springer handbook of nanomaterials978-3-642-20595-8/1.pdf · among the general public, and even the...

34
Springer Handbook of Nanomaterials

Upload: others

Post on 12-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

Springer Handbookof Nanomaterials

Page 2: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

Springer Handbook providesa concise compilation of approvedkey information on methods ofresearch, general principles, andfunctional relationships in physicaland applied sciences. The world’sleading experts in the fields ofphysics and engineering will be as-signed by one or several renownededitors to write the chapters com-prising each volume. The contentis selected by these experts fromSpringer sources (books, journals,online content) and other systematicand approved recent publications ofscientific and technical information.

The volumes are designed to beuseful as readable desk referencebook to give a fast and comprehen-sive overview and easy retrieval ofessential reliable key information,including tables, graphs, and bibli-ographies. References to extensivesources are provided.

Page 3: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

123

HandbookSpringerof Nanomaterials

Robert Vajtai (Ed.)

With 685 Figures and 64 Tables

Page 4: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

EditorRobert VajtaiRice UniversityDepartment of Mechanical Engineering and Materials Science6100 Main MS-321Houston, TX 77005-1827USA

ISBN: 978-3-642-20594-1 e-ISBN: 978-3-642-20595-8DOI 10.1007/978-3-642-20595-8Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2013942548

c© Springer-Verlag Berlin Heidelberg 2013This work is subject to copyright. All rights are reserved, whether the wholeor part of the material is concerned, specifically the rights of translation,reprinting, reuse of illustrations, recitation, broadcasting, reproduction onmicrofilm or in any other way, and storage in data banks. Duplication of thispublication or parts thereof is permitted only under the provisions of theGerman Copyright Law of September 9, 1965, in its current version, andpermission for use must always be obtained from Springer. Violations areliable to prosecution under the German Copyright Law.The use of general descriptive names, registered names, trademarks, etc. inthis publication does not imply, even in the absence of a specific statement,that such names are exempt from the relevant protective laws and regulationsand therefore free for general use.

Production and typesetting: le-tex publishing services GmbH, LeipzigSenior Manager Springer Handbook: Dr. W. Skolaut, HeidelbergTypography and layout: schreiberVIS, SeeheimIllustrations: le-tex publishing services GmbH, Leipzig; Hippmann GbR,SchwarzenbruckCover design: eStudio Calamar Steinen, BarcelonaCover production: WMXDesign GmbH, HeidelbergPrinting and binding: Stürtz GmbH, Würzburg

Printed on acid free paper

Springer is part of Springer Science+Business Media (www.springer.com)

61/3180/YL 5 4 3 2 1 0

Page 5: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

V

Foreword

Nanomaterials are based on structures with character-istic features on the scale of nanometers. This size issmall if we compare with normal things around us, butit is not particularly small on the atomic scale. In fact,distances between individual atoms are typically a tenthof a nanometer (an Ångström), so a piece of a mater-ial with a side of a nanometer may contain hundreds oreven a thousand atoms. Therefore a nanomaterial usu-ally has some resemblance to a bulk material basedon the same atoms, but the normal material has beenmodified to reach superior properties such as highermechanical strength, different optical and magnetic per-formance, permeability to a fluid, or something else.Thus nanomaterials may allow us to obtain propertiesthat were previously impossible to achieve, impracticalto manufacture, or too expensive for use on a scale largeenough to be significant in daily life.

Among the general public, and even the scientificcommunity, nanomaterials are widely perceived as newin many different way – newly invented, newly used byhuman cultures, and newly studied.

In fact, nanomaterials are not new at all. Natureitself is filled with nanofeatures that have evolved inbiological systems, one well known example beingmoths’ eyes with nanostructured surfaces that provideantireflection and allow efficient use of feeble light.

Looking at history, we can also see that human be-ings have been using nanomaterials of various sorts fora very long time. Let us take three examples: nanocar-bons, nanometals, and nanoceramics.

Nanocarbons can be created in abundance on thenanometer scale when organic matter burns. Such car-bon nanoparticles were used by humans as far back asforty thousand years ago to depict and decorate. Theparticles were mixed with fat and used for painting inthe caves of Altamira and Lascaux in Spain and France,to mention two especially striking and well knowncases. This kind of carbon, in principle, is also an es-sential ingredient in ink and printing paste, and it wasused by monastic scribes and by Gutenberg and his fol-lowers to make texts of explosive cultural significanceand stunning beauty.

Nanometals have also been utilized for thousands ofyears. An example is the world famous Lycurgus glasscup, now in the holdings of the British Museum. This

Prof. Claes-GöranGranqvist

Department ofEngineering SciencesSolid State PhysicsUppsala UniversitySweden

cup, which was probably created inRome during the 4th century AD,contains embedded nanoparticles ofgold and silver. Because of theseparticles, the cup normally seems tobe a light green color, but it becomesruby red when light is shone throughit. The Lycurgus cup is a wonder ofcraftsmanship from Antiquity, and itis based on nanotechnology.

Finally, let’s consider nanoce-ramics. The world’s most widelyused artificial material is the nanoce-ramic cement, which was used ex-tensively by the Romans in con-structing buildings, baths and aque-ducts. Furthermore, recent archaeo-logical discoveries indicate that theRomans were not the first, thatthe Macedonians were using cementcenturies earlier.

Even research on nanomaterials is not as new as itseems. The term apparently began appearing in the titlesof scientific publications only 15 years ago. But today’snano was the subject of an older literature under theterm ultrafine.

As the examples above indicate, nanomaterials arewell rooted in the past. But they are also very much ofthe future. Let us consider a few specific examples.

Nanocarbons, used for cave painting and the print-ing of the Gutenberg Bible, are very much in focustoday, in the forms of fullerenes, nanotubes and nanodi-amonds, all of which offer a multitude of possibilitiesfor future technology. Two-dimensional carbon in theform of graphene has unique properties directly basedon quantum physics, and it may have important ap-plications in transparent electronics and elsewhere.Graphane, its hydrogenated cousin, is exciting in itsown right.

Nanometals, employed by the Romans to create theamazing Lycurgus glass cup, are the basis today formanifold applications, including thermal collectors thatharness the sun’s energy and innovative plasmonic solarcells. Indeed, plasmonics is becoming a household wordbecause of its relevance for light-emitting diodes, sen-

Page 6: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

VI

sors and catalysts for chemical reactions, just to mentiona few technologies.

Thus many aspects of nanomaterials are indeed trulynew and are the subject of intense worldwide interest intoday’s academic and industrial research laboratories.This Handbook, which is a testimony to this growingbody of knowledge, presents welcome and authoritativesurveys over nanocarbons, nanometals and nanoce-ramics in its first three parts. Other sections covernanocomposites and nanoporous materials, as well asorganic and biological nanomaterials. Applications andimpacts are discussed at the end, together with impor-tant questions of toxicology, hazards and safety. These

issues are of great importance. We should remember theterrible impact that asbestos – in fact, a natural nano-material – had on human health before it was widelybanned. We certainly do not want to discover one daythat, in our quest for new materials to solve techno-logical problems, we have unleashed another dangerousnanomaterial into the world.

The editor and authors are to be congratulated onthe successful completion of this Handbook of Nano-materials. It will surely be a work of great and lastingimportance for the scientific community.

Uppsala, November 2012 Prof. Claes G. Granqvist

Page 7: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

VII

Foreword

It has been more than a decade since President Bill Clin-ton talked about the promise of nanotechnology andthe importance of increasing investments in nanoscalescience and engineering research in a speech at the Cal-ifornia Institute of Technology on January 21, 2000.In his remarks, the President recalled Richard Feyn-man’s American Physical Society talk there in 1959.The following week, in his State of the Union Address,President Clinton announced his 21st Century ResearchFund, a $3 billion budget increase, which included themultiagency national nanotechnology initiative (NNI).The first year’s budget allocation to NNI was close tohalf a billion US$, nearly doubling what the agencieshad been spending on nanoscale research; and with thecontinuous support of succeeding administrations thebudget quadrupled in a decade. This strong federal sup-port, initially based on the promise of a revolutionarynew technology, was justified by steady scientific andtechnological advances at the nanometer scale and bythe growth of commercial applications, especially inbiotechnology and nanoelectronics, offering new waysto tackle disease and new industrial tools and toys.As President Clinton’s former science advisor, I amconfident that he is as pleased with the progress innanotechnology as are all of us – inside and outsidegovernment – who worked with him to develop andimplement the NNI.

One way to define nanotechnology, perhaps, is thatit is the knowledge and engineering (design and con-trol) of physical, chemical, and biological systems atthe nanometer (10−9 m) scale – from the size of indi-vidual molecules to dimensions of the order 100 nm.Nanotechnology is, by its nature, a field of synthesisand synergy often requiring physics, chemistry, biology,and almost all areas of engineering in the performanceof research and engineering design, for example invent-ing and optimizing the tools needed to synthesize andmanipulate matter at the nanometer scale. As with othernew fields, rapid advances in nanotechnology have ledto specialization into subdisciplines, one of the mostnatural and important being nanomaterials.

