker normal t-stud stable normal t-stud stable normal t-stud stable

    1 XOM - - - 11.48% 11.25 3.20 13.41 13.40 7.412 GE 9.18 8.99 6.63 - - 7.09 - - -3 MSFT 5.39 5.22 3.15 3.54 3.60 12.49 2.92 2.98 14.044 C - - - - - - 2.60 2.14 10.585 WMT 1.25 1.32 2.54 - - - - - -6 PFE 0.07 - - - - 5.97 - - 3.757 JNJ 1.10 0.97 - - - - - - -8 BAC 2.68 2.61 - - - - - - -9 INTC 1.31 1.24 - 2.63 2.60 2.58 2.63 2.66 1.97

    10 AIG - - - - - - - - -11 MO 2.05 2.60 1.70 - - - - - -12 PG 7.28 7.46 10.95 - - - - - -13 JPM - - - 11.20 10.93 2.25 15.85 15.74 -14 CSCO - - - - - - - - -15 IBM - - - 5.47 5.28 - 5.99 5.96 -16 CVX 12.49 12.88 2 0.97 0.99 1.62 - - - -17 WFC 2.98 2.82 - - - 1.61 - - -18 KO - - - 9.07 9.31 10.76 3.64 3.99 2.2919 VZ - - - 4.24 4.49 - - - -20 DELL 1.76 1.83 2.05 - - - - - -21 PEP 1.85 1.82 - - - - - - -22 HD - - - - - 1.59 - - -

    23 COP 7.22 7.32 5.86 - 0.07 - - - -24 SBC - - - 8.98 8.86 2.53 9.77 9.82 -25 TWX - - - 2.06 1.83 5.22 5.20 5.05 11.5126 UPS - - - 3.79 3.87 1.05 - - -27 ABT 0.26 0.23 0.80 - - 2.41 - - -28 AMGN 4.07 4.17 4.50 - - - - - -29 MRK - - - 6.89 6.81 14.89 7.40 7.44 17.6530 ORCL 4.24 4.31 5.33 - - 3.18 - - 1.0831 HPQ 0.24 0.16 - 4.45 4.49 - 4.62 4.61 -32 CMCSA 0.19 0.13 - - - - - - -33 UNH - - - - - - - - -34 AXP - - - - - - - - -35 LLY 5.14 5.22 6.13 - - - - - -36 MDT 3.06 3.05 2.70 - - 0.09 - - -37 WYE - - - 5.13 5.05 - 5.89 5.90 -38 TYC - - - - - - - - -39 MWD - - - 4.69 4.43 11.76 6.60 6.59 19.5840 FNM 5.10 5.03 4.37 - - - - - -41 MMM 5.56 5.79 9.55 - - - - - -42 QCOM 0.68 0.61 - - - - - - -43 BA - - - 5.36 5.27 9.75 6.03 6.07 10.1444 UTX - - - - - - - - -45 MER 0.29 - - - - - - - -46 VIA.B 1.06 1.04 - 0.92 1.10 0.60 - - -47 DIS 3.30 3.30 0.38 5.78 5.82 0.44 3.90 4.05 -48 G - - - 3.32 3.30 - 3.52 3.59 -49 BMY 4.13 4.23 5.71 - - 0.64 - - -50 BLS 6.05 6.17 6.68 - - - - - -

    Table 9: Optimal composition with a view of asset 2 overperforming asset 5of 0.1% with uncertainty of 0.61

    36

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    37/38

    dispersion VaR CVaR uncond. meanticker normal t-stud stable normal t-stud stable normal t-stud stable

    XOM 22.32 21.49 9.13 16.15 15.79 16.15 20.72 20.47 24.94 12.48GE 10.25 9.87 4.50 6.66 6.49 7.22 8.75 8.64 11.52 8.85

    MSFT 24.45 23.55 11.22 17.35 16.96 19.81 22.36 22.09 30.64 16.56C 29.40 28.31 11.85 20.68 20.20 20.35 26.70 26.37 31.78 20.82

    WMT 10.15 9.77 4.40 6.56 6.39 7.12 8.65 8.54 11.42 14.98PFE 16.80 16.18 7.66 11.07 10.80 12.59 14.51 14.33 19.96 16.38JNJ 10.60 10.21 4.49 6.80 6.63 7.08 8.97 8.85 11.40 11.73

    BAC 21.29 20.51 7.99 15.60 15.25 14.13 19.96 19.72 21.84 11.34INTC 27.04 26.04 10.76 19.86 19.42 19.23 25.39 25.10 26.92 14.45AIG 19.81 19.08 7.84 13.87 13.55 13.38 17.93 17.71 20.94 14.50MO 8.44 8.13 2.90 5.28 5.15 4.13 7.00 6.91 6.90 8.47PG 6.22 5.99 3.13 3.23 3.13 4.41 4.50 4.43 7.42 11.56

    JPM 31.40 30.24 11.77 24.27 23.76 22.17 30.69 30.35 33.53 8.19CSCO 33.75 32.50 12.96 24.12 23.57 22.38 31.03 30.66 34.88 22.05

