sponsors€¦ · 36 - slightly overdoped high-tc superconductor tlsr2cacu2o6.8 guo-qing zheng et...

41
André-Marie Tremblay Sponsors: CENTRE DE RECHERCHE SUR LES PROPRIÉTÉS ÉLECTRONIQUES DE MATÉRIAUX AVANCÉS

Upload: others

Post on 08-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • André-Marie Tremblay

    Sponsors:

    CENTRE DE RECHERCHE SUR LES PROPRIÉTÉS ÉLECTRONIQUES

    DE MATÉRIAUX AVANCÉS

  • I. All is not well with the theory of solids

    II. A microscopic model

    III. Inching our way up the weak-coupling regime.

    IV. What was the competition up to?

    V. Conclusion

    Mathematics, Physics, and Computers : strongly correlated electrons intwo dimensions as a case study.

  • H = Kinetic + Coulomb

    - Many new ideas and concepts needed for progress(Born-Oppenheimer, H-F, Bands...)

    - Successful program - Semiconductors, metals and superconductors- Magnets

    - Is there anything left to do?- Unexplained materials: High Tc, Organics...- Strong correlations:

    strong interactions, low dimensionstrong fluctuations

    Theory of solids

    I. All is not well with the theory of solids

  • 4

    Quasiparticles, Fermi surface and Fermi liquids- LDA (Nobel prize 1998)

    L.F. Mattheiss, Phys. Rev. Lett. 58, 1028 (1987).

    La2CuO4

    The standard approaches :

  • ePhoton

    = E + ω + µµµµ - W k2m

    2

    k

    ph

    Angle-Resolved Photoemission (ARPES)

    Quasi 2-d material

  • 6

    T. Valla, A. V. Fedorov, P. D. Johnson, and S. L. HulbertP.R.L. 83, 2085 (1999).

  • n = 1, Metal according to bandAFM insulator in reality

  • 8

    Optimally doped BISCCONormal Superconductor

    A. V. Fedorov, T. Valla, P. D. Johnson et al. P.R.L. 82, 2179 (1999)

    - d=2 partial vanishing actof the Fermi surface awayfrom n = 1.

  • κ−(BEDT)2X

    II. A microscopic model

  • Ut

    •Compute [ ][ ]

    [ ][ ]Tr Oe

    Tr e

    H k T

    H k T

    B

    B

    /

    /

    •Size of Hilbert space : 4 N (N = 16)

    µ

    Simplest microscopic model for Cu Oplanes.

  • 11

    H = ¡ X¾

    ti;j³cyi¾cj¾ + c

    yj¾ci¾

    ´+ U

    Xi

    ni"ni#

    Hubbard model (Kanamori, Gutzwiller, 1963) :

    - Screened interaction U- U, T, n- a = 1, t = 1, h = 1

    - 2001 vs 1963: Numerical solutions to check analytical approaches

    t

    t

    Ut

  • 12

    A(k,ω)

    ω- U/2 U/2

    ω

    k

    π/a−π/a

    ω

    k

    π/a−π/a

    ω

    A(k,ω)

    - 4 t

    A(k,ω)

    + 4 t

    U = 0 t = 0

    U

    -U/2

    +U/2

    µ

    ω

  • 13

    T

    U

    A(kF,ω)

    A(kF,ω)A(kF,ω)

    A(kF,ω)

    A(kF,ω)

    ∆∆

    U U

    U

    D. Sénéchal

    ω

    ωω

    ω

    ω

    Weak vs strong coupling

  • •QMC•André Reid, Christian Boily, Hugues Nélisse

    L. Chen, C. Bourbonnais, T. Li, and A.–M. S. TremblayPhys. Rev. Lett. 66, 369-372 (1991)

    Liang Chen

    Claude Bourbonnais

    III. Inching our way up the weak coupling regime

  • •Problems:

    •Cannot compute charge structure factor with satisfactory accuracy

    •Predicts a finite T antiferromagnetic phase transition in d = 2

    •Contradicts Mermin-Wagner theorem

    ( )∇ → → → ∞∫θ θ θ θ α2 2 2 2 2q k T d q k Tqq q BB

  • •Yury Vilk, 1993

    •Forget diagrams

    •Keep RPA form since satisfies conservation laws

    •Determine renormalized interaction from sum-rule (Singwi)

    •(Double-occupancy determined self-consistently)