Nanomaterials science and engineering includes theproduction, properties, and applications of materials atthe nanometer scale; it is a part of nanotechnologyand at the same time, evidently, a subfield of materials

Prof. Neal Lane

Malcolm Gillis UniversityProfessor,Department of Physicsand Astronomy,Senior Fellow,James A. Baker III Institutefor Public PolicyRice UniversityHouston, Texas

science. The main goal of ma-terials science – macroscopic andnanoscale – is providing new andimproved building blocks for engi-neers in all fields. That said, nano-materials science has distinct fea-tures compared to the more maturescience and engineering of macro-scopic materials, the most salientbeing its revolutionary nature. Newmaterials and groups of materialswith surprising properties continueto be discovered – graphene andtopological insulators are two exam-ples from the recent past. As withall exploration at the frontiers ofknowledge, it is impossible to pre-dict what discoveries will be madeor how those discoveries might leadto applications, commercial or oth-erwise. But the history of scienceand technology suggests that someof those advances will surpass all our expectations. Al-ready we are seeing the benefits of nanotechnology incomputers and telecommunication devices, computerchips and sensors in automobiles, electric car batter-ies, medicines and sun creams, tablecloths and socks,tennis rackets, boats, golf clubs – and more. Giventhe likelihood that ongoing research will yield manymore nanomaterials, with surprising properties and, atthe same time, the continued exponential growth in thenumber of applications, it seems clear that nanomateri-als will, at some level, transform most aspects of ourlives. It is not too much of a stretch to suggest thatPresident Clinton’s policy decision to set up the NNI,which has supported thousands of scientists and en-gineers working in the field, has indeed helped moveus closer to realizing Feynman’s prediction – or, per-haps we should say his vision – of a revolutionary newtechnology. In the world of nanomaterials there is stillplenty of room at the bottom to use Richard Feynman’sfamous words.

A handbook, by one definition, is a compilationof knowledge about a particular field, collected intoa single volume publication that is convenient to use as

Page 8: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

VIII

a ready reference. Since nanomaterials science can nowbe considered a self-sufficient discipline, a handbook isappropriate and timely. This new Springer Handbookof Nanomaterials targets several audiences: researchersworking in industry or academia, as well as gradu-ate students studying related fields. The organizationof the book follows the usual classification schemeof macroscopic materials science, with information ofa materials group – e.g., metals – collected together;

other aspects can be followed easily by using the well-developed index.

Putting together a handbook in a new field isa formidable challenge. I would like to congratulate theeditor and all of the authors who collaborated to plan,collect materials, and write this important groundbreak-ing Springer Handbook of Nanomaterials.

Houston, January 2013 Neal Lane

Page 9: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

IX

Preface

Those who control materials, control technology, statedEiji Kobayashi, Senior Advisor of Panasonic Corpora-tion, explaining the importance of materials science andengineering. I would translate this quote to those whocontrol nanomaterials control nanotechnology; and,considering the effect of the development of nanomate-rials and nanotechnology on our global infrastructure,it is not too bold to state that those control technol-ogy at large, too. Nanomaterials have a determinant rolein many of advanced products around us. Stamp-sizedsound recording devices, modern passenger and fighterjets, spaceships and space stations, extreme tall build-ings and long bridges, none of these could be createdwithout these marvelous materials. As one could notforesee 50 years ago, the fast development that providedthe opportunity for these objects to be realized, now wecannot imagine our life without them.

The editor considers materials science as the knowl-edge of structure; properties of materials predicted orexplained with the help of this knowledge; experimen-tal and theoretical tools designed and established forpreparing, characterizing and modifying processes, andlast but not least showing application possibilities ofthe resulted materials. After defining nanomaterials wecan simply transpose this description for nanomaterialsscience. Materials are considered nanomaterials whentheir structure, processing, characterization or appli-cation differ from the macroscopic materials and thisdifference relates to the – normally sub-100 nm – fea-ture size. The description of the nanomaterials in thisSpringer Handbook follows the thorough but conciseexplanation of the synergy of structure, properties, pro-cessing, and applications. Specifically, our aim was topoint out the distinction between the properties of bulkand nanomaterials and the reasons for these differences.

To fulfill these goals, we provide a balanced reportof the literature of each materials group. The formatfollows the well-established structure of the SpringerHandbooks with chapters as the basic units that are or-ganized into several groups. In each chapter, authorscover materials of their expertise, however, they focusnot only on their own work, but report the interestingand important efforts in the community, establishing

a balance between references and scientific results re-ported in tables and figures. We describe nanomaterialsin textbook style for newcomers, encyclopedia-like ele-ments and – to follow the fast-space of new results –review or research papers for the experienced reader.Beyond scientific and moral correctness we also lookfor clarity by concise and easy-to-follow text, well-designed and clear figures which were all professionallydrawn by graphics designers.

The book is divided in Parts A to G and cov-ers carbon-based nanomaterials: fullerenes, nanotubes,nanofibers and nanodiamond, noble and common met-als and alloys, ceramic materials, crystalline and glassyoxides and other compounds; composites, hybrid struc-tures and solutions as well as porous metals, ceramicsand silicon; organic and bio-nanomaterials, bones andfibers and select applications, respectively. This higherlevel structure conforms to the macroscopic classifica-tion of materials and it is composed of chapters. Eachchapter is self-consistent and builds up of similar parts,history, definitions, production of the given materials,properties, and applications. All of these parts are richlyillustrated and consist of a balanced ratio of importantbasics and recent results.

My pleasant obligation is to thank all of the helpI received in planning and implementing the handbook.First of all, I need to acknowledge the diligent work ofthe authors in developing the chapters which involvesmore effort than a review paper, and the reward is notso immediate and evident. Their expertise, energy andtime are greatly appreciated. I also would like to thankthe advices and help of my colleagues at Rice Uni-versity and at Rensselaer Polytechnic Institute; as wellas Professors Thomas F. George, Bob Curl, PhaedonAvouris, Li Song and Jinquan Wei for keeping con-tact with many authors. The great workmanship of theSpringer publishing team and the continuous support ofthe managing editors Mayra Castro and Werner Skolautare also appreciated. I also need to thank my colleaguesand friends, Laszlo B. Kish, Claes-Goran Granqvist,Pulickel M. Ajayan and Richard W. Siegel that thecollaboration with them oriented me to nanomaterialsscience. Last, but not least, I thank for the help and pa-

Page 10: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

X

tience of my wife, Agnes, without her I would have notbeen able to finish this job.

I wish the reader a pleasant and beneficial time whenusing the Springer Handbook of Nanomaterials, and

I hope that it serves as a frequently opened referencework.

Houston, November 2012 Robert Vajtai

Page 11: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

XI

About the Editor

Robert Vajtai is a Faculty Fellow at Rice University, Houston, Texas, in the Depart-ment of Mechanical Engineering and Materials Science. His expertise covers synthesis,processing, characterization of physical and chemical properties of new, advanced ma-terial forms and structures. More specifically Dr. Vajtai’s interests are in nanostructuredmaterials, nanocomposites and nanomaterials; as well as their applications in thermalmanagement, energy storage, microelectromechanical systems, sensors and electronicdevices.

Dr. Vajtai received his scientific education in physics and his Ph.D. degree in solid-state physics from the University of Szeged (then named Jozsef Attila University),Hungary. From 1987 to 2002 he was a faculty member of the Department of Experi-mental Physics at the University of Szeged, Hungary. He was rewarded by the BolyaiFellowship of the Hungarian Academy of Sciences for 1999-2000. He spent sabbati-cals as a Fellow of the Swedish Institute in TheglosseintragAAngstrom Laboratory in Uppsala, Sweden, in the years 1998 and 1999;as an Eötvös Fellow at the EPFL in Lausanne, Switzerland in 1995/1996 and visitedthe Max Planck Institute in Göttingen, Germany, in 1993 via a Max Planck Fellowship.Before moving to Rice University in 2008, Dr. Vajtai spent eight years at the Rensse-laer Polytechnic Institute, Troy, New York, where he was a Laboratory Manager at theRensselaer Nanotechnology Center managing the carbon nanotechnology laboratories.

Dr. Vajtai started his research as a physicist studying laser-metal interaction,melting and oxidation of refractive metals and the nonlinear behavior of the far-from equilibrium processes and systems. Later he developed methods for pulse-probespectroscopy of biomaterials as well as OH radicals used for the study of organiccontamination of the atmosphere by airborne LIDAR systems. His research in ma-terials science started with the synthesis of nanometals and nanosized oxides for thedevelopment of sensors. This lead to a new method for the preparation of germaniumnanoparticles for building inverse opals used in infrared optical sensing. His most sig-nificant contribution is related to the synthesis of different forms of nanocarbons suchas carbon nanotubes, graphene and macroscopic systems designed and built from thesecarbon allotropes, e.g., electromechanical parts and nanotube wires. Recently, his inter-est extended to various atomically thin layers, hexagonal boron nitride, transition-metaldichalcogenides and oxides.

He has more than 145 journal publications in peer reviewed scientific journals andhe delivered numerous invited, keynote and plenary lectures on the topic.

Dr. Vajtai is a passionate teacher, he lectured physics, thermodynamics and elec-trodynamics courses with hundreds of experimental demonstrations; introductory andadvanced courses of materials science. He received several mentoring awards, amongthose the Siemens-Westinghouse Mentoring Award.

Robert Vajtai is a Faculty Fellow in the Department of Mechanical Engineering &Materials Science at Rice University. He received his undergraduate and Ph.D. degreesfrom the University of Szeged, then named Jozsef Attila University, Hungary.

