stability of non-cohesive soils with respect to internal ... · stability of non-cohesive soils...

15
Stability of non-cohesive Soils with respect to Internal Erosion Dr.-Ing. Marx F. Ahlinhan, IMPaC Group International Conference on Scour and Erosion, Paris, France, 2012

Upload: others

Post on 03-Nov-2019

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stability of non-cohesive Soils with respect to Internal ... · Stability of non-cohesive Soils with respect to Internal Erosion Dr.-Ing. Marx F. Ahlinhan, IMPaC Group International

Stability of non-cohesive Soils with respect to Internal Erosion

Dr-Ing Marx F Ahlinhan

IMPaC Group

International Conference on Scour and Erosion Paris France 2012

Stability of non-cohesive Soils with respect to Internal Erosion

Table of Contents

State of the Art

Model Tests

Results

Results Evaluation

Summary

Stability of non-cohesive Soils with respect to Internal Erosion 3

State of the Art

L L

ΔH

Schematic sketch of piping channel occurring at the downstream end of

a dycke (left) and a river barrage (right)

Stability of non-cohesive Soils with respect to Internal Erosion 4

Criteria for the Evaluation of Internal Erosion

Geometric criteria

Kezdi (1979) Splitting up of the grain size

distribution into fine fraction and coarse

fraction

Kenney et Lau (1985-1986)

H-F-Diagram

HF ge 10 for interne stable soil

F F

H

d 4d0

100

50

Silt Sand Gravel

Perc

enta

ge fin

er

by w

eig

ht

Grain diameter

Grain size distribution H - F diagram

Evaluation limit for well-graded soils

(H F)min

F

03

02

01

0

H

0 01 02 03

H -

F

d15F

d85b

lt 4 U lt2F U lt2b

d = 0002 0006 002 006 02 06 20 60 20 63 0

100

90

80

70

60

50

40

30

20

10

Silt Sand GravelFine- Fine- Fine-Medium- Medium- Medium-Coarse- Coarse- Coarse-

Perc

ent finer

by w

eig

ht

E2Fine fraction Coarse fraction

d85b d15F

= 72 d85bd15F

Grain diameter d in mm

State of the Art

Stability of non-cohesive Soils with respect to Internal Erosion 5

State of the Art

Hydraulic Criteria

Istomina (1957)

Terzaghi et Peck (1961) Approach for vertical

upward seepage

Skempton et Brogan (1994) Suffosion in Sand-Gravel

Upward vertical seepage

ikrit = (13 to 15)ikrittheo

0

05

10

15

20

Critical gra

die

nt i

v

cri

t

Uniformity index Cu

0 10 20 30 40

Test results

Proposed design curve

0 1 2 3

Critical gra

die

nt i c

rit

(HF)min

unstable stable

Upward vertical flow (Skempton amp Brogan 1994)

Horizontal flow (Adel et al 1988)

ikritv = acutew

acutemf

acutemG

with

i =kritv acute

w

Stability of non-cohesive Soils with respect to Internal Erosion 6

Proposed approach for Splitting Up

tan =H

log4d - logd

Proposed approach for Splitting Up

β minimal H minimal

(d15Fd85b) = (d15Fd85b) at (HF)min

Stability of non-cohesive Soils with respect to Internal Erosion 7

Model Tests

Investigated Soils Grain Size Distribution

Stability of non-cohesive Soils with respect to Internal Erosion 8

Model Tests

Experiment set up for upward vertical Seepage Flow

Soil sample 30cm diameter 30cm height

Stability of non-cohesive Soils with respect to Internal Erosion 9

Model Tests

Sand boils at Mississippi river

Levee (after Glynn (2004)) Total failure due to piping

(current test for vertical

upward seepage)

Stable Zone

Effectif Stress Zero - Zone

Failure Zone

Phenomenological observation for upward vertical seepage flow

Stability of non-cohesive Soils with respect to Internal Erosion 10

Model Tests

Experimental set up for horizontal Seepage Flow

Soil sample widthheightdepth=60cm30cm10cm

Stability of non-cohesive Soils with respect to Internal Erosion 11

Test Results

E2

A1

0 4 8 12 16 20

06

08

10

04

02

0

Critical h

yd

raulic

g

radie

nt i c

rit [1

]

unstable

stable

horizontal tests

vertical tests

Transition zone for stable soils

Transition zone for unstable soils

Limit for U gt 25after Istomina (1957)

E1

E5

Instability (d d ) [1]15f 85b mod index

D=075

D=076

D=070D=058

D=050

D=040D=045

D=059

D=060

D=031

D=085

D=060D=050

D=095D=041

D=085 D=085

D=075

D=075

D=050

D=025

D=092

Test Results hydraulic aspect

Stability of non-cohesive Soils with respect to Internal Erosion 12

Test Results

01

02

03

04

05

0

H M

ass fra

ction o

f part

icle

s

betw

een d

and 4

d [1]

0 01 02 03 04 05 F Mass fraction of particles smaller than d [1]

Kenney et L

au (1986)

H = F083 071

Kezdi (1979) H = 015

(a) stable

(b) unstable

(d)

(c)

Own tests

Adel (1988)

Kenney and Lau (1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li and Fannin (2008)

Lafleur (1984)

Wan and Fell (2008)

stable unstable Author

A1 A2

E1

E2E5

Test Results geometric aspect

Stability of non-cohesive Soils with respect to Internal Erosion 13

Evaluation of the Test Results

0

16

12

4

8

Insta

bili

ty

(d

d)

[1]

inde

x

15f

85b

mod

06 04 02 0

D = 095

D = 070

D = 040lower limit

0 01 02 03 04 05

01

02

03

04

06

05

0

083 071

Kenney et Lau (1

986) H =

F

Kezdi (1979) H = 015

A1 A2

E1

E5

E1

E2

E5

015

003

upper limit

E272

Own tests

Adel (1988)

Kenney et Lau(1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li et Fannin (2008)

Lafleur (1984)

Wan et Fell (2008)

stable unstable Author

H M

ass fra

ction o

f p

art

icle

s

be

twee

n d

and

4d [1]

F Mass fraction of particles smaller than d [1]

(a) stable

(b) unstable

i = 018critv

Critical vertical gradient i [1]critv

Combined geometric and hydraulic criteria

Stability of non-cohesive Soils with respect to Internal Erosion 14

Summary

Problem

Internal erosion

Several approaches exist for the evaluation

Approaches lead to different results

Results of current Investigations

Controlling parameters have been idenfied by model tests

Uniformity coefficient Cu might not be adequate for a reliable

assessment of internal erosion

Modified (d15Fd85b) mod is promising

Diagrams have been proposed for the evaluation of the internal

erosion stability

Stability of non-cohesive Soils with respect to Internal Erosion

Thank you for your

attention

wwwimpacde

Page 2: Stability of non-cohesive Soils with respect to Internal ... · Stability of non-cohesive Soils with respect to Internal Erosion Dr.-Ing. Marx F. Ahlinhan, IMPaC Group International