    IBM 25.13 24.21 9.34 18.14 17.74 16.26 23.28 23.01 25.25 13.35CVX 7.98 7.68 3.00 5.38 5.25 4.84 7.01 6.92 7.72 6.18WFC 14.12 13.60 6.02 9.18 8.95 9.70 12.07 11.92 15.51 15.48

    KO 10.96 10.56 4.84 8.04 7.86 8.67 10.28 10.16 13.32 4.61VZ 13.02 12.54 4.73 10.19 9.98 9.05 12.85 12.71 13.60 2.01

    DELL 23.94 23.06 9.75 14.07 13.68 14.00 18.98 18.72 23.44 38.14PEP 10.69 10.29 4.37 7.33 7.16 7.34 9.52 9.40 11.55 8.47HD 18.61 17.92 7.67 13.37 13.07 13.61 17.19 16.98 21.06 13.94

    COP 10.14 9.77 3.74 7.04 6.88 6.22 9.11 9.00 9.80 6.69SBC 17.26 16.63 6.25 13.72 13.44 12.19 17.25 17.06 18.21 0.85

    TWX 42.35 40.78 18.08 30.53 29.84 32.15 39.20 38.74 49.61 25.87UPS 17.43 16.79 6.38 12.98 12.70 11.48 16.55 16.36 17.63 7.12ABT 10.40 10.01 4.52 6.96 6.79 7.48 9.08 8.97 11.84 9.54

    AMGN 10.57 10.18 4.02 5.79 5.62 5.24 7.96 7.84 9.13 19.30MRK 16.91 16.28 7.32 12.48 12.21 13.28 15.94 15.76 20.33 7.30

    ORCL 16.54 15.93 8.23 11.35 11.08 14.21 14.74 14.56 22.17 15.72HPQ 25.63 24.68 8.63 20.07 19.65 16.42 25.31 25.03 24.74 4.10

    CMCSA 19.26 18.55 6.80 13.55 13.24 11.51 17.49 17.28 18.08 13.69UNH 10.99 10.58 3.75 6.09 5.92 4.57 8.34 8.22 8.17 17.74AXP 24.18 23.29 9.36 17.35 16.96 16.32 22.30 22.03 25.34 14.66LLY 11.02 10.61 5.42 6.89 6.71 8.60 9.14 9.02 13.82 13.99

    MDT 15.11 14.55 6.95 9.60 9.36 11.09 12.69 12.53 17.79 17.04WYE 20.72 19.96 7.81 15.56 15.23 14.20 19.80 19.58 21.74 8.49TYC 27.07 26.07 10.30 19.60 19.16 18.08 25.14 24.85 28.02 15.90

    MWD 33.98 32.73 13.87 25.05 24.49 24.96 32.00 31.63 38.34 16.82FNM 12.26 11.81 5.47 7.94 7.74 8.83 10.44 10.31 14.10 12.74

    MMM 8.65 8.33 3.77 5.00 4.86 5.49 6.77 6.67 9.12 12.54QCOM 22.19 21.37 9.99 14.45 14.09 16.35 19.00 18.75 26.03 25.31

    BA 16.31 15.71 6.68 12.77 12.51 12.77 16.11 15.93 19.21 2.77UTX 18.99 18.29 6.78 12.80 12.50 10.89 16.69 16.48 17.42 16.62MER 31.33 30.17 12.44 22.97 22.46 22.26 29.38 29.04 34.26 15.82

    VIA.B 18.39 17.71 7.42 14.11 13.81 13.92 17.87 17.67 21.09 5.86DIS 18.44 17.76 6.87 14.43 14.13 13.08 18.20 18.00 19.68 2.26

    G 17.32 16.68 6.80 13.05 12.77 12.49 16.59 16.40 19.04 6.17BMY 9.07 8.73 3.95 6.58 6.44 7.04 8.44 8.34 10.86 5.53BLS 11.91 11.47 4.80 8.69 8.50 8.57 11.12 10.99 13.20 5.68

    Table 10: Equilibrium returns with views under certaintyNote: The Table shows equilibrium returns for the different distributions and the different risk measures for January

    28, 2004, computed with = 0.5 when risk is measured by dispersion and = 0.15 for the other cases with a view ofasset 2 overperforming asset 5 of 0.1% with certainty.

    37

  • 8/22/2019 Stable distributions in the Black-Litterman approach to the asset allocation

    38/38

    dispersion VaR CVaR uncond. meanticker normal t-stud stable normal t-stud stable normal t-stud stable

    XOM 22.59 21.76 9.21 16.32 15.95 16.25 20.94 20.69 25.12 22.59GE 9.01 8.68 4.01 5.89 5.74 6.55 7.73 7.63 10.42 9.01

    MSFT 25.17 24.25 11.54 17.80 17.40 20.24 22.95 22.68 31.36 25.17C 30.06 28.95 12.07 21.09 20.60 20.64 27.24 26.91 32.27 30.06

    WMT 13.15 12.68 5.52 8.43 8.23 8.67 11.12 10.99 13.99 13.15PFE 16.83 16.21 7.60 11.09 10.82 12.50 14.53 14.35 19.82 16.83JNJ 10.74 10.34 4.49 6.89 6.72 7.08 9.09 8.97 11.40 10.74