Page 12: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

XIII

List of Authors

Maya Bar-SadanBen-Gurion UniversityDepartment of ChemistryBe’er Sheba , Israele-mail: [email protected]

Giovanni BarcaroItalian National Research CouncilInstitute for the Physical and Chemical ProcessesVia Giuseppe Moruzzi 156124 Pisa, Italye-mail: [email protected]; [email protected]

Paolo BettottiUniversity of TrentoDepartment of Physics, Nanoscience Laboratoryvia Sommarive 1438123 Povo, Italye-mail: [email protected]

Alfredo CaroLos Alamos National LaboratoryMaterials Science and Technology DivisionLos Alamos, NM 87544, USAe-mail: [email protected]

Eunhyea ChungKorea Institute of Science and Technology (KIST)Center for Water Resource CycleHwarangno 14-gil 5, Seongbuk-guSeoul 136-791, Koreae-mail: [email protected]

Suzanne A. Ciftan HensITC/International Technology Center8100 Brownleigh RoadRaleigh, NC 27617, USAe-mail: [email protected]

Vicki L. ColvinRice UniversityOffice of Research, Chemistry6100 Main Str.Houston, TX 77005, USAe-mail: [email protected]

Rodolfo Cruz-SilvaShinshu UniversityResearch Center for Exotic NanocarbonsWakasato380-8553 Nagano, Japane-mail: [email protected]

Pratap Kumar DeheriShayoNano Singapore Pte Ltd.609969 Singaporee-mail: [email protected]

Libo DengUniversity of ManchesterSchool of MaterialsOxford RoadManchester, M13 9PL, UKe-mail: [email protected]

Yi DingShandong UniversitySchool of Chemistry and Chemical Engineering27 South Shan Da RoadJinan, 250100, Chinae-mail: [email protected]

Huanli DongChinese Academy of SciencesInstitute of Chemistry,Key Laboratory of Organic SolidsZhongguancun North First Street 2Beijing, 100190, Chinae-mail: [email protected]

Mildred S. DresselhausMassachusetts Institute of TechnologyPhysics; Electrical Engineering77 Massachusetts AveCambridge, MA 02139, USAe-mail: [email protected]

Page 13: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

XIV List of Authors

Dimple P. DuttaBhabha Atomic Research CentreChemistry DivisionMumbai, 400085, Indiae-mail: [email protected]

Hellmut EckertUniversity of Sao PauloDepartment of PhysicsAv. Trabalhador Saocarlense 400Sao Carlos, SP 13566-590, Brazile-mail: [email protected]

Morinobu EndoShinshu UniversityResearch Centre for Exotic Nanocarbons380-8553 Nagano, Japane-mail: [email protected]

Adam W. FeinbergCarnegie Mellon UniversityDepartment of Biomedical Engineering700 Technology Dr.Pittsburgh, PA 15219, USAe-mail: [email protected]

Alessandro FortunelliIPCF Consiglio Nazionale delle Ricerche (CNR)via Giuseppe Moruzzi 156124 Pisa, Italye-mail: [email protected]

Yogeeswaran GanesanIntel Corporation5200 NE Elam Young ParkwayHillsboro, OR 97124, USAe-mail: [email protected]

Wei GaoLos Alamos National LaboratoryCenter for Integrated NanotechnologyBikini Atoll RdLos Alamos, NM 87545, USAe-mail: [email protected]

Thomas F. GeorgeUniversity of Missouri-St. LouisOffice of the Chancellor, Center for NanoscienceOne University BoulevardSt. Louis, MO 63121, USAe-mail: [email protected]

Lei GongUniversity of ManchesterSchool of MaterialsOxford RoadManchester, M13 9PL, UKe-mail: [email protected]

Takuya HayashiShinshu UniversityDepartment of Electrical and ElectronicEngineering380-8553 Nagano, Japane-mail: [email protected]

Wenping HuKey Laboratory of Organic SolidsInstitute of Chemistry, Chinese Academy ofSciencesZhongguancun North First Street 2Beijing, 100190, Chinae-mail: [email protected]

Erik H. HározRice UniversityElectrical and Computer Engineering6100 Main Str.Houston, TX 77005, USAe-mail: [email protected]

Quentin JalleratCarnegie Mellon UniversityBiomedical Engineering700 Technology DrivePittsburgh, PA 15206, USAe-mail: [email protected]

Heli JantunenUniversity of OuluDepartment of Electrical EngineeringErkki Koiso-Kanttilankatu 3Oulu 90014, Finlande-mail: [email protected]

Song JinUniversity of Wisconsin-MadisonDepartment of Chemistry1101 University Ave.Madison, WI 53706, USAe-mail: [email protected]

Page 14: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

List of Authors XV

Kaushik KalagaRice UniversityDepartment of Mechanical Enginnering &Materials Science6100 Main Str.Houston, TX 77005, USAe-mail: [email protected]

Ji-Hee KimRice UniversityDepartment of Electrical and ComputerEngineering6100 Main Str.Houston, TX 77005, USAe-mail: [email protected]

Yoong A. KimShinshu UniversityDepartment of Electrical and ElectronicEngineering380-8553 Nagano, Japane-mail: [email protected]

Ian A. KinlochUniversity of ManchesterSchool of MaterialsOxford RoadManchester, M13 9PL, UKe-mail: [email protected]

Imre Kiricsi (deceased)

Junichiro KonoRice UniversityElectrical and Computer Engineering & Physics andAstronomy6100 Main Str.Houston, TX 77005, USAe-mail: [email protected]

Krisztián KordásUniversity of OuluDepartment of Electrical EngineeringErkki Koiso-Kanttilankatu 3Oulu 90570, Finlande-mail: [email protected]

Gábor KozmaUniversity of SzegedDepartment of Applied and EnvironmentalChemistryDugonics tér 136720 Szeged, Hungarye-mail: [email protected]

Jarmo KukkolaUniversity of OuluDepartment of Electrical EngineeringErkki Koiso-Kanttilankatu 3Oulu 90014, Finlande-mail: [email protected]

Ákos KukoveczUniversity of SzegedDepartment of Applied and EnvironmentalChemistryRerrich Béla tér 1Szeged, Hungarye-mail: [email protected]

Vinod KumarBanaras Hindu UniversityDepartment of ZoologyLanka, Varanasi, 221005, Indiae-mail: [email protected]

Zoltán KónyaUniversity of SzegedDepartment of Applied and EnvironmentalChemistryRerrich Bela tér 16720 Szeged, Hungarye-mail: [email protected]

Jaesang LeeKorea Institute of Science and Technology (KIST)Center for Water Resource CycleHwarangno 14-gil 5Seoul 136-791, Koreae-mail: [email protected]

Seunghak LeeKorea Institute of Science and Technology (KIST)Center for Water Resource CycleHwarangno 14-gil 5Seoul 136-791, Koreae-mail: [email protected]

Page 15: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

XVI List of Authors

Renat R. LetfullinRose-Hulman Institute of TechnologyPhysics and Optical Engineering5500 Wabash AvenueTerre Haute, IN 47803-3999, USAe-mail: [email protected]

Roi LeviWeizmann Institute of ScienceDepartment of Materials and Interfaces234 Herzl StreetRehovot 76100, Israele-mail: [email protected]

Zuzanna A. LewickaRice UniversityDepartment of Chemistry6100 Main StreetHouston, TX 77005, USAe-mail: [email protected]

Longtu LiTsinghua UniversityMaterials Science & EngineeringBeijing, 100084, Chinae-mail: [email protected]

Shaily MahendraUniversity of California, Los AngelesCivil and Environmental Engineering5732 Boelter HallLos Angeles, CA 90095, USAe-mail: [email protected]

Balaji P. MandalBhabha Atomic Research CentreChemistry DivisionMumbai, 400085, Indiae-mail: [email protected]

Fei MengUniversity of Wisconsin-MadisonDepartment of Chemistry1101 University AvenueMadison, WI 53706, USAe-mail: [email protected]

Guowen MengChinese Academy of SciencesInstitute of Solid State PhysicsHefei, Anhui 230031, Chinae-mail: [email protected]

Younès MessaddeqUniversité LavalDepartment of Physics2375, rue de la TerrasseQuébec, Québec G1V 0A6, Canadae-mail: [email protected]

Jyri-Pekka MikkolaÅbo Akademi UniversityDepartment of Chemical EngineeringBiskopsgatan 8Åbo-Turku 20500, Finlande-mail: [email protected];[email protected]

Melinda MohlUniversity of OuluDepartment of Electrical EngineeringErkki Koiso-Kanttilankatu 3Oulu 90570, Finlande-mail: [email protected]

Aarón Morelos-GómezShinshu UniversityInstitute of Carbon Science and Technology4-17-1 Wakasato380-8553 Nagano, Japane-mail: [email protected]

Stephen A. MorinHarvard UniversityChemistry and Chemical Biology12 Oxford StreetCambridge, MA 02138, USAe-mail: [email protected]

Marcelo NalinFederal University of Sao CarlosDepartment of ChemistryRodovia Washington Luiz, SP-310Sao Carlos, Sao Paulo, Brazile-mail: [email protected]

Page 16: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

List of Authors XVII

Sebastien NanotRice UniversityElectrical and Computer Engineering & Physics andAstronomy6100 Main StreetHouston, TX 77098, USAe-mail: [email protected]

Rachelle N. PalcheskoCarnegie Mellon UniversityBiomedical EngineeringPittsburgh, PA 15219, USAe-mail: [email protected]

Cary L. PintVanderbilt UniversityDepartment of Mechanical Engineering2301 Vanderbilt PlaceNashville, TN 37215, USAe-mail: [email protected]

Gael PoirierFederal University of AlfenasInstitute of Science and TechnologyRodovia José Aurélio Vilela 11999Poços de Caldas, MG CEP 37715-400, Brazile-mail: [email protected]

Thalappil PradeepIndian Institute of Technology MadrasDepartment of ChemistryChennai, 600 036, Indiae-mail: [email protected]

István PálinkóUniversity of SzegedDepartment of Organic ChemistryDóm tér 86720 Szeged, Hungarye-mail: [email protected]

Raju V. RamanujanNanyang Technological UniversitySchool of Materials Science and Engineering50 Nanyang Ave.639798 Singaporee-mail: [email protected]

Sundara RamaprabhuIndian Institute of Technology, MadrasDepartment of PhysicsChennai, 600 036, Indiae-mail: [email protected]

Jayshree RamkumarBhabha Atomic Research CentreAnalytical Chemistry DivisionMumbai, 400085, Indiae-mail: [email protected]