Stability of non-cohesive Soils with respect to Internal Erosion

Table of Contents

State of the Art

Model Tests

Results

Results Evaluation

Summary

Stability of non-cohesive Soils with respect to Internal Erosion 3

State of the Art

L L

ΔH

Schematic sketch of piping channel occurring at the downstream end of

a dycke (left) and a river barrage (right)

Stability of non-cohesive Soils with respect to Internal Erosion 4

Criteria for the Evaluation of Internal Erosion

Geometric criteria

Kezdi (1979) Splitting up of the grain size

distribution into fine fraction and coarse

fraction

Kenney et Lau (1985-1986)

H-F-Diagram

HF ge 10 for interne stable soil

F F

H

d 4d0

100

50

Silt Sand Gravel

Perc

enta

ge fin

er

by w

eig

ht

Grain diameter

Grain size distribution H - F diagram

Evaluation limit for well-graded soils

(H F)min

F

03

02

01

0

H

0 01 02 03

H -

F

d15F

d85b

lt 4 U lt2F U lt2b

d = 0002 0006 002 006 02 06 20 60 20 63 0

100

90

80

70

60

50

40

30

20

10

Silt Sand GravelFine- Fine- Fine-Medium- Medium- Medium-Coarse- Coarse- Coarse-

Perc

ent finer

by w

eig

ht

E2Fine fraction Coarse fraction

d85b d15F

= 72 d85bd15F

Grain diameter d in mm

State of the Art

Stability of non-cohesive Soils with respect to Internal Erosion 5

State of the Art

Hydraulic Criteria

Istomina (1957)

Terzaghi et Peck (1961) Approach for vertical

upward seepage

Skempton et Brogan (1994) Suffosion in Sand-Gravel

Upward vertical seepage

ikrit = (13 to 15)ikrittheo

0

05

10

15

20

Critical gra

die

nt i

v

cri

t

Uniformity index Cu

0 10 20 30 40

Test results

Proposed design curve

0 1 2 3

Critical gra

die

nt i c

rit

(HF)min

unstable stable

Upward vertical flow (Skempton amp Brogan 1994)

Horizontal flow (Adel et al 1988)

ikritv = acutew

acutemf

acutemG

with

i =kritv acute

w

Stability of non-cohesive Soils with respect to Internal Erosion 6

Proposed approach for Splitting Up

tan =H

log4d - logd

Proposed approach for Splitting Up

β minimal H minimal

(d15Fd85b) = (d15Fd85b) at (HF)min

Stability of non-cohesive Soils with respect to Internal Erosion 7

Model Tests

Investigated Soils Grain Size Distribution

Stability of non-cohesive Soils with respect to Internal Erosion 8

Model Tests

Experiment set up for upward vertical Seepage Flow

Soil sample 30cm diameter 30cm height

Stability of non-cohesive Soils with respect to Internal Erosion 9

Model Tests

Sand boils at Mississippi river

Levee (after Glynn (2004)) Total failure due to piping

(current test for vertical

upward seepage)

Stable Zone

Effectif Stress Zero - Zone

Failure Zone

Phenomenological observation for upward vertical seepage flow

Stability of non-cohesive Soils with respect to Internal Erosion 10

Model Tests

Experimental set up for horizontal Seepage Flow

Soil sample widthheightdepth=60cm30cm10cm

Stability of non-cohesive Soils with respect to Internal Erosion 11

Test Results

E2

A1

0 4 8 12 16 20

06

08

10

04

02

0

Critical h

yd

raulic

g

radie

nt i c

rit [1

]

unstable

stable

horizontal tests

vertical tests

Transition zone for stable soils

Transition zone for unstable soils

Limit for U gt 25after Istomina (1957)

E1

E5

Instability (d d ) [1]15f 85b mod index

D=075

D=076

D=070D=058

D=050

D=040D=045

D=059

D=060

D=031

D=085

D=060D=050

D=095D=041

D=085 D=085

D=075

D=075

D=050

D=025

D=092

Test Results hydraulic aspect

Stability of non-cohesive Soils with respect to Internal Erosion 12

Test Results

01

02

03

04

05

0

H M

ass fra

ction o

f part

icle

s

betw

een d

and 4

d [1]

0 01 02 03 04 05 F Mass fraction of particles smaller than d [1]

Kenney et L

au (1986)

H = F083 071

Kezdi (1979) H = 015

(a) stable

(b) unstable

(d)

(c)

Own tests

Adel (1988)

Kenney and Lau (1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li and Fannin (2008)

Lafleur (1984)

Wan and Fell (2008)

stable unstable Author

A1 A2

E1

E2E5

Test Results geometric aspect

Stability of non-cohesive Soils with respect to Internal Erosion 13

Evaluation of the Test Results

0

16

12

4

8

Insta

bili

ty

(d

d)

[1]

inde

x

15f

85b

mod

06 04 02 0

D = 095

D = 070

D = 040lower limit

0 01 02 03 04 05

01

02

03

04

06

05

0

083 071

Kenney et Lau (1

986) H =

F

Kezdi (1979) H = 015

A1 A2

E1

E5

E1

E2

E5

015

003

upper limit

E272

Own tests

Adel (1988)

Kenney et Lau(1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li et Fannin (2008)

Lafleur (1984)

Wan et Fell (2008)

stable unstable Author

H M

ass fra

ction o

f p

art

icle

s

be

twee

n d

and

4d [1]

F Mass fraction of particles smaller than d [1]

(a) stable

(b) unstable

i = 018critv

Critical vertical gradient i [1]critv

Combined geometric and hydraulic criteria

Stability of non-cohesive Soils with respect to Internal Erosion 14

Summary

Problem

Internal erosion

Several approaches exist for the evaluation

Approaches lead to different results

Results of current Investigations

Controlling parameters have been idenfied by model tests

Uniformity coefficient Cu might not be adequate for a reliable

assessment of internal erosion

Modified (d15Fd85b) mod is promising

Diagrams have been proposed for the evaluation of the internal

erosion stability

Stability of non-cohesive Soils with respect to Internal Erosion

Thank you for your

attention

wwwimpacde

Page 3: Stability of non-cohesive Soils with respect to Internal ... · Stability of non-cohesive Soils with respect to Internal Erosion Dr.-Ing. Marx F. Ahlinhan, IMPaC Group International

Stability of non-cohesive Soils with respect to Internal Erosion 3

State of the Art

L L

ΔH

Schematic sketch of piping channel occurring at the downstream end of

a dycke (left) and a river barrage (right)

Stability of non-cohesive Soils with respect to Internal Erosion 4

Criteria for the Evaluation of Internal Erosion

Geometric criteria

Kezdi (1979) Splitting up of the grain size

distribution into fine fraction and coarse

fraction

Kenney et Lau (1985-1986)