    •Get the charge fluctuations from Pauli principle

    •Mermin-Wagner theorem automatically satisfied

    Yury Vilk

  • 17

    A non-perturbative approach for both U > 0 and U < 0

    q0.0

    0.4

    (0,0) (π,π)(π,0) (0,0) q0

    20.0

    0.4

    0

    2

    n S c

    h(q)

    n S s

    p(q)

    U = 8

    U = 8

    U = 4

    U = 4n = 0.26

    n = 0.94n = 0.60

    n = 0.45n = 0.20

    n = 0.80n = 0.33n = 0.19

    n = 1.0n = 0.45n = 0.20

    (a)

    (b) (c)

    (d)

    U > 0

    QMC + cal.: Vilk et al. P.R. B 49, 13267 (1994)

    Notes:-F.L.parameters

    -Self alsoFermi-liquid

    - Proofs that it works

  • 0.50 0.75 1.00T

    0.0

    0.5

    1.0

    1.5

    2.0U=4.0n=0.87

    Monte Carlo

    8x8 (BWS)

    8*8 (BW)

    This work

    FLEX no AL

    FLEX

    π,π

    χ(

    ,0)

    sp

    U = + 4

    QMC: Bulut, Scalapino, White, P.R. B 50, 9623 (1994).Calc.: Vilk, et al. J. Phys. I France, 7, 1309 (1997).

    Proofs...

  • 0.0 0.2 0.4 0.6 0.8 1.0T

    0

    4

    8

    12

    16S s

    p(π

    ,π)

    Monte Carlo

    4x4

    6x6

    8x8

    10x10

    12x12

    ξ = 5

    U=4n=1

    TX Tmf

    Calc.: Vilk et al. P.R. B 49, 13267 (1994) QMC: S. R. White, et al. Phys. Rev. 40, 506 (1989).

    )( ∞=NO A.-M. Daré, Y.M. Vilk and A.-M.S.T Phys. Rev. B 53, 14236 (1996)

    ( )ξ ~ exp ( ) /C T T

  • 20

    = +

    1

    32 2

    1

    33

    12

    2

    3

    4

    5

    =Σ1 2 +

    -

    2

    45

    2

    1

    1

    21

    What about single-particle properties? (Ruckenstein)

    Y.M. Vilk and A.-M.S. Tremblay, J. Phys. Chem. Solids 56, 1769 (1995).Y.M. Vilk and A.-M.S. Tremblay, Europhys. Lett. 33, 159 (1996);

    N.B.: No Migdal theorem

  • Quantitative agreement with QMC

  • Qualitatively new result: effect of critical fluctuations on particles (RC regime)

    !ωsf Bk Tξ ξ ξ

    ξ ξ ξ π> ≡th th F Bv k T( / )!

    ∆ ∆ ∆ε ε≈ ∇ ⋅ ≈ =k F Bk v k k T!

    Σ" , ln /R

    F thUk 0 02a f a f d i∝ − ξ ξ ξ

    TcY.M. Vilk and A.-M.S. Tremblay, J. Phys. Chem. Solids 56, 1769 (1995).Y.M. Vilk and A.-M.S. Tremblay, Europhys. Lett. 33, 159 (1996);

  • M. Vekic and S. R. White, Phys. Rev. B 47, 1160–1163 (1993)

    J. J. Deisz, D. W. Hess, and J. W. SerenePhys. Rev. Lett. 76, 1312-1315 (1996)

    FLEXQMC

    IV. What was the competition up to?

  • State of the art analytical tools

    Φ [G] = +

    Σ [G] = δΦ [G] / δG = +

    12

    + ...

    Γ [G] = δΣΣΣΣ [G] / δG = +

    + ...

  • - Thermodynamically consistent:dF/dµ = Tr[G]

    - Satisfies Luttinger theorem (Volume of Fermi surface at T = 0 preserved)

    - Satisfies Ward identities (conservation laws):G2(1,1;2,3) appropriately related to G(1,2)

    Gordon Baym, Phys. Rev. 127, 1391 (1962).N.E. Bickers and D.J. Scalapino, Annals of Physics, 193, 206 (1989)

    Advantages

    FLEX

  • - Integration over coupling constant of potential energydoes not give back the starting Free energy.

    - The Pauli principle in its simplest form is not satisfied(It is used in defining the Hubbard model in the first place)

    - There is an infinite number of conserving approximations(How do we pick up the diagrams?)