Arava L.M. ReddyRice UniversityDepartment of Mechanical Engineering andMaterials Science6100 Main Str.Houston, TX 77005, USAe-mail: [email protected]

Vincent C. ReyesUniversity of California, Los AngelesDepartment of Civil and EnvironmentalEngineering5732 Boelter HallLos Angeles, CA 90095, USAe-mail: vincecreyes@ ucla.edu

Sidney J.L. RibeiroSao Paulo State University – UNESPInstitute of ChemistryAraraquara, SP 14801-970, Brazile-mail: [email protected]

William D. RiceLos Alamos National LaboratoryNational High Magnetic Field LaboratoryLos Alamos, NM 87545, USAe-mail: [email protected]

Silvia H. SantagneliSao Paulo State University – UNESPInstitute of ChemistryAraraquara, SP 14801-970, Brazile-mail: [email protected]

Preeti S. SaxenaBanaras Hindu UniversityDepartment of ZoologyLanka, Varanasi, Uttar Pradesh 221005, Indiae-mail: [email protected]

Page 17: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

XVIII List of Authors

Olga A. ShenderovaInternational Technology Center8100 Brownleigh RoadRaleigh, NC 27617, USAe-mail: [email protected]

Rakesh ShuklaBhabha Atomic Research CentreChemistry DivisionMumbai, 400085, Indiae-mail: [email protected]

Shashwat ShuklaNanyang Technological University639798 Singaporee-mail: [email protected]

Theruvakkattil S. SreeprasadKansas State UniversityDepartment of Chemical Engineering1011 Durland HallManhattan, KS 66502, USAe-mail: [email protected]

Anchal SrivastavaBanaras Hindu UniversityDepartment of PhysicsLanka, Varanasi, Uttar Pradesh 221005, Indiae-mail: [email protected]

Saurabh SrivastavaNational Physical LaboratoryBiomedical Instrumentation Section,New Rajender Nagar, New Delhi 110012, Indiae-mail: [email protected]

Yan SunBeihang University (BUAA)School of Biological Science and MedicalEngineering37 Xueyuan Road, Haidian DistrictBeijing, 100191, Chinae-mail: [email protected]

Mária SzabóUniversity of SzegedApplied and Environmental Chemistry1 Rerrich Béle tér6720 Szeged, Hungarye-mail: [email protected]

John M. SzymanskiCarnegie Mellon UniversityDepartment of Biomedical Engineering700 Technology DrivePittsburgh, PA 15219, USAe-mail: [email protected]

András SápiUniversity of SzegedDepartment of Applied and EnvironmentalChemistry1 Rerrich square6720 Szeged, Hungarye-mail: [email protected]

Reshef TenneWeizmann Institute of ScienceDepartment of Materials and InterfacesRehovot 76100, Israele-mail: [email protected]

Humberto TerronesPennsylvania State UniversityPhysics DepartmentS104 Davey LabUniversity Park, PA 16802, USAe-mail: [email protected]

Mauricio TerronesPennsylvania State UniversityDepartment of Physics and Materials Science andEngineeringUniversity Park, PA 16802, USAe-mail: [email protected]

Nicholas A. ThompsonRice UniversityDepartment of Physics & Astronomy6100 Main Str.Houston, TX 77005, USAe-mail: [email protected]

Bipul TripathiBanaras Hindu UniversityDepartment of PhysicsLanka, Varanasi, Uttar Pradesh 221005, Indiae-mail: [email protected]

Page 18: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

List of Authors XIX

Ferdinando Tristán LópezShinshu UniversityFaculty of Engineering, Research Center for ExoticNanocarbons380-8553 Nagano, Japane-mail: [email protected]

Avesh K. TyagiBhabha Atomic Research CentreChemistry DivisionMumbai, 400085, Indiae-mail: [email protected]

Géza TóthUniversity of OuluDepartment of Electrical EngineeringErkki Koiso-Kanttilankatu 3Oulu 90570, Finlande-mail: [email protected]

Robert VajtaiRice UniversityDepartment of Mechanical Engineering andMaterials Science6100 Main Str.Houston, TX 77005-1827, USAe-mail: [email protected]

Sofia M. Vega DíazShinshu UniversityResearch Center for Exotic Nanocarbons380-8553 Nagano, Japane-mail: [email protected]

Aravind VijayaraghavanUniversity of ManchesterSchool of Computer ScienceManchester, M13 9PL, UKe-mail: [email protected]

Xiaohui WangTsinghua UniversityDepartment of Materials Science & EngineeringBeijing, 100084, Chinae-mail: [email protected]

Xuan WangRice UniversityDepartment of Electrica and Computer Engineering6100 Main Str.Houston, TX 77005, USAe-mail: [email protected]

Qiaoling XuChinese Academy of SciencesKey Laboratory of Materials Physics (CAS), AnhuiKey Laboratory of Nanomaterials andNanostructuresAnhui, 230031, Chinae-mail: [email protected]

Robert J. YoungUniversity of ManchesterSchool of MaterialsOxford RoadManchester, M13 9PL, UKe-mail: [email protected]

Ling ZhangCarnegie Mellon UniversityDepartment of Biomedical Engineering700 Technology DrivePittsburgh, PA 15219, USAe-mail: [email protected]

Shaopeng ZhangTsinghua UniversityDepartment of Materials Science and EngineeringBeijing, 100084, Chinae-mail: [email protected]

Zhonghua ZhangShandong UniversitySchool of Materials Science and EngineeringJingshi Road 17923Shandong, 250061, Chinae-mail: zh [email protected]

Page 19: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

XXI

Contents

Foreword by Claes-Göran Granqvist ........................................................ VForeword by Neal Lane ............................................................................. VIIList of Abbreviations ................................................................................. XXIX

1 Science and Engineering of NanomaterialsRobert Vajtai ........................................................................................... 11.1 History and Definition of Nanomaterials ......................................... 21.2 Formation of Nanomaterials .......................................................... 61.3 Properties of Nanomaterials........................................................... 101.4 Typical Applications of Nanomaterials ............................................ 221.5 Concluding Remarks ...................................................................... 311.6 About the Contents of the Handbook ............................................. 31References .............................................................................................. 31

Part A NanoCarbons

2 Graphene – Properties and CharacterizationAravind Vijayaraghavan .......................................................................... 392.1 Methods of Production .................................................................. 422.2 Properties ..................................................................................... 502.3 Characterization ............................................................................ 582.4 Applications .................................................................................. 692.5 Conclusions and Outlook ................................................................ 74References .............................................................................................. 74

3 Fullerenes and Beyond: Complexity, Morphology,and Functionality in Closed Carbon NanostructuresHumberto Terrones .................................................................................. 833.1 Geometry and Structural Features of Fullerenes .............................. 853.2 Methods of Synthesis of Fullerenes and Proposed Growth Models .... 883.3 Physicochemical Properties of Fullerenes ........................................ 903.4 Applications of Fullerenes and Beyond ........................................... 923.5 Conclusions ................................................................................... 99References .............................................................................................. 99

4 Single-Walled Carbon NanotubesSebastien Nanot, Nicholas A. Thompson, Ji-Hee Kim, Xuan Wang,William D. Rice, Erik H. Hároz, Yogeeswaran Ganesan, Cary L. Pint,Junichiro Kono ........................................................................................ 1054.1 History .......................................................................................... 1064.2 Crystallographic and Electronic Structure ........................................ 106

Page 20: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

XXII Contents

4.3 Synthesis ...................................................................................... 1114.4 Optical Properties .......................................................................... 1154.5 Transport Properties ...................................................................... 1234.6 Thermal and Mechanical Properties ................................................ 1284.7 Concluding Remarks ...................................................................... 135References .............................................................................................. 135

5 Multi-Walled Carbon NanotubesÁkos Kukovecz, Gábor Kozma, Zoltán Kónya ............................................. 1475.1 Synthesis ...................................................................................... 1485.2 Chemistry of MWCNTs ..................................................................... 1535.3 Properties ..................................................................................... 1575.4 Selected Applications..................................................................... 163References .............................................................................................. 169

6 Modified Carbon NanotubesAarón Morelos-Gómez, Ferdinando Tristán López, Rodolfo Cruz-Silva,Sofia M. Vega Díaz, Mauricio Terrones....................................................... 1896.1 Doped Carbon Nanotubes .............................................................. 1916.2 Defects in Carbon Nanotubes ......................................................... 1936.3 Nanotube Chemical Functionalization ............................................ 1976.4 Properties of Modified Carbon Nanotubes ....................................... 2036.5 Characterization of Modified Carbon Nanotubes .............................. 2086.6 Applications of Modified Carbon Nanotubes.................................... 2156.7 Toxicity and Biocompatibility ......................................................... 2186.8 Conclusions ................................................................................... 2206.9 Outlook and Perspectives ............................................................... 221References .............................................................................................. 221

7 Carbon NanofibersYoong A. Kim, Takuya Hayashi, Morinobu Endo, Mildred S. Dresselhaus ..... 2337.1 Similarity and Difference Between Carbon Fibers

and Carbon Nanofibers .................................................................. 2347.2 Growth and Structural Modifications of Carbon Nanofibers .............. 2387.3 Applications of Carbon Nanofibers.................................................. 2517.4 Conclusions ................................................................................... 257References .............................................................................................. 258

8 NanodiamondsOlga A. Shenderova, Suzanne A. Ciftan Hens ............................................. 2638.1 Stability of Diamond at the Nanoscale ............................................ 2648.2 Types of Nanodiamonds and Methods of Nanodiamond Synthesis ... 2678.3 Detonation Nanodiamond Processing and Modification .................. 2788.4 Fluorescent Nanodiamonds ........................................................... 284