H-F-Diagram

HF ge 10 for interne stable soil

F F

H

d 4d0

100

50

Silt Sand Gravel

Perc

enta

ge fin

er

by w

eig

ht

Grain diameter

Grain size distribution H - F diagram

Evaluation limit for well-graded soils

(H F)min

F

03

02

01

0

H

0 01 02 03

H -

F

d15F

d85b

lt 4 U lt2F U lt2b

d = 0002 0006 002 006 02 06 20 60 20 63 0

100

90

80

70

60

50

40

30

20

10

Silt Sand GravelFine- Fine- Fine-Medium- Medium- Medium-Coarse- Coarse- Coarse-

Perc

ent finer

by w

eig

ht

E2Fine fraction Coarse fraction

d85b d15F

= 72 d85bd15F

Grain diameter d in mm

State of the Art

Stability of non-cohesive Soils with respect to Internal Erosion 5

State of the Art

Hydraulic Criteria

Istomina (1957)

Terzaghi et Peck (1961) Approach for vertical

upward seepage

Skempton et Brogan (1994) Suffosion in Sand-Gravel

Upward vertical seepage

ikrit = (13 to 15)ikrittheo

0

05

10

15

20

Critical gra

die

nt i

v

cri

t

Uniformity index Cu

0 10 20 30 40

Test results

Proposed design curve

0 1 2 3

Critical gra

die

nt i c

rit

(HF)min

unstable stable

Upward vertical flow (Skempton amp Brogan 1994)

Horizontal flow (Adel et al 1988)

ikritv = acutew

acutemf

acutemG

with

i =kritv acute

w

Stability of non-cohesive Soils with respect to Internal Erosion 6

Proposed approach for Splitting Up

tan =H

log4d - logd

Proposed approach for Splitting Up

β minimal H minimal

(d15Fd85b) = (d15Fd85b) at (HF)min

Stability of non-cohesive Soils with respect to Internal Erosion 7

Model Tests

Investigated Soils Grain Size Distribution

Stability of non-cohesive Soils with respect to Internal Erosion 8

Model Tests

Experiment set up for upward vertical Seepage Flow

Soil sample 30cm diameter 30cm height

Stability of non-cohesive Soils with respect to Internal Erosion 9

Model Tests

Sand boils at Mississippi river

Levee (after Glynn (2004)) Total failure due to piping

(current test for vertical

upward seepage)

Stable Zone

Effectif Stress Zero - Zone

Failure Zone

Phenomenological observation for upward vertical seepage flow

Stability of non-cohesive Soils with respect to Internal Erosion 10

Model Tests

Experimental set up for horizontal Seepage Flow

Soil sample widthheightdepth=60cm30cm10cm

Stability of non-cohesive Soils with respect to Internal Erosion 11

Test Results

E2

A1

0 4 8 12 16 20

06

08

10

04

02

0

Critical h

yd

raulic

g

radie

nt i c

rit [1

]

unstable

stable

horizontal tests

vertical tests

Transition zone for stable soils

Transition zone for unstable soils

Limit for U gt 25after Istomina (1957)

E1

E5

Instability (d d ) [1]15f 85b mod index

D=075

D=076

D=070D=058

D=050

D=040D=045

D=059

D=060

D=031

D=085

D=060D=050

D=095D=041

D=085 D=085

D=075

D=075

D=050

D=025

D=092

Test Results hydraulic aspect

Stability of non-cohesive Soils with respect to Internal Erosion 12

Test Results

01

02

03

04

05

0

H M

ass fra

ction o

f part

icle

s

betw

een d

and 4

d [1]

0 01 02 03 04 05 F Mass fraction of particles smaller than d [1]

Kenney et L

au (1986)

H = F083 071

Kezdi (1979) H = 015

(a) stable

(b) unstable

(d)

(c)

Own tests

Adel (1988)

Kenney and Lau (1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li and Fannin (2008)

Lafleur (1984)

Wan and Fell (2008)

stable unstable Author

A1 A2

E1

E2E5

Test Results geometric aspect

Stability of non-cohesive Soils with respect to Internal Erosion 13

Evaluation of the Test Results

0

16

12

4

8

Insta

bili

ty

(d

d)

[1]

inde

x

15f

85b

mod

06 04 02 0

D = 095

D = 070

D = 040lower limit

0 01 02 03 04 05

01

02

03

04

06

05

0

083 071

Kenney et Lau (1

986) H =

F

Kezdi (1979) H = 015

A1 A2

E1

E5

E1

E2

E5

015

003

upper limit

E272

Own tests

Adel (1988)

Kenney et Lau(1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li et Fannin (2008)

Lafleur (1984)

Wan et Fell (2008)

stable unstable Author

H M

ass fra

ction o

f p

art

icle

s

be

twee

n d

and

4d [1]

F Mass fraction of particles smaller than d [1]

(a) stable

(b) unstable

i = 018critv

Critical vertical gradient i [1]critv

Combined geometric and hydraulic criteria

Stability of non-cohesive Soils with respect to Internal Erosion 14

Summary

Problem

Internal erosion

Several approaches exist for the evaluation

Approaches lead to different results

Results of current Investigations

Controlling parameters have been idenfied by model tests

Uniformity coefficient Cu might not be adequate for a reliable

assessment of internal erosion

Modified (d15Fd85b) mod is promising

Diagrams have been proposed for the evaluation of the internal

erosion stability

Stability of non-cohesive Soils with respect to Internal Erosion

Thank you for your

attention

wwwimpacde

Page 4: Stability of non-cohesive Soils with respect to Internal ... · Stability of non-cohesive Soils with respect to Internal Erosion Dr.-Ing. Marx F. Ahlinhan, IMPaC Group International

Stability of non-cohesive Soils with respect to Internal Erosion 4

Criteria for the Evaluation of Internal Erosion

Geometric criteria

Kezdi (1979) Splitting up of the grain size

distribution into fine fraction and coarse

fraction

Kenney et Lau (1985-1986)

H-F-Diagram

HF ge 10 for interne stable soil

F F

H

d 4d0

100

50

Silt Sand Gravel

Perc

enta

ge fin

er

by w

eig

ht

Grain diameter

Grain size distribution H - F diagram

Evaluation limit for well-graded soils

(H F)min

F

03

02

01

0

H

0 01 02 03

H -

F

d15F

d85b

lt 4 U lt2F U lt2b

d = 0002 0006 002 006 02 06 20 60 20 63 0

100

90

80

70

60

50

40

30

20

10

Silt Sand GravelFine- Fine- Fine-Medium- Medium- Medium-Coarse- Coarse- Coarse-

Perc

ent finer

by w

eig

ht

E2Fine fraction Coarse fraction

d85b d15F

= 72 d85bd15F

Grain diameter d in mm

State of the Art

Stability of non-cohesive Soils with respect to Internal Erosion 5

State of the Art

Hydraulic Criteria

Istomina (1957)

Terzaghi et Peck (1961) Approach for vertical

upward seepage

Skempton et Brogan (1994) Suffosion in Sand-Gravel

Upward vertical seepage

ikrit = (13 to 15)ikrittheo

0

05

10

15

20

Critical gra

die

nt i

v

cri

t

Uniformity index Cu

0 10 20 30 40

Test results

Proposed design curve

0 1 2 3

Critical gra

die

nt i c

rit

(HF)min

unstable stable

Upward vertical flow (Skempton amp Brogan 1994)