    BAC 22.05 21.24 8.16 16.07 15.71 14.37 20.58 20.34 22.23 22.05INTC 28.25 27.21 11.09 20.61 20.16 19.67 26.39 26.08 30.36 28.25AIG 20.29 19.54 8.02 14.17 13.84 13.63 18.32 18.10 21.36 20.29MO 7.30 7.03 2.42 4.57 4.45 3.47 6.07 5.98 5.80 7.30PG 6.04 5.82 3.10 3.12 3.03 4.38 4.36 4.29 7.37 8.04

    JPM 32.44 31.24 12.13 24.91 24.39 22.66 31.55 31.20 34.35 32.44CSCO 35.00 33.71 13.24 24.90 24.34 22.76 32.06 31.68 35.51 35.00

    IBM 24.74 23.82 9.15 17.90 17.50 16.00 22.96 22.69 24.82 24.74CVX 7.45 7.17 2.77 5.05 4.93 4.52 6.58 6.49 7.20 7.45WFC 14.76 14.21 6.29 9.58 9.34 10.07 12.59 12.44 16.13 14.76

    KO 10.53 10.14 4.59 7.77 7.60 8.32 9.93 9.81 12.74 10.53VZ 13.06 12.58 4.80 10.21 10.00 9.15 12.88 12.74 13.77 13.06

    DELL 26.39 25.43 10.59 15.60 15.18 15.17 20.99 20.72 25.37 26.39PEP 10.70 10.30 4.37 7.34 7.17 7.33 9.53 9.41 11.54 10.70HD 20.88 20.12 8.62 14.79 14.46 14.91 19.06 18.84 23.21 20.88

    COP 9.58 9.22 3.52 6.69 6.53 5.92 8.64 8.54 9.31 9.58SBC 17.04 16.41 6.28 13.58 13.30 12.23 17.06 16.88 18.28 17.04

    TWX 43.87 42.26 18.77 31.48 30.78 33.10 40.45 39.98 51.19 43.87UPS 17.53 16.88 6.37 13.04 12.76 11.46 16.63 16.43 17.59 17.53ABT 10.49 10.11 4.56 7.02 6.85 7.54 9.17 9.05 11.93 10.49

    AMGN 11.43 11.01 4.38 6.33 6.15 5.73 8.66 8.54 9.95 11.43MRK 16.77 16.15 7.27 12.40 12.12 13.22 15.83 15.64 20.23 16.77

    ORCL 18.40 17.73 8.81 12.51 12.22 15.00 16.27 16.08 23.48 18.40HPQ 25.89 24.94 8.71 20.24 19.82 16.53 25.53 25.25 24.92 25.89

    CMCSA 19.74 19.02 7.07 13.85 13.53 11.88 17.89 17.68 18.69 19.74UNH 10.57 10.17 3.51 5.83 5.66 4.24 7.99 7.87 7.63 10.57AXP 24.58 23.67 9.51 17.60 17.20 16.53 22.62 22.36 25.69 24.58LLY 11.58 11.16 5.48 7.24 7.06 8.69 9.61 9.49 13.97 11.58

    MDT 15.10 14.54 6.90 9.59 9.35 11.03 12.66 12.52 17.68 15.10WYE 21.45 20.67 7.97 16.02 15.67 14.43 20.41 20.18 22.11 21.45TYC 28.01 26.98 10.61 20.19 19.74 18.51 25.92 25.62 28.73 28.01

    MWD 35.00 33.71 14.16 25.68 25.11 25.36 32.83 32.46 39.01 35.00FNM 12.16 11.71 5.43 7.87 7.67 8.77 10.36 10.22 14.00 12.16

    MMM 8.28 7.97 3.69 4.77 4.64 5.38 6.47 6.38 8.93 8.28QCOM 24.00 23.13 10.75 15.58 15.20 17.39 20.49 20.24 27.75 24.00

    BA 16.57 15.96 6.74 12.93 12.66 12.86 16.32 16.14 19.35 16.57UTX 19.04 18.34 6.83 12.83 12.52 10.95 16.73 16.52 17.52 19.04MER 31.93 30.75 12.67 23.34 22.83 22.57 29.87 29.53 34.78 31.93

    VIA.B 19.26 18.56 7.71 14.65 14.35 14.31 18.59 18.39 21.74 19.26DIS 18.08 17.41 6.71 14.20 13.91 12.87 17.90 17.70 19.34 18.08

    G 17.49 16.84 6.86 13.16 12.87 12.58 16.73 16.54 19.18 17.49BMY 9.60 9.24 4.11 6.91 6.76 7.27 8.87 8.77 11.23 9.60BLS 11.70 11.27 4.77 8.56 8.37 8.53 10.95 10.83 13.12 11.70

    Table 11: Equilibrium returns with views under uncertaintyNote: The Table shows equilibrium returns for the different distributions and the different risk measures for January

    28, 2004, computed with = 0.5 when risk is measured by dispersion and = 0.15 for the other cases with a view ofasset 2 overperforming asset 5 of 0.1% with uncertainty of 0 .61 .

    38