Page 21: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

Contents XXIII

8.5 Applications of Nanodiamond Particles .......................................... 2858.6 Future Directions of Production and Applications ............................ 292References .............................................................................................. 293

Part B NanoMetals

9 Noble Metal NanoparticlesTheruvakkattil S. Sreeprasad, Thalappil Pradeep ....................................... 3039.1 Historical Perspective of Gold and Silver NPs ................................... 3049.2 Diverse Nanostructures .................................................................. 3079.3 Common Synthetic Routes for the Preparation

of Noble Metal NPs ........................................................................ 3119.4 Properties of Noble Metal Nanoparticles ......................................... 3229.5 Postsynthetic Tuning of Properties ................................................. 3249.6 Functionalized Metal NPs ............................................................... 3439.7 Applications of Gold and Silver Nanoparticles ................................. 3479.8 New Gold and Silver Materials – Quantum Clusters ......................... 3639.9 Conclusions ................................................................................... 366References .............................................................................................. 367

10 Nanostructures of Common MetalsMelinda Mohl, Krisztián Kordás ................................................................ 38910.1 Post-Transition Metals ................................................................... 39010.2 Transition Metals ........................................................................... 39210.3 Concluding Remarks ...................................................................... 398References .............................................................................................. 399

11 Alloys on the NanoscaleGiovanni Barcaro, Alfredo Caro, Alessandro Fortunelli ............................... 40911.1 Concepts and Principles ................................................................. 41111.2 Preparation and Synthesis ............................................................. 41311.3 Characterization of Nanoparticles and Nanoalloys ........................... 41711.4 Properties ..................................................................................... 42411.5 Nanostructured Bulk Alloys ............................................................ 45011.6 Applications .................................................................................. 45711.7 Concluding Remarks ...................................................................... 458References .............................................................................................. 459

12 Magnetic Nanostructures: Synthesis, Properties, and ApplicationsShashwat Shukla, Pratap Kumar Deheri, Raju V. Ramanujan..................... 47312.1 Background .................................................................................. 47412.2 Atomic Origin of Magnetism ........................................................... 47512.3 Magnetic Length Scales and Origin of Nanomagnetic Behavior ......... 47812.4 Magnetic Nanostructures ............................................................... 48312.5 Conclusions ................................................................................... 505References .............................................................................................. 506

Page 22: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

XXIV Contents

Part C NanoCeramics

13 Nanocrystalline Functional Oxide MaterialsRakesh Shukla, Dimple P. Dutta, Jayshree Ramkumar, Balaji P. Mandal,Avesh K. Tyagi ......................................................................................... 51713.1 Synthesis Methods......................................................................... 51813.2 Optical Properties of Oxide Nanomaterials ...................................... 52413.3 Sorbent Properties of Oxide Nanomaterials ..................................... 53213.4 Catalytic Properties of Oxide Nanomaterials .................................... 53613.5 Oxide Nanomaterials in Ionics........................................................ 53813.6 Conclusions ................................................................................... 541References .............................................................................................. 542

14 Piezoelectric NanoceramicsXiaohui Wang, Shaopeng Zhang, Longtu Li .............................................. 55314.1 Introduction to BSPT ...................................................................... 55414.2 Synthesis of BSPT Nanopowders via Sol–Gel Method ....................... 55514.3 Sintering of BSPT Nanoceramics ...................................................... 55614.4 Grain Size Effect on the Properties of BSPT Ceramics ........................ 56314.5 Summary ...................................................................................... 567References .............................................................................................. 568

15 Graphite OxideWei Gao .................................................................................................. 57115.1 Synthesis of Graphite Oxide ........................................................... 57215.2 Characterization, Chemical Structure and Properties........................ 57615.3 Applications .................................................................................. 58915.4 Concluding Remarks ...................................................................... 592References .............................................................................................. 592

16 Compound CrystalsRoi Levi, Maya Bar-Sadan, Reshef Tenne .................................................. 60516.1 Nanostructures .............................................................................. 60516.2 Synthetic Methods ......................................................................... 60816.3 Physical Properties ........................................................................ 61816.4 Applications .................................................................................. 62816.5 Conclusions ................................................................................... 630References .............................................................................................. 631

17 Growth of Nanomaterials by Screw DislocationFei Meng, Stephen A. Morin, Song Jin ....................................................... 63917.1 Classical Crystal Growth Theories .................................................... 64017.2 Theories for Screw-Dislocation-Driven Growth of Nanomaterials ..... 64217.3 Structural Characterization of these Nanomaterials ......................... 64517.4 Generality of Dislocation-Driven Nanomaterial Growth ................... 64917.5 Rational Growth of Dislocation-Driven Nanomaterials –

General Strategies ......................................................................... 658

Page 23: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

Contents XXV

17.6 Applications .................................................................................. 65917.7 Summary and Perspectives ............................................................ 660References .............................................................................................. 661

18 Glasses on the NanoscaleHellmut Eckert, Sidney J.L. Ribeiro, Silvia H. Santagneli, Marcelo Nalin,Gael Poirier, Younès Messaddeq ............................................................... 66518.1 Studying Medium-Range Order in Glasses and Nanoceramics .......... 66618.2 Nanoceramics ............................................................................... 67618.3 Perspectives and Concluding Remarks ............................................ 684References .............................................................................................. 685

Part D NanoComposites

19 Carbon in PolymerRobert J. Young, Libo Deng, Lei Gong, Ian A. Kinloch................................. 69519.1 Materials Basics............................................................................. 69519.2 Carbon Nanotube Composites......................................................... 70219.3 Graphene Composites .................................................................... 71619.4 Conclusions ................................................................................... 722References .............................................................................................. 722

20 Nanoparticle DispersionsKrisztián Kordás, Jarmo Kukkola, Géza Tóth, Heli Jantunen, Mária Szabó,András Sápi, Ákos Kukovecz, Zoltán Kónya, Jyri-Pekka Mikkola.................. 72920.1 Stabilization of Nanoparticle Dispersions ........................................ 73020.2 Nanoparticle Dispersion in Practice ................................................ 73420.3 Dispersions of Carbon Nanomaterials ............................................. 74520.4 Drying Dispersions on Surfaces ....................................................... 75220.5 Concluding Remarks ...................................................................... 758References .............................................................................................. 758

Part E Nanoporous Materials

21 Nanoporous MetalsYi Ding, Zhonghua Zhang ........................................................................ 77921.1 Preparation of Nanoporous Metals ................................................. 77921.2 Properties of Nanoporous Metals .................................................... 78921.3 Applications .................................................................................. 80821.4 Concluding Remarks and Prospects ................................................ 810References .............................................................................................. 811

22 ZeolitesIstván Pálinkó, Zoltán Kónya, Ákos Kukovecz, Imre Kiricsi.......................... 81922.1 Common Zeolite Frameworks ......................................................... 822

Page 24: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

XXVI Contents

22.2 Zeolite and Zeolite-Related Molecular Sieves .................................. 82322.3 Natural Zeolites: Occurrence and Formation .................................... 82522.4 Methods of Identification and Characterization .............................. 82822.5 Synthesis of Zeolitic Materials ........................................................ 83022.6 Ion Exchange, Sorption, and Diffusion in Microporous Materials ...... 83622.7 Acid–Base Properties of Zeolites ..................................................... 84122.8 Stability and Modification of Zeolite Structures ............................... 84322.9 Zeolites as Catalysts ....................................................................... 84622.10 Some Special Applications of Zeolites ............................................. 84822.11 Conclusions ................................................................................... 850References .............................................................................................. 850

23 Porous Anodic Aluminum OxideQiaoling Xu, Guowen Meng ...................................................................... 85923.1 Background .................................................................................. 85923.2 Preparation of AAO Templates ........................................................ 86023.3 Nanostructures Constructed in AAO Templates ................................. 86223.4 Conclusions and Outlook ................................................................ 879References .............................................................................................. 879

24 Porous SiliconPaolo Bettotti .......................................................................................... 88324.1 Basics of Porous Silicon Electrochemistry and Formation Models ...... 88424.2 Other Etching Methods .................................................................. 88624.3 Porous Silicon Structural Properties ................................................ 88724.4 Light Emission from Porous Silicon ................................................. 89024.5 Thermal and Electrical Properties ................................................... 89124.6 The Role of the Surface .................................................................. 89124.7 Applications of Porous Silicon ........................................................ 89224.8 Conclusions ................................................................................... 897References .............................................................................................. 898

Part F Organic and Bionanomaterials

25 Organic NanomaterialsHuanli Dong, Wenping Hu ....................................................................... 90525.1 Preparation/Synthesis of Organic Nanomaterials ............................. 90525.2 Properties of Organic Nanomaterials .............................................. 91025.3 Applications .................................................................................. 92525.4 Concluding Remarks ...................................................................... 930References .............................................................................................. 932

26 Nanocomposites as Bone Implant MaterialVinod Kumar, Bipul Tripathi, Anchal Srivastava, Preeti S. Saxena ............... 94126.1 The Quest for a Suitable Bone Implant ............................................ 94226.2 Bone ............................................................................................ 942

Page 25: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

Contents XXVII

26.3 Existing/Conventional Bone Implant Materials and TheirShortcomings ................................................................................ 944

26.4 Major Challenges with Existing/Conventional Implant Materials ....... 94926.5 Nanotechnology and Tissue Engineering ......................................... 94926.6 Future Perspectives ....................................................................... 965References .............................................................................................. 965

27 Nanofiber BiomaterialsRachelle N. Palchesko, Yan Sun, Ling Zhang, John M. Szymanski,Quentin Jallerat, Adam W. Feinberg.......................................................... 97727.1 Methods of Production .................................................................. 98027.2 Properties of Nanofiber Biomaterials .............................................. 98627.3 Characterization of Nanofiber Biomaterials ..................................... 99327.4 Applications .................................................................................. 99927.5 Conclusions and Outlook ................................................................ 1005References .............................................................................................. 1006