Horizontal flow (Adel et al 1988)

ikritv = acutew

acutemf

acutemG

with

i =kritv acute

w

Stability of non-cohesive Soils with respect to Internal Erosion 6

Proposed approach for Splitting Up

tan =H

log4d - logd

Proposed approach for Splitting Up

β minimal H minimal

(d15Fd85b) = (d15Fd85b) at (HF)min

Stability of non-cohesive Soils with respect to Internal Erosion 7

Model Tests

Investigated Soils Grain Size Distribution

Stability of non-cohesive Soils with respect to Internal Erosion 8

Model Tests

Experiment set up for upward vertical Seepage Flow

Soil sample 30cm diameter 30cm height

Stability of non-cohesive Soils with respect to Internal Erosion 9

Model Tests

Sand boils at Mississippi river

Levee (after Glynn (2004)) Total failure due to piping

(current test for vertical

upward seepage)

Stable Zone

Effectif Stress Zero - Zone

Failure Zone

Phenomenological observation for upward vertical seepage flow

Stability of non-cohesive Soils with respect to Internal Erosion 10

Model Tests

Experimental set up for horizontal Seepage Flow

Soil sample widthheightdepth=60cm30cm10cm

Stability of non-cohesive Soils with respect to Internal Erosion 11

Test Results

E2

A1

0 4 8 12 16 20

06

08

10

04

02

0

Critical h

yd

raulic

g

radie

nt i c

rit [1

]

unstable

stable

horizontal tests

vertical tests

Transition zone for stable soils

Transition zone for unstable soils

Limit for U gt 25after Istomina (1957)

E1

E5

Instability (d d ) [1]15f 85b mod index

D=075

D=076

D=070D=058

D=050

D=040D=045

D=059

D=060

D=031

D=085

D=060D=050

D=095D=041

D=085 D=085

D=075

D=075

D=050

D=025

D=092

Test Results hydraulic aspect

Stability of non-cohesive Soils with respect to Internal Erosion 12

Test Results

01

02

03

04

05

0

H M

ass fra

ction o

f part

icle

s

betw

een d

and 4

d [1]

0 01 02 03 04 05 F Mass fraction of particles smaller than d [1]

Kenney et L

au (1986)

H = F083 071

Kezdi (1979) H = 015

(a) stable

(b) unstable

(d)

(c)

Own tests

Adel (1988)

Kenney and Lau (1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li and Fannin (2008)

Lafleur (1984)

Wan and Fell (2008)

stable unstable Author

A1 A2

E1

E2E5

Test Results geometric aspect

Stability of non-cohesive Soils with respect to Internal Erosion 13

Evaluation of the Test Results

0

16

12

4

8

Insta

bili

ty

(d

d)

[1]

inde

x

15f

85b

mod

06 04 02 0

D = 095

D = 070

D = 040lower limit

0 01 02 03 04 05

01

02

03

04

06

05

0

083 071

Kenney et Lau (1

986) H =

F

Kezdi (1979) H = 015

A1 A2

E1

E5

E1

E2

E5

015

003

upper limit

E272

Own tests

Adel (1988)

Kenney et Lau(1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li et Fannin (2008)

Lafleur (1984)

Wan et Fell (2008)

stable unstable Author

H M

ass fra

ction o

f p

art

icle

s

be

twee

n d

and

4d [1]

F Mass fraction of particles smaller than d [1]

(a) stable

(b) unstable

i = 018critv

Critical vertical gradient i [1]critv

Combined geometric and hydraulic criteria

Stability of non-cohesive Soils with respect to Internal Erosion 14

Summary

Problem

Internal erosion

Several approaches exist for the evaluation

Approaches lead to different results

Results of current Investigations

Controlling parameters have been idenfied by model tests

Uniformity coefficient Cu might not be adequate for a reliable

assessment of internal erosion

Modified (d15Fd85b) mod is promising

Diagrams have been proposed for the evaluation of the internal

erosion stability

Stability of non-cohesive Soils with respect to Internal Erosion

Thank you for your

attention

wwwimpacde

Page 5: Stability of non-cohesive Soils with respect to Internal ... · Stability of non-cohesive Soils with respect to Internal Erosion Dr.-Ing. Marx F. Ahlinhan, IMPaC Group International

Stability of non-cohesive Soils with respect to Internal Erosion 5

State of the Art

Hydraulic Criteria

Istomina (1957)

Terzaghi et Peck (1961) Approach for vertical

upward seepage

Skempton et Brogan (1994) Suffosion in Sand-Gravel

Upward vertical seepage

ikrit = (13 to 15)ikrittheo

0

05

10

15

20

Critical gra

die

nt i

v

cri

t

Uniformity index Cu

0 10 20 30 40

Test results

Proposed design curve

0 1 2 3

Critical gra

die

nt i c

rit

(HF)min

unstable stable

Upward vertical flow (Skempton amp Brogan 1994)

Horizontal flow (Adel et al 1988)

ikritv = acutew

acutemf

acutemG

with

i =kritv acute

w

Stability of non-cohesive Soils with respect to Internal Erosion 6

Proposed approach for Splitting Up

tan =H

log4d - logd

Proposed approach for Splitting Up

β minimal H minimal

(d15Fd85b) = (d15Fd85b) at (HF)min

Stability of non-cohesive Soils with respect to Internal Erosion 7

Model Tests

Investigated Soils Grain Size Distribution

Stability of non-cohesive Soils with respect to Internal Erosion 8

Model Tests

Experiment set up for upward vertical Seepage Flow

Soil sample 30cm diameter 30cm height

Stability of non-cohesive Soils with respect to Internal Erosion 9

Model Tests

Sand boils at Mississippi river

Levee (after Glynn (2004)) Total failure due to piping

(current test for vertical

upward seepage)

Stable Zone

Effectif Stress Zero - Zone

Failure Zone

Phenomenological observation for upward vertical seepage flow

Stability of non-cohesive Soils with respect to Internal Erosion 10

Model Tests

Experimental set up for horizontal Seepage Flow

Soil sample widthheightdepth=60cm30cm10cm

Stability of non-cohesive Soils with respect to Internal Erosion 11

Test Results

E2

A1

0 4 8 12 16 20

06

08

10

04

02

0

Critical h

yd

raulic

g

radie

nt i c

rit [1

]

unstable

stable

horizontal tests

vertical tests

Transition zone for stable soils

Transition zone for unstable soils

Limit for U gt 25after Istomina (1957)

E1

E5

Instability (d d ) [1]15f 85b mod index

D=075

D=076

D=070D=058

D=050

D=040D=045

D=059

D=060

D=031

D=085

D=060D=050

D=095D=041

D=085 D=085

D=075

D=075

D=050

D=025

D=092

Test Results hydraulic aspect

Stability of non-cohesive Soils with respect to Internal Erosion 12

Test Results

01

02

03

04

05

0

H M

ass fra

ction o

f part

icle

s

betw

een d

and 4

d [1]

0 01 02 03 04 05 F Mass fraction of particles smaller than d [1]

Kenney et L

au (1986)

H = F083 071

Kezdi (1979) H = 015

(a) stable

(b) unstable

(d)

(c)

Own tests

Adel (1988)

Kenney and Lau (1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li and Fannin (2008)

Lafleur (1984)

Wan and Fell (2008)

stable unstable Author

A1 A2

E1

E2E5

Test Results geometric aspect

Stability of non-cohesive Soils with respect to Internal Erosion 13

Evaluation of the Test Results

0

16

12

4

8

Insta

bili

ty

(d

d)

[1]

inde

x

15f

85b

mod

06 04 02 0

D = 095

D = 070

D = 040lower limit

0 01 02 03 04 05

01

02

03

04

06

05

0

083 071

Kenney et Lau (1

986) H =

F

Kezdi (1979) H = 015

A1 A2

E1

E5

E1

E2

E5

015

003

upper limit

E272

Own tests

Adel (1988)

Kenney et Lau(1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li et Fannin (2008)

Lafleur (1984)

Wan et Fell (2008)

stable unstable Author

H M

ass fra

ction o

f p

art

icle

s

be

twee

n d

and

4d [1]

F Mass fraction of particles smaller than d [1]

(a) stable

(b) unstable

i = 018critv

Critical vertical gradient i [1]critv

Combined geometric and hydraulic criteria

Stability of non-cohesive Soils with respect to Internal Erosion 14

Summary

Problem

Internal erosion

Several approaches exist for the evaluation

Approaches lead to different results

Results of current Investigations

Controlling parameters have been idenfied by model tests

Uniformity coefficient Cu might not be adequate for a reliable

assessment of internal erosion

Modified (d15Fd85b) mod is promising

Diagrams have been proposed for the evaluation of the internal

erosion stability

Stability of non-cohesive Soils with respect to Internal Erosion

Thank you for your

attention

wwwimpacde

Page 6: Stability of non-cohesive Soils with respect to Internal ... · Stability of non-cohesive Soils with respect to Internal Erosion Dr.-Ing. Marx F. Ahlinhan, IMPaC Group International

Stability of non-cohesive Soils with respect to Internal Erosion 6

Proposed approach for Splitting Up

tan =H

log4d - logd

Proposed approach for Splitting Up

β minimal H minimal

(d15Fd85b) = (d15Fd85b) at (HF)min

Stability of non-cohesive Soils with respect to Internal Erosion 7

Model Tests

Investigated Soils Grain Size Distribution

Stability of non-cohesive Soils with respect to Internal Erosion 8

Model Tests

Experiment set up for upward vertical Seepage Flow

Soil sample 30cm diameter 30cm height

Stability of non-cohesive Soils with respect to Internal Erosion 9

Model Tests

Sand boils at Mississippi river

Levee (after Glynn (2004)) Total failure due to piping

(current test for vertical

upward seepage)

Stable Zone

Effectif Stress Zero - Zone

Failure Zone

Phenomenological observation for upward vertical seepage flow

Stability of non-cohesive Soils with respect to Internal Erosion 10

Model Tests

Experimental set up for horizontal Seepage Flow

Soil sample widthheightdepth=60cm30cm10cm

Stability of non-cohesive Soils with respect to Internal Erosion 11

Test Results

E2

A1

0 4 8 12 16 20

06

08

10

04

02

0

Critical h

yd

raulic

g

radie

nt i c

rit [1

]

unstable

stable

horizontal tests

vertical tests

Transition zone for stable soils

Transition zone for unstable soils

Limit for U gt 25after Istomina (1957)

E1

E5

Instability (d d ) [1]15f 85b mod index

D=075

D=076

D=070D=058

D=050

D=040D=045

D=059

D=060

D=031

D=085

D=060D=050

D=095D=041

D=085 D=085

D=075

D=075

D=050

D=025

D=092

Test Results hydraulic aspect

Stability of non-cohesive Soils with respect to Internal Erosion 12

Test Results

01

02

03

04

05

0

H M

ass fra

ction o

f part

icle

s

betw

een d

and 4

d [1]

0 01 02 03 04 05 F Mass fraction of particles smaller than d [1]

Kenney et L

au (1986)

H = F083 071

Kezdi (1979) H = 015

(a) stable

(b) unstable

(d)

(c)

Own tests

Adel (1988)

Kenney and Lau (1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li and Fannin (2008)

Lafleur (1984)

Wan and Fell (2008)

stable unstable Author

A1 A2

E1

E2E5

Test Results geometric aspect

Stability of non-cohesive Soils with respect to Internal Erosion 13

Evaluation of the Test Results

0

16

12

4

8

Insta

bili

ty

(d

d)

[1]

inde

x

15f

85b

mod

06 04 02 0

D = 095

D = 070

D = 040lower limit

0 01 02 03 04 05

01

02

03

04

06

05

0

083 071

Kenney et Lau (1

986) H =

F

Kezdi (1979) H = 015

A1 A2

E1

E5

E1

E2

E5

015

003

upper limit

E272

Own tests

Adel (1988)

Kenney et Lau(1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li et Fannin (2008)

Lafleur (1984)

Wan et Fell (2008)

stable unstable Author

H M

ass fra

ction o

f p

art

icle

s

be

twee

n d

and

4d [1]

F Mass fraction of particles smaller than d [1]

(a) stable

(b) unstable

i = 018critv

Critical vertical gradient i [1]critv

Combined geometric and hydraulic criteria

Stability of non-cohesive Soils with respect to Internal Erosion 14

Summary

Problem

Internal erosion

Several approaches exist for the evaluation

Approaches lead to different results

Results of current Investigations

Controlling parameters have been idenfied by model tests

Uniformity coefficient Cu might not be adequate for a reliable

assessment of internal erosion

Modified (d15Fd85b) mod is promising

Diagrams have been proposed for the evaluation of the internal

erosion stability

Stability of non-cohesive Soils with respect to Internal Erosion

Thank you for your

attention

wwwimpacde

Page 7: Stability of non-cohesive Soils with respect to Internal ... · Stability of non-cohesive Soils with respect to Internal Erosion Dr.-Ing. Marx F. Ahlinhan, IMPaC Group International

Stability of non-cohesive Soils with respect to Internal Erosion 7

Model Tests

Investigated Soils Grain Size Distribution

Stability of non-cohesive Soils with respect to Internal Erosion 8

Model Tests

Experiment set up for upward vertical Seepage Flow

Soil sample 30cm diameter 30cm height

Stability of non-cohesive Soils with respect to Internal Erosion 9

Model Tests

Sand boils at Mississippi river

Levee (after Glynn (2004)) Total failure due to piping

(current test for vertical

upward seepage)

Stable Zone

Effectif Stress Zero - Zone

Failure Zone

Phenomenological observation for upward vertical seepage flow

Stability of non-cohesive Soils with respect to Internal Erosion 10

Model Tests

Experimental set up for horizontal Seepage Flow

Soil sample widthheightdepth=60cm30cm10cm

Stability of non-cohesive Soils with respect to Internal Erosion 11

Test Results

E2

A1

0 4 8 12 16 20

06

08

10

04

02

0

Critical h

yd

raulic

g

radie

nt i c

rit [1

]

unstable

stable

horizontal tests

vertical tests

Transition zone for stable soils

Transition zone for unstable soils

Limit for U gt 25after Istomina (1957)