Part G Applications and Impact

28 Nanostructured Materials for Energy-Related ApplicationsArava L.M. Reddy, Sundara Ramaprabhu.................................................. 101328.1 Energy-Related Carbon Nanotubes ................................................. 101328.2 CNTs as Support Material for Electrocatalysts in PEMFC ..................... 101628.3 CNTs as Supercapacitor Electrode Materials ..................................... 1023References .............................................................................................. 1032

29 Nanomaterials in Civil EngineeringJaesang Lee, Seunghak Lee, Eunhyea Chung, Vincent C. Reyes,Shaily Mahendra ..................................................................................... 103929.1 Applications of MNMs in Construction ............................................. 104129.2 Environmental Release of MNMs Used in Construction ..................... 104729.3 Potential Adverse Biological Impacts and Toxicity Mechanisms ........ 104929.4 Mitigation of Environmental and Health Impacts ............................ 105229.5 Conclusions ................................................................................... 1054References .............................................................................................. 1055

30 Plasmonic Nanomaterials for NanomedicineRenat R. Letfullin, Thomas F. George ........................................................ 106330.1 Introduction ................................................................................. 106330.2 Nanooptics – Lorenz–Mie Formalism .............................................. 106430.3 Optical Properties of Gold Nanoparticles in Biological Media............ 106530.4 Kinetics of Heating and Cooling of Nanoparticles ............................ 106730.5 Spatial Distribution of Temperature Fields Around the Nanoparticle . 107630.6 New Dynamic Modes in Selective Plasmonic Nanotherapy ............... 1083References .............................................................................................. 1095

Page 26: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

XXVIII Contents

31 Carbon Nanotube Membrane FiltersAnchal Srivastava, Saurabh Srivastava, Kaushik Kalaga ............................ 109931.1 Types of Filtration ......................................................................... 110031.2 Mechanisms of Filtration ............................................................... 110131.3 Carbon Nanotube Membrane Filters ............................................... 110231.4 Future Research Perspectives ......................................................... 1112References .............................................................................................. 1112

32 Nanomaterial Toxicity, Hazards, and SafetyZuzanna A. Lewicka, Vicki L. Colvin ........................................................... 111732.1 Engineered Nanomaterials – General Overview............................... 111832.2 Occurrence of Engineered Nanoparticles in the Environment ........... 111932.3 Effects of Nanoparticles on Organisms ............................................ 112032.4 Nanoparticle Physicochemical Characteristics of Relevance

for Toxicology ................................................................................ 112432.5 Special Case – Sunscreens .............................................................. 113032.6 Conclusions ................................................................................... 1132References .............................................................................................. 1133

Acknowledgements ................................................................................... 1143About the Authors ..................................................................................... 1145Detailed Contents ...................................................................................... 1163Subject Index ............................................................................................. 1181

Page 27: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

XXIX

List of Abbreviations

α-SMA α-smooth muscle actinp-NP p-nitrophenol0-D zero-dimensional1-D one-dimensional2-D two-dimensional2-PAM 2-pyridine-aldoxime methiodide2Q double-quantum3-D three-dimensional3Q triple-quantum4Hop 4-hexadecyloxyphenyl

A

AA ascorbic acidAAM anodized aluminum membraneAAO anodic aluminum oxideAAO anodized aluminum oxideAAS atomic absorption spectroscopyAb antibodyAC alternating currentAcac acetylacetoneACNT aligned carbon nanotubeACQ aggregation-caused quenchingAChE acetylcholine esteraseACP amorphous calcium phosphateAD arc dischargeAEE aggregation-enhanced emissionAES Auger electron spectroscopyAES 3-(2-aminoethylaminopropyl)trimethoxy-

silaneAFC alkaline fuel cellAFC antiferromagnetically coupledAFM atomic force microscopyAIE aggregation-induced emissionAIEE aggregation-induced enhanced

emissionALD atomic layer depositionAlPO aluminophosphateAM alveolar macrophageanti-EGFR anti-epidermal growth factor receptorAOC aromatic organic compoundsAPC antigen-presenting cellAPES aminopropyltrimethoxysilaneAPPES ambient pressure photoelectron

spectroscopyAPS 3-aminopropyltrimethoxysilaneAPT atom probe tomographyAPTES (aminopropyl) triethoxysilaneAPTS 3-aminopropyltriethoxysilaneAR analytical reagentAR aspect ratio

ARPES angle-resolved photoemissionspectroscopy

ASTM American Society for Testing andMaterials

ATQD N-(4-aminophenyl)-N ′-(4′-(3-triethoxy-silyl-propyl-ureido)phenyl-1,4-quinon-enediimine)

ATP adenosine-5′-triphosphateATRP atom-transfer radical polymerizationAWWA American Water Works Association

B

BASF Badische Anilin und Soda Fabrikbcc body-centered cubicBCF Burton–Cabrera–FrankBCP biphasic calcium phosphateBDAC benzyldimethylammoniumchlorideBDNF brain-derived neurotrophic factorBEP Brønsted–Evans–Polanyi relationsBES Office of Basic Energy SciencesBET Brunauer–Emmett–TellerBF bright fieldBFGF basic fibroblast growth factorBG back-gateBHJ bulk heterojunctionbioMEMS biological microelectromechanical

systemBMG bulk metallic glassBN boron nitrideBOM bubble overlapping modeBP buckypaperBPEA 9,10-bis(phenylethynyl)anthraceneBS black siliconBSA bovine serum albuminaBSI British Standards InstitutionBSPP bis(p-sulfonatophenyl) phenylphosphine

dihydrate dipotassiumBT barium titanateBT benzenethiolBTCP β-tricalcium phosphate

C

C16TAB hexadecyl trimethyl ammonium bromideC-PANI conductive camphorsulfonic acid-doped

emeraldine PANIC3DT 1,3-PropanedithiolCA contact angleCALPHAD calculation of phase diagramsCAM cluster aggregation mode

Page 28: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

XXX List of Abbreviations

CBED convergent-beam electron diffractionCBEV coordination-dependent bond-energy

variationCCDB Cambridge crystallographic data baseCCG chemically converted grapheneCCT correlated color temperatureCCVD catalytic chemical vapor depositionCD cyclodextrinCFR continuous flow reactorCHP cyclohexylpyrrolidoneCHT chymotrypsinCIE International Commission on

IlluminationCIP current in the planeCMG chemically modified grapheneCMOS complementary

metal–oxide–semiconductorCMP chemical–mechanical planarizationCNF carbon nanofiberCNM carbon nanotube membraneCNT carbon nanotubeCN-TFMBE 1-cyano-trans-1,2-bis(3′,5′-bis-trifluoro-

methyl-biphenyl)ethyleneCO cuboctahedronCOD 1,5-cyclooctadieneCOLI collagen ICOLIV collagen IVCOST Cooperation in Science and TechnologyCOSY correlation spectroscopyCOT 1,3,5-cyclooctatrienecp close packedCP coherent phononCP cross polarizationCPP conduction perpendicular to planeCPP current perpendicular to the planeCPS collected photo signalCS cross sectionCS-PCL chitosan-graft-PCLCSA chemical shift anisotropyCSP colloidal silver preparationCT charge transferCTA+ cetyl-triamine cationCTA cetyltrimethylammoniumCTAB cetyltrimethylammonium bromideCV crystal violetCV cyclic voltammetryCVD chemical vapor depositionCW continuous-waveCuPC copper phthalocyanineCuTCNQ copper tetracyanoquinodimethane

D

D4R double four ringDAAQ 1,5-diaminoanthraquinoneDAFC direct alcohol fuel cell

DAPI 4′,6-diamidino-2-phenylindoleDAPRAL copolymer of maleic anhydride and

α-olefinDBR distributed Bragg mirrorDC dendritic cellDC direct currentDCE 1,2-dichloroethaneDD-PTCDI N ,N ′-di(dodecyl)-perylene-3,4,9,10-

tetracarboxylic diimideDDA discrete dipole approximationDDAB didecyldimethylammonium bromideDDC N ,N ′-dicyclohexylcarbodiimideDEFC direct ethanol fuel cellDEG diethylene glycolDF defluoridation capacityDF density functionDFAC direct formic acid fuel cellDFT density functional theoryDFTB density functional tight bindingDGU density-gradient ultracentrifugationDI deionizedDIC differential interference contrastDLC diamond-like carbonDLS dynamic light scatteringDLVO Derjaguin–Landau–Verwey–OverbeekDMA dimethylamideDMEU 1,3-dimethyl-2-imidazolidinoneDMF dimethylformamideDMFC direct methanol fuel cellDMPO 5,5-dimethyl-pyrroline N-oxideDMSA dimercaptosuccinic acidDMSO dimethyl sulfoxideDNA deoxyribonucleic acidDND detonation nanodiamondDOS density of statesDOX doxorubicindpa displacements per atomDPPTE 1,2-dipalmitoyl-sn-glycero-3-phospho-

thioethanolDQ double quantumDR draw ratioDRG dorsal root ganglionDRIFT diffuse reflectance infrared

Fourier-transformDSC differential scanning calorimetryDT decanethiolDTAB dodecyltrimethylammonium bromideDTE desaminotyrosyl-tyrosine ethyl esterDWCNT double-walled carbon nanotubeDWNT double-walled nanotubesDox doxorubicin