E1

E5

Instability (d d ) [1]15f 85b mod index

D=075

D=076

D=070D=058

D=050

D=040D=045

D=059

D=060

D=031

D=085

D=060D=050

D=095D=041

D=085 D=085

D=075

D=075

D=050

D=025

D=092

Test Results hydraulic aspect

Stability of non-cohesive Soils with respect to Internal Erosion 12

Test Results

01

02

03

04

05

0

H M

ass fra

ction o

f part

icle

s

betw

een d

and 4

d [1]

0 01 02 03 04 05 F Mass fraction of particles smaller than d [1]

Kenney et L

au (1986)

H = F083 071

Kezdi (1979) H = 015

(a) stable

(b) unstable

(d)

(c)

Own tests

Adel (1988)

Kenney and Lau (1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li and Fannin (2008)

Lafleur (1984)

Wan and Fell (2008)

stable unstable Author

A1 A2

E1

E2E5

Test Results geometric aspect

Stability of non-cohesive Soils with respect to Internal Erosion 13

Evaluation of the Test Results

0

16

12

4

8

Insta

bili

ty

(d

d)

[1]

inde

x

15f

85b

mod

06 04 02 0

D = 095

D = 070

D = 040lower limit

0 01 02 03 04 05

01

02

03

04

06

05

0

083 071

Kenney et Lau (1

986) H =

F

Kezdi (1979) H = 015

A1 A2

E1

E5

E1

E2

E5

015

003

upper limit

E272

Own tests

Adel (1988)

Kenney et Lau(1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li et Fannin (2008)

Lafleur (1984)

Wan et Fell (2008)

stable unstable Author

H M

ass fra

ction o

f p

art

icle

s

be

twee

n d

and

4d [1]

F Mass fraction of particles smaller than d [1]

(a) stable

(b) unstable

i = 018critv

Critical vertical gradient i [1]critv

Combined geometric and hydraulic criteria

Stability of non-cohesive Soils with respect to Internal Erosion 14

Summary

Problem

Internal erosion

Several approaches exist for the evaluation

Approaches lead to different results

Results of current Investigations

Controlling parameters have been idenfied by model tests

Uniformity coefficient Cu might not be adequate for a reliable

assessment of internal erosion

Modified (d15Fd85b) mod is promising

Diagrams have been proposed for the evaluation of the internal

erosion stability

Stability of non-cohesive Soils with respect to Internal Erosion

Thank you for your

attention

wwwimpacde

Page 8: Stability of non-cohesive Soils with respect to Internal ... · Stability of non-cohesive Soils with respect to Internal Erosion Dr.-Ing. Marx F. Ahlinhan, IMPaC Group International

Stability of non-cohesive Soils with respect to Internal Erosion 8

Model Tests

Experiment set up for upward vertical Seepage Flow

Soil sample 30cm diameter 30cm height

Stability of non-cohesive Soils with respect to Internal Erosion 9

Model Tests

Sand boils at Mississippi river

Levee (after Glynn (2004)) Total failure due to piping

(current test for vertical

upward seepage)

Stable Zone

Effectif Stress Zero - Zone

Failure Zone

Phenomenological observation for upward vertical seepage flow

Stability of non-cohesive Soils with respect to Internal Erosion 10

Model Tests

Experimental set up for horizontal Seepage Flow

Soil sample widthheightdepth=60cm30cm10cm

Stability of non-cohesive Soils with respect to Internal Erosion 11

Test Results

E2

A1

0 4 8 12 16 20

06

08

10

04

02

0

Critical h

yd

raulic

g

radie

nt i c

rit [1

]

unstable

stable

horizontal tests

vertical tests

Transition zone for stable soils

Transition zone for unstable soils

Limit for U gt 25after Istomina (1957)

E1

E5

Instability (d d ) [1]15f 85b mod index

D=075

D=076

D=070D=058

D=050

D=040D=045

D=059

D=060

D=031

D=085

D=060D=050

D=095D=041

D=085 D=085

D=075

D=075

D=050

D=025

D=092

Test Results hydraulic aspect

Stability of non-cohesive Soils with respect to Internal Erosion 12

Test Results

01

02

03

04

05

0

H M

ass fra

ction o

f part

icle

s

betw

een d

and 4

d [1]

0 01 02 03 04 05 F Mass fraction of particles smaller than d [1]

Kenney et L

au (1986)

H = F083 071

Kezdi (1979) H = 015

(a) stable

(b) unstable

(d)

(c)

Own tests

Adel (1988)

Kenney and Lau (1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li and Fannin (2008)

Lafleur (1984)

Wan and Fell (2008)

stable unstable Author

A1 A2

E1

E2E5

Test Results geometric aspect

Stability of non-cohesive Soils with respect to Internal Erosion 13

Evaluation of the Test Results

0

16

12

4

8

Insta

bili

ty

(d

d)

[1]

inde

x

15f

85b

mod

06 04 02 0

D = 095

D = 070

D = 040lower limit

0 01 02 03 04 05

01

02

03

04

06

05

0

083 071

Kenney et Lau (1

986) H =

F

Kezdi (1979) H = 015

A1 A2

E1

E5

E1

E2

E5

015

003

upper limit

E272

Own tests

Adel (1988)

Kenney et Lau(1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li et Fannin (2008)

Lafleur (1984)

Wan et Fell (2008)

stable unstable Author

H M

ass fra

ction o

f p

art

icle

s

be

twee

n d

and

4d [1]

F Mass fraction of particles smaller than d [1]

(a) stable

(b) unstable

i = 018critv

Critical vertical gradient i [1]critv

Combined geometric and hydraulic criteria

Stability of non-cohesive Soils with respect to Internal Erosion 14

Summary

Problem

Internal erosion

Several approaches exist for the evaluation

Approaches lead to different results

Results of current Investigations

Controlling parameters have been idenfied by model tests

Uniformity coefficient Cu might not be adequate for a reliable

assessment of internal erosion

Modified (d15Fd85b) mod is promising

Diagrams have been proposed for the evaluation of the internal

erosion stability

Stability of non-cohesive Soils with respect to Internal Erosion

Thank you for your

attention

wwwimpacde

Page 9: Stability of non-cohesive Soils with respect to Internal ... · Stability of non-cohesive Soils with respect to Internal Erosion Dr.-Ing. Marx F. Ahlinhan, IMPaC Group International

Stability of non-cohesive Soils with respect to Internal Erosion 9

Model Tests

Sand boils at Mississippi river

Levee (after Glynn (2004)) Total failure due to piping

(current test for vertical

upward seepage)

Stable Zone

Effectif Stress Zero - Zone

Failure Zone

Phenomenological observation for upward vertical seepage flow

Stability of non-cohesive Soils with respect to Internal Erosion 10

Model Tests

Experimental set up for horizontal Seepage Flow

Soil sample widthheightdepth=60cm30cm10cm

Stability of non-cohesive Soils with respect to Internal Erosion 11

Test Results

E2

A1

0 4 8 12 16 20

06

08

10

04

02

0

Critical h

yd

raulic

g

radie

nt i c

rit [1

]

unstable

stable

horizontal tests

vertical tests

Transition zone for stable soils

Transition zone for unstable soils

Limit for U gt 25after Istomina (1957)