E

ECD electrochemical depositionECDL electrochemical double layer

Page 29: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

List of Abbreviations XXXI

ECELL environmental cellECM extracellular matrixECP electronically conducting polymerECSA electrochemically active surface areaED electrodialysisED electron diffractionEDAX energy dispersive analysisEDC 1-ethyl-3-(3-dimethylaminopropyl)-

carbodiimideEDL electrical double layerEDLC electric double-layer capacitorEDS energy-dispersive x-ray spectroscopyEDTA ethylenediaminetetraacetic acidEDX energy-dispersive x-ray spectroscopyEELS electron energy-loss spectroscopyEFM electrostatic force microscopyEG evaporated goldEIS electrochemical impedance spectroscopyEL electroluminescenceELISA enzyme-linked immuno sorbent assayEM electromagneticEMI electromagnetic interferenceEOF electroosmotic flowEPA Environmental Protection AgencyEPR electron paramagnetic resonanceEPS extracellular polymeric substanceEQE external quantum efficiencyESC embryonic stem cellESR electron spin resonanceESR equivalent series resistanceETEM environmental TEMEXAFS extended x-ray absorption fine structureElAP(S)O element aluminophosphosilicateEPITH epithelial cells

F

f-SWCNT functionalized SWCNTFABMS fast atom bombardment mass

spectroscopyFBI Federal Bureau of InvestigationFBR fluidized bed reactorfcc face-centered cubicfct face-centered tetragonalFDA Food and Drug AdministrationFEB ferrocene/ethanol/benzylamineFES fluctuation-enhanced sensingFESEM field emission scanning electron

microscopeFET field-effect transistorFF fill factorFFT fast Fourier transformFGO functionalized GOFIB fibrinogenFIB focused ion beam

FIPOS full isolation by porous oxidized siliconFIT fluctuation-induced tunnelingFITC fluorescein isothiocyanateFLG few-layer grapheneFMR ferromagnetic resonanceFN fibronectinFND fluorescent carboxylated HPHT NDFND fluorescently enhanced NDfpRFDR finite-pulse radio frequency-driven

recoupling

G

GMR giant magnetoresistanceGN gold nanoparticleGNC gold nanoparticle clusterGNP gold nanoparticleGNP graphite nanoplateletGNR gold nanorodGNR graphene nanoribbonGO graphene oxideGOX glucose oxidaseGSH glutathioneGTBMD generalized tight-binding molecular

dynamics

H

HA humic acidHAADF high-angle annular dark fieldHATU 2-(7-aza-1H-benzotriazole-l-yl)-1,1,3,3,-

tetramethyluronium hexafluorophosphateHAZ heat-affected zoneHC hexagonal channelHCCN highly curved carbon nanostructureHCI highly charged ionhcp hexagonal close packedHDA hexadecylamineHDD 1,2-hexadecanediolHDDR hydrogenation–decomposition–

desorption–recombinationHDS hydrodesulfurizationHDT hexadecanethiolHEPES 4-(2-hydroxyethyl)-1-piperazineethane-

sulfonic acidHEV hybrid electric vehicleHF hydrofluoric acidHG hydrazinium grapheneHIV human immunodeficiency virusHL60 human promyelocytic leukemiaHMDA hexamethylenediamineHMO hydrous manganese dioxideHMOG heavy metal oxide glassHMTA hexamethylenetetramineHNS hot neutron source

Page 30: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

XXXII List of Abbreviations

HOMO highest occupied molecular orbitalHOPG highly oriented pyrolytic graphiteHP Hall–PetchHPA hexylphosphonic acidHPC-Py pyrene-labeled hydroxypropyl celluloseHPHT high-pressure high-temperatureHPMC Hydroxypropylmethyl celluloseHPSMAP poly(styrene-co-maleic anhydride)

carrying pyreneHSMA hydrolyzed poly(styrene-co-maleic)

anhydriteh-PSMA hydrolyzed-poly(styrene-alt-maleic

anhydride)HREM high-resolution electron microscopyHRN helical rosette nanotubeHRP horseradish peroxidaseHRSEM high-resolution scanning electron

microscopeHRTEM high-resolution transmission electron

microscopyHSA human serum albuminhSKMC human skeletal muscle cellHTT heat treatment temperatureHWHM half-width at half-maximumHiPCO high-pressure carbon monoxide

I

IANH International Alliance for NanoEHS(environment, health, safety)

IC integrated circuitICP inductively coupled plasmaICP-MS inductively coupled plasma mass

spectrometryIE immersion–electrodepositionIF immunofluorescenceIF inorganic fullerene-like nanoparticleiFF isotactic polypropyleneIFSS interfacial shear strengthIg immunoglobulinIgG immunoglobulin GIh icosahedronIKVAV laminin derived self-assembling peptideIKVAV-PA IKVAV polyacrylamideIL interleukinIL ionic liquidIMR intramolecular rotationINCO International Nickel CompanyINT inorganic nanotubeIP iminopyrroleIPCE incident photon to charge carrier

efficiencyiPSC induced pluripotent stem cellIR infraredipr isolated pentagon rule

ISO International Standards OrganizationITO indium tin oxideIZA International Zeolite Association

K

KE Kirkendall effectKK Kramers–Kronig

L

LA longitudinal acousticLAM lamininLB Langmuir–Blodgett techniqueLB94 van Leeuwen–BaerendsLBL layer-by-layerLCD liquid-crystal displayLDA local density approximationLDOS local density of statesLED light-emitting diodeLEED low energy electron diffractionLIB lithium-ion batteryLMP Larson–Miller plotLN less nobleLPM large-pore mordeniteLPS lipopolysaccharideLSC limbal stem cellsLSP longitudinal surface plasmonLSPR localized surface plasmon resonanceLTA Linde type ALUMO lowest unoccupied molecular orbitalLYM lymphocytes

M

M metalloidMA mechanical alloyingMAE magnetic anisotropy energyMALDI-TOF matrix-assisted laser desorption/

ionization-time of flightMAPO metalaluminophosphateMAPSO metalaluminophosphosilicatesMAS magic angle spinningMBE molecular beam epitaxyMC metal clusterMCFC molten carbonate fuel cellMCL maximum contamination limitMCS ethylene glycol monomethyl etherMD molecular dynamicsMDA malondialdehydeMDA mercaptodecanoic acidMEA membrane electrode assemblyMEMS microelectromechanical systemMF mesoflowerMF microfiltration

Page 31: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

List of Abbreviations XXXIII

MFC microbial fuel cellMFI melt–flow indexMFM magnetic force microscopyMGM metal-graphite multilayerMHAP micron particulate hydroxyapatiteML monolayerMN more nobleMNM manufactured nanomaterialsMNPM metallic nanoporous materialMO methyl orangeMOCVD metalorganic chemical vapor depositionMOF metal-organic frameworkMOKE magneto-optical Kerr effectMPB morphotropic phase boundaryMPC monolayer-protected clusterMPCF mesophase pitch-based carbon fiberMPS mercaptopropyltrimethoxysilaneMPTMS mercaptopropyltrimethoxysilaneMR magnetic resonanceMRAM magnetic random-access memoryMRI magnetic resonance imagingmRNA messenger RNAMRR material removal rateMRSw magnetic relaxation switchingMSA mercaptosuccinic acidMSC mesenchymal stem cellMSE mercurous sulfate electrodeMTBD [7-methyl-1,5,7-triazabicyclo[4.4.0]dec-

5-ene][bis(perfluoroethylsulfonyl)imide]MWCNT multiwalled carbon nanotubeMWNT multiwalled nanotubes

N

NaBBS sodiumbutylbenzene sulfonateNaDDBS sodium dodecylbenzene sulfonateNADH nicotinamide adenine dinucleotideNaOBS sodium octylbenzene sulfonateNaPSS polystyrene sulfonate sodium saltNBE near-band-edgeNC nanocrystallinenc-AFM noncontact AFMND nanodiamondNDO ozone-modified nanodiamondND-PTCDI N ,N ′-di(nonyldecyl)-perylene-3,4,9,10-

tetracarboxylic diimideNEMS nanoelectromechanical systemNEUT neutrophilsNEXAFS near-edge x-ray absorption fine structureNF nanofeaturesNF nanofiltrationNFA nanostructured ferritic alloyNG natural highly-oriented pyrolytic

graphite

NGF nerve growth factorNHAP nanohydroxyapatitenHAp nanohydroxyapatite particlen-HApC nanohydroxyapatite/chitosanNHS N-hydroxysuccinimidyl esterNIOSH National Institute for Occupational Safety

and HealthNIR near infraredNM noble metalNMP N-methyl-pyrrolidoneNmpd N-methylpyridiniumNmpr N-methylpyrroleNMR nuclear magnetic resonanceNO-IF nanooctahedra-IFNP nanoparticleNPG nanoporous graphiteNPG/GC NPG supported by glassy carbon

electrodeNPGC nanoporous gold compositeNPM nanoporous metalNPNT nanoporous nanotubeNPS nanoporous silverNR nanorodNSC neural stem cellNSM nanostructured materialsNT nanotubeNTS nanostructured transformable steelNV nitrogen-vacancyNW nanowire

O

O/F oxidant-to-fuelOCP open-circuit potentialOCT optical coherence tomographyODA octadecylamineODE octadeceneODF orientation distribution functionODPA octadecylphosphonic acidODS octadecyltrimethoxysilaneODS oxide dispersion strengthenedOER oxygen evolution reactionOFET organic field-effect transistorOh octahedronOL optical-limitingOLC onion-like carbonOLED organic light-emitting diodeOPD O-phenylenediamineOPH organophosphorus hydrolaseOPS oxidized PSOPV organic photovoltaicORR oxygen reduction reactionOSN organic solvent nanofiltrationOTM one-temperature model

Page 32: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

XXXIV List of Abbreviations

P

P3HT poly(3-hexylthiophene)P3OT poly(3-octylthiophene)PA peptide amphiphilePA-6 prepared a nylon-6PAA poly(acrylic acid)PABS polyaminobenzene sulfonic acidPAFC phosphoric acid fuel cellPAGE polyacrylamide gel electrophoresisPAH polycyclic aromatic hydrocarbonPAN polyacrylonitrilePANI polyanilinePATS polythiophene derivativesPBO poly(p-phenylene benzobisoxazole)PBS phosphate buffered salinePC pentagonal columnPC photonic crystalPC polycarbonatePC principal componentPCA principal component analysisPCB polychlorinated biphenylPCE power conversion efficiencyPCF photonic crystal fiberPCL poly(ε-caprolactone)PCL-G PCL-gelatinPDDA poly(diallyldimethyl)ammonium

chloridePDDP 1-phenyl-3-((dimethylamino)styryl)-5-

((dimethylamino)phenyl)-2-pyrazolinePDEAEMA poly(2-diethylaminoethyl methacrylate)PDGF platelet-derived growth factorPDLC polymer-dispersed liquid-crystalPDMS polydimethylsiloxanePDOS phonon density of statesPE photoelectronPE polyethylenePEC photoelectrochemicalPECVD plasma-enhanced CVDPEDOT poly(3,4-ethylenedioxythiophene)PEEk produced poly(ether ether ketone)PEG polyethylene glycolPEI polyethyleneiminePEL permissible occupational exposure

limitPEMFC proton exchange membrane fuel cellPEN Project on Emerging NanotechnologiesPEO poly(ethylene oxide)PES potential energy surfacePET polyethylene terephthalatePFG pulsed-field-gradientPFM piezoelectric force microscopyPG PCL–gelatinPG proteoglycanPGA poly(glycolic acid)

PGLA copolymer of PGA and PLLAPGM platinum group metalpIh polyicosahedronPIPAAm responsive poly(N-isopropylacrylamide)PL photoluminescencePL-PEG phospholipid polyethylene glycolPLA poly-ethylene oxidePLA pulsed laser ablationPLE photoluminescence excitationPLGA poly(lactic-co-glycolic) acidPLLA poly(l-lactic) acidPM dipropylene glycol monomethyletherPMMA poly-methyl methacrylatePMN-PT PbMg1/3Nb2/3 O3-PbTiO3PmPV poly(m-phenylenevinylene-co-2,5-

dioctoxy-p-phenylenevinylene)PN phosphorus-nitrogenPNIPAm poly(N-isopropyl acrylamide)PNP plasmonicPP polypropylenepp peak-to-peakPPCP 1,2,3,4,5-pentaphenyl-1,3-

cyclopentadienePT PbTiO3PPE poly-p-phenyleneethynylenePPF propylene fumaratePPTA poly phenylene terephthalamidePPV poly-p-phenylenevinylenePPy polypyrrolePRR pattern recognition receptorPS polystyrenePS porous siliconPS-PFS poly(styrene-b-ferrocenyldimethylsilane)PSD photo signal detectorPSS poly(sodium 4-styrenesulfonate)PSS polystyrene sulfonatePSU polysulfonatePSU polysulfonePSVPh poly(styrene-co-vinyl phenol)Pt-NPG platinum-decorated nanoporous goldPt-NPGL platinum-plated nanoporous gold leafPTCDI N ,N ′-di(propoxyethyl)perylene-3,4,9,10-

tetracarboxylic diimidePTCE track-etched polycarbonatePTFE polytetrafluoroethylenePU polyurethanePV pervaporationPV photovoltaicPVA polyvinyl alcoholPVC polyvinylchloridePVD physical vapor depositionPVDF polyvinyldifluoridePVP polyvinyl pyrrolidonePW plane wavepzc point of zero charge

Page 33: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

List of Abbreviations XXXV

PZN-PT PbZn1/3Nb2/3O3-PbTiO3PZT Pb(Zr,Ti)O3

Q

QC quantum clusterQD quantum dotQEXAFS quick EXAFSQHE quantum Hall effect

R

R6G rhodamine 6GRA right angleRBM radial breathing modeRCF rabbit corneal fibroblastRE rare-earthrebar reinforcement barREDOR rotational echo double resonanceRF radio frequencyRFDR radiofrequency-driven recouplingRFID radiofrequency identificationRGB red green blueRGD Arg-Gly-AspRGO reduced graphene oxiderhBMP-2 recombinant human bone morphogenic

protein-2RHE reversible hydrogen electrodeRIA radioimmuno assayRIE reactive-ion etchingRIR restriction of intramolecular rotationRJS rotary jet spinningRKKY Rudermann–Kittel–Kasuya–YosidaRM reactive millingRMS microscale surface roughnessRNA ribonucleic acidRO reverse osmosisROS reactive oxygen speciesRPC retinal progenitor cellsRRR redox replacement reactionRRS resonant Raman scatteringRT room temperatureRT-PCR real-time polymerase chain reactionR&D research and development

S

S–W Stone–WalesS/L solid/liquidSA sliding angleSA solar ablationSAED selected-area electron diffractionSAM self-assembled monolayerSANS small -angle neutron scatteringSAPO silicoaluminophosphateSAXS small-angle x-ray scattering

SBU secondary building unitSC simple cubicSC sodium cholateSCC stress corrosion crackingSCE saturated calomel electrodeSCR space-charge regionSD standard deviationSDBS sodium dodecylbenzene sulfateSDCH samaria-doped ceriaSDS sodium dodecyl sulfateSEC size exclusion chromatographySEI solid–electrolyte interphaseSEIRA surface-enhanced infrared absorptionSEM scanning electron microscopySES scanning electron spectroscopySERS surface-enhanced Raman scatteringSET single-electron transistorSF silk fibroinSFF solid freedom fabricationSFG sum-frequency generationSFM scanning force microscopySGS spaced superconducting electrodeSHE standard hydrogen electrodeSIM structured illumination microscopySIMS secondary-ion mass spectrometrysiRNA silenced RNASL superlatticeSLS solution–liquid–solidSMA shape-memory alloySMAD solvated metal atom dispersionSNR signal-to-noise ratioSOCT sodium octanoateSOFC solid oxide fuel cellSOI silicon-on-insulatorSP surface plasmonSP-STM spin-polarized scanning tunneling

microscopySPM scanning probe microscopySPM small-pore mordeniteSPP surface plasmon polaritonSPR surface plasmon resonanceSPS spark plasma sinteringSQ single quantumSQUID superconducting quantum interference

deviceSRNF solvent resistant nanofiltrationSS stainless steelSSA specific surface areaSSNMR solid-state nuclear magnetic resonanceSTEM scanning transmission electron

microscopySTM scanning tunneling microscopySTORM stochastic optical reconstruction

microscopySTS scanning tunneling spectroscopySWCNT single-walled carbon nanotube

Page 34: Springer Handbook of Nanomaterials978-3-642-20595-8/1.pdf · Among the general public, and even the scientific community, nanomaterials are widely perceived as new in many different

XXXVI List of Abbreviations

SWNH single-wall nanohornSWNT single-walled nanotubeSXRD surface x-ray diffractionShdH Shubnikov–de HaasSi-MEMS silicon microelectromechanical systemSi-nc silicon nanocrystal

T

TA thioctic acidTA transverse acousticTAMRA tetramethylrhodamineTASA template-assisted self-assemblyTCNQ tetracyanoquinodimethaneTCO transparent conductive oxideTDABr tetradodecylammonium bromideTDDFT time-dependent density-functional-

theoryTDPA tetradecylphosphonic acidTE transition metal elementTEG tetra(ethylene glycol)TEM transmission electron microscopyTEOS tetraethyl orthosilicateTEP thermoelectric powerTFT thin-film transistorTG top gateTGA thermogravimetric analysisTGA thioglycolic acidTGF-β transforming growth factorTHF tetrahydrofuranTHPC tetrakismethyl)phosphonium chlorideTIC toxic industrial chemicalTIPS thermally induced phase separationTL transition-metal elementTMAH tetramethylammonium hydroxideTMR tunnel magnetoresistanceTNF-α tumor necrosis factorTNT 2-methyl-1,3,5-trinitrobenzeneTO truncated octahedronTOAB tetraoctylammonium bromideTOF turnover frequencyTOP trioctylphosphineTOPO trioctylphosphine oxideTPA tetrapropylammoniumTPD temperature programmed desorptionTPI 2,4,5-triphenylimidazoleTPL two-photon luminescenceTPP 1,3,5-triphenyl-2-pyrazolineTSP transverse surface plasmonTSW Thrower–Stone–WalesTTCP tetracalcium phosphateTWC three-way catalystThT thioflavin T

U

UF ultrafiltrationUHP ultrahigh pressureUHV ultrahigh vacuumUNCD ultrananocrystalline diamondUPD underpotential depositionUV ultravioletUV-VIS ultraviolet-visibleUVR ultraviolet radiation

V

vdW van der WaalsVGCF vapor-grown carbon fiberVHS van Hove singularityVLS vapor–solid–liquidVPC vacuum pyrolysis/carbothermalVRH variable range hoppingVS vapor–solidVSFG vibrational sum-frequency generationVSM vibrating sample magnetometryVSS vapor–solid–solidVan vancomycin

W

WAXD wide angle x-ray diffractionWC tungsten carbideWG waveguideWHO World Health Organization

X

XANES x-ray absorption near-edge spectroscopyXAS x-ray absorption spectroscopyxc exchange–correlationXPS x-ray photoelectron spectroscopyXRD x-ray diffraction

Y

YAB YAl3(BO3)4YAM Y4Al2O9Y-CNT Y-shaped carbon nanotube

Z

ZAP zone axis patternZHDS hydroxydodecylsulfateZHS zinc hydroxysulfateZLC zero-length-columnZSM zeolite sieve of molecular porosity