E1

E5

Instability (d d ) [1]15f 85b mod index

D=075

D=076

D=070D=058

D=050

D=040D=045

D=059

D=060

D=031

D=085

D=060D=050

D=095D=041

D=085 D=085

D=075

D=075

D=050

D=025

D=092

Test Results hydraulic aspect

Stability of non-cohesive Soils with respect to Internal Erosion 12

Test Results

01

02

03

04

05

0

H M

ass fra

ction o

f part

icle

s

betw

een d

and 4

d [1]

0 01 02 03 04 05 F Mass fraction of particles smaller than d [1]

Kenney et L

au (1986)

H = F083 071

Kezdi (1979) H = 015

(a) stable

(b) unstable

(d)

(c)

Own tests

Adel (1988)

Kenney and Lau (1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li and Fannin (2008)

Lafleur (1984)

Wan and Fell (2008)

stable unstable Author

A1 A2

E1

E2E5

Test Results geometric aspect

Stability of non-cohesive Soils with respect to Internal Erosion 13

Evaluation of the Test Results

0

16

12

4

8

Insta

bili

ty

(d

d)

[1]

inde

x

15f

85b

mod

06 04 02 0

D = 095

D = 070

D = 040lower limit

0 01 02 03 04 05

01

02

03

04

06

05

0

083 071

Kenney et Lau (1

986) H =

F

Kezdi (1979) H = 015

A1 A2

E1

E5

E1

E2

E5

015

003

upper limit

E272

Own tests

Adel (1988)

Kenney et Lau(1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li et Fannin (2008)

Lafleur (1984)

Wan et Fell (2008)

stable unstable Author

H M

ass fra

ction o

f p

art

icle

s

be

twee

n d

and

4d [1]

F Mass fraction of particles smaller than d [1]

(a) stable

(b) unstable

i = 018critv

Critical vertical gradient i [1]critv

Combined geometric and hydraulic criteria

Stability of non-cohesive Soils with respect to Internal Erosion 14

Summary

Problem

Internal erosion

Several approaches exist for the evaluation

Approaches lead to different results

Results of current Investigations

Controlling parameters have been idenfied by model tests

Uniformity coefficient Cu might not be adequate for a reliable

assessment of internal erosion

Modified (d15Fd85b) mod is promising

Diagrams have been proposed for the evaluation of the internal

erosion stability

Stability of non-cohesive Soils with respect to Internal Erosion

Thank you for your

attention

wwwimpacde

Page 10: Stability of non-cohesive Soils with respect to Internal ... · Stability of non-cohesive Soils with respect to Internal Erosion Dr.-Ing. Marx F. Ahlinhan, IMPaC Group International

Stability of non-cohesive Soils with respect to Internal Erosion 10

Model Tests

Experimental set up for horizontal Seepage Flow

Soil sample widthheightdepth=60cm30cm10cm

Stability of non-cohesive Soils with respect to Internal Erosion 11

Test Results

E2

A1

0 4 8 12 16 20

06

08

10

04

02

0

Critical h

yd

raulic

g

radie

nt i c

rit [1

]

unstable

stable

horizontal tests

vertical tests

Transition zone for stable soils

Transition zone for unstable soils

Limit for U gt 25after Istomina (1957)

E1

E5

Instability (d d ) [1]15f 85b mod index

D=075

D=076

D=070D=058

D=050

D=040D=045

D=059

D=060

D=031

D=085

D=060D=050

D=095D=041

D=085 D=085

D=075

D=075

D=050

D=025

D=092

Test Results hydraulic aspect

Stability of non-cohesive Soils with respect to Internal Erosion 12

Test Results

01

02

03

04

05

0

H M

ass fra

ction o

f part

icle

s

betw

een d

and 4

d [1]

0 01 02 03 04 05 F Mass fraction of particles smaller than d [1]

Kenney et L

au (1986)

H = F083 071

Kezdi (1979) H = 015

(a) stable

(b) unstable

(d)

(c)

Own tests

Adel (1988)

Kenney and Lau (1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li and Fannin (2008)

Lafleur (1984)

Wan and Fell (2008)

stable unstable Author

A1 A2

E1

E2E5

Test Results geometric aspect

Stability of non-cohesive Soils with respect to Internal Erosion 13

Evaluation of the Test Results

0

16

12

4

8

Insta

bili

ty

(d

d)

[1]

inde

x

15f

85b

mod

06 04 02 0

D = 095

D = 070

D = 040lower limit

0 01 02 03 04 05

01

02

03

04

06

05

0

083 071

Kenney et Lau (1

986) H =

F

Kezdi (1979) H = 015

A1 A2

E1

E5

E1

E2

E5

015

003

upper limit

E272

Own tests

Adel (1988)

Kenney et Lau(1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li et Fannin (2008)

Lafleur (1984)

Wan et Fell (2008)

stable unstable Author

H M

ass fra

ction o

f p

art

icle

s

be

twee

n d

and

4d [1]

F Mass fraction of particles smaller than d [1]

(a) stable

(b) unstable

i = 018critv

Critical vertical gradient i [1]critv

Combined geometric and hydraulic criteria

Stability of non-cohesive Soils with respect to Internal Erosion 14

Summary

Problem

Internal erosion

Several approaches exist for the evaluation

Approaches lead to different results

Results of current Investigations

Controlling parameters have been idenfied by model tests

Uniformity coefficient Cu might not be adequate for a reliable

assessment of internal erosion

Modified (d15Fd85b) mod is promising

Diagrams have been proposed for the evaluation of the internal

erosion stability

Stability of non-cohesive Soils with respect to Internal Erosion

Thank you for your

attention

wwwimpacde

Page 11: Stability of non-cohesive Soils with respect to Internal ... · Stability of non-cohesive Soils with respect to Internal Erosion Dr.-Ing. Marx F. Ahlinhan, IMPaC Group International

Stability of non-cohesive Soils with respect to Internal Erosion 11

Test Results

E2

A1

0 4 8 12 16 20

06

08

10

04

02

0

Critical h

yd

raulic

g

radie

nt i c

rit [1

]

unstable

stable

horizontal tests

vertical tests

Transition zone for stable soils

Transition zone for unstable soils

Limit for U gt 25after Istomina (1957)

E1

E5

Instability (d d ) [1]15f 85b mod index

D=075

D=076

D=070D=058

D=050

D=040D=045

D=059

D=060

D=031

D=085

D=060D=050

D=095D=041

D=085 D=085

D=075

D=075

D=050

D=025

D=092

Test Results hydraulic aspect

Stability of non-cohesive Soils with respect to Internal Erosion 12

Test Results

01

02

03

04

05

0

H M

ass fra

ction o

f part

icle

s

betw

een d

and 4

d [1]

0 01 02 03 04 05 F Mass fraction of particles smaller than d [1]

Kenney et L

au (1986)

H = F083 071

Kezdi (1979) H = 015

(a) stable

(b) unstable

(d)

(c)

Own tests

Adel (1988)

Kenney and Lau (1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li and Fannin (2008)

Lafleur (1984)

Wan and Fell (2008)

stable unstable Author

A1 A2

E1

E2E5

Test Results geometric aspect

Stability of non-cohesive Soils with respect to Internal Erosion 13

Evaluation of the Test Results

0

16

12

4

8

Insta

bili

ty

(d

d)

[1]

inde

x

15f

85b

mod

06 04 02 0

D = 095

D = 070

D = 040lower limit

0 01 02 03 04 05

01

02

03

04

06

05

0

083 071

Kenney et Lau (1

986) H =

F

Kezdi (1979) H = 015

A1 A2

E1

E5

E1

E2

E5

015

003

upper limit

E272

Own tests

Adel (1988)

Kenney et Lau(1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li et Fannin (2008)

Lafleur (1984)

Wan et Fell (2008)

stable unstable Author

H M

ass fra

ction o

f p

art

icle

s

be

twee

n d

and

4d [1]

F Mass fraction of particles smaller than d [1]

(a) stable

(b) unstable

i = 018critv

Critical vertical gradient i [1]critv

Combined geometric and hydraulic criteria

Stability of non-cohesive Soils with respect to Internal Erosion 14

Summary

Problem

Internal erosion

Several approaches exist for the evaluation

Approaches lead to different results

Results of current Investigations

Controlling parameters have been idenfied by model tests

Uniformity coefficient Cu might not be adequate for a reliable

assessment of internal erosion

Modified (d15Fd85b) mod is promising

Diagrams have been proposed for the evaluation of the internal

erosion stability

Stability of non-cohesive Soils with respect to Internal Erosion

Thank you for your

attention

wwwimpacde

Page 12: Stability of non-cohesive Soils with respect to Internal ... · Stability of non-cohesive Soils with respect to Internal Erosion Dr.-Ing. Marx F. Ahlinhan, IMPaC Group International

Stability of non-cohesive Soils with respect to Internal Erosion 12

Test Results

01

02

03

04

05

0

H M

ass fra

ction o

f part

icle

s

betw

een d

and 4

d [1]

0 01 02 03 04 05 F Mass fraction of particles smaller than d [1]

Kenney et L

au (1986)

H = F083 071

Kezdi (1979) H = 015

(a) stable

(b) unstable

(d)

(c)

Own tests

Adel (1988)

Kenney and Lau (1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li and Fannin (2008)

Lafleur (1984)

Wan and Fell (2008)

stable unstable Author

A1 A2

E1

E2E5

Test Results geometric aspect

Stability of non-cohesive Soils with respect to Internal Erosion 13

Evaluation of the Test Results

0

16

12

4

8

Insta

bili

ty

(d

d)

[1]

inde

x

15f

85b

mod

06 04 02 0

D = 095

D = 070

D = 040lower limit

0 01 02 03 04 05

01

02

03

04

06

05

0

083 071

Kenney et Lau (1

986) H =

F

Kezdi (1979) H = 015

A1 A2

E1

E5

E1

E2

E5

015

003

upper limit

E272

Own tests

Adel (1988)

Kenney et Lau(1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li et Fannin (2008)

Lafleur (1984)

Wan et Fell (2008)

stable unstable Author

H M

ass fra

ction o

f p

art

icle

s

be

twee

n d

and

4d [1]

F Mass fraction of particles smaller than d [1]

(a) stable

(b) unstable

i = 018critv

Critical vertical gradient i [1]critv

Combined geometric and hydraulic criteria

Stability of non-cohesive Soils with respect to Internal Erosion 14

Summary

Problem

Internal erosion

Several approaches exist for the evaluation

Approaches lead to different results

Results of current Investigations

Controlling parameters have been idenfied by model tests

Uniformity coefficient Cu might not be adequate for a reliable

assessment of internal erosion

Modified (d15Fd85b) mod is promising

Diagrams have been proposed for the evaluation of the internal

erosion stability

Stability of non-cohesive Soils with respect to Internal Erosion

Thank you for your

attention

wwwimpacde

Page 13: Stability of non-cohesive Soils with respect to Internal ... · Stability of non-cohesive Soils with respect to Internal Erosion Dr.-Ing. Marx F. Ahlinhan, IMPaC Group International

Stability of non-cohesive Soils with respect to Internal Erosion 13

Evaluation of the Test Results

0

16

12

4

8

Insta

bili

ty

(d

d)

[1]

inde

x

15f

85b

mod

06 04 02 0

D = 095

D = 070

D = 040lower limit

0 01 02 03 04 05

01

02

03

04

06

05

0

083 071

Kenney et Lau (1

986) H =

F

Kezdi (1979) H = 015

A1 A2

E1

E5

E1

E2

E5

015

003

upper limit

E272

Own tests

Adel (1988)

Kenney et Lau(1985)

Burenkova (1993)

Honjo et al (1996)

Skempton (1994)

Moffat et al (2006)

Li et Fannin (2008)

Lafleur (1984)

Wan et Fell (2008)

stable unstable Author

H M

ass fra

ction o

f p

art

icle

s

be

twee

n d

and

4d [1]

F Mass fraction of particles smaller than d [1]

(a) stable

(b) unstable

i = 018critv

Critical vertical gradient i [1]critv

Combined geometric and hydraulic criteria

Stability of non-cohesive Soils with respect to Internal Erosion 14

Summary

Problem

Internal erosion

Several approaches exist for the evaluation

Approaches lead to different results

Results of current Investigations

Controlling parameters have been idenfied by model tests

Uniformity coefficient Cu might not be adequate for a reliable

assessment of internal erosion

Modified (d15Fd85b) mod is promising

Diagrams have been proposed for the evaluation of the internal

erosion stability

Stability of non-cohesive Soils with respect to Internal Erosion

Thank you for your

attention

wwwimpacde

Page 14: Stability of non-cohesive Soils with respect to Internal ... · Stability of non-cohesive Soils with respect to Internal Erosion Dr.-Ing. Marx F. Ahlinhan, IMPaC Group International

Stability of non-cohesive Soils with respect to Internal Erosion 14

Summary

Problem

Internal erosion

Several approaches exist for the evaluation

Approaches lead to different results

Results of current Investigations

Controlling parameters have been idenfied by model tests

Uniformity coefficient Cu might not be adequate for a reliable

assessment of internal erosion

Modified (d15Fd85b) mod is promising

Diagrams have been proposed for the evaluation of the internal

erosion stability

Stability of non-cohesive Soils with respect to Internal Erosion

Thank you for your

attention

wwwimpacde

Page 15: Stability of non-cohesive Soils with respect to Internal ... · Stability of non-cohesive Soils with respect to Internal Erosion Dr.-Ing. Marx F. Ahlinhan, IMPaC Group International

Stability of non-cohesive Soils with respect to Internal Erosion

Thank you for your

attention

wwwimpacde