    - Inconsistency:Strongly frequency-dependent self-energy, constant vertex

    No Migdal theorem, sovertex corrections should be included

    Disdvantages

  • 27

    -1 0 10.0

    0.5

    1.0

    A(ω)

    -1 0 1 -1 0 1

    Monte Carlo Many-Body Σ(s) FLEX

    -0.5

    0.0

    G( τ

    )

    0 β

    a) b) c)L=4

    L=6

    L=8

    L=10

    β/2

    U = + 4

    Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000).

    D. PoulinH. Touchette

    Back to us

  • -5.00 0.00 5.00 -5.00 0.00 5.00ω/t

    (0,0)

    (0, )π

    ( , )π2 π2( , )π π4 4( , )π π4 2

    (0,0) (0, )π

    ( ,0)π

    Monte Carlo Many-Body

    -5.00 0.00 5.00

    Flex

    U = + 4

    Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000).

    S. Moukouri F. Lemay S. Allen Y. Vilk B. Kyung

  • 29

    I

    II ωωωω

    kF

    A(ωωωω)

    E

    k

    A(ωωωω)

    ωωωω

    kF

    III

    99-aps/Explication...

    E

    k

    A(ωωωω)

    ωωωω

    kF

    TX

    c

    kF

    kF

    2∆2∆

    T = 0n

    T

  • 30

    §(1)¾

    ³1; 1

    ´G(1)¾

    ³1; 2

    ´= AG

    (1)¡¾

    ³1; 1+

    ´G(1)¾ (1; 2)

    where A depends on external ¯eld and is chosen such that the exact result

    §¾³1; 1

    ´G¾

    ³1; 1+

    ´= U

    Dn"n#

    Eis satis¯ed. One ¯nds

    A = U

    Dn"n#

    EDn"E Dn#E

    Functional derivative ofDn"n#

    E=³Dn"E Dn#E´drops out of spin vertex

    Usp = A = U

    Dn"n#

    EDn"E Dn#E

    First step: Two-Particle Self-ConsistentHow it works...

    S. Allen

    Y. Vilk

  • 31

    To close the system of equations, while satisfying conservation laws and

    the Pauli principle¿³n" ¡ n#

    ´2À=

    Dn"E+Dn#E¡ 2

    Dn"n#

    ET

    N

    Xeq

    Â0(q)

    1¡ 12UspÂ0(q)= n¡ 2hn"n#i (1)

    Recall

    Usp = U

    Dn"n#

    EDn"E Dn#E (2)

    To have charge °uctuations that satisfy Pauli principle as well,

    T

    N

    Xq

    Â0(q)

    1 + 12UchÂ0(q)= n+ 2hn"n#i ¡ n2 (3)

    (Bonus: Mermin-Wagner theorem)

    How it works...

  • 32

    §¾³1; 1

    ´G¾

    ³1; 2

    ´= ¡U

    DÃy¡¾

    ³1+´Ã¡¾ (1)þ (1)Ãy¾ (2)

    §¾³1; 1

    ´G¾

    ³1; 2

    ´= ¡U

    "±G¾ (1; 2)

    ±Á¡¾ (1+; 1)¡G¡¾

    ³1; 1+

    ´G¾ (1; 2)

    #

    Last term is Hartree Fock (lim! ! 1). Multiply by G¡1, replace lowerenergy part results of TPSC

    §(2)¾ (1; 2) = UG

    (1)¡¾

    ³1; 1+

    ´± (1¡ 2)¡ UG(1)

    "±§(1)

    ±G(1)±G(1)

    ±Á

    #Transverse+longitudinal for crossing-symmetry

    §(2)¾ (k) = Un¡¾ +

    U

    8

    T

    N

    Xq

    �3UspÂ

    (1)sp (q) + UchÂ

    (1)ch (q)

    ¸G(1)¾ (k+ q): (4)

    Second step: improved self-energy

    [ ]

    How it works...

  • -4.0 0.0 4.0ω

    0.0

    0.2

    0.4T = 0.25, n = 0.8, U = -4

    QMCMany-Body

    -4.0 0.0 4.0ω

    0.0

    0.4

    0.8

    1.2N( )ω A(k, )ω

    (a) (b)

    (c) (d)

    -4.0 0.0 4.00.0

    0.1

    0.2

    0.3T = 0.2, n=0.8, U = -4

    Many-BodyQMC

    -4.0 0.0 4.00.0

    0.2

    0.4

    0.6

    τ-0.6

    -0.4

    -0.2

    0.0

    T = 0.25, n = 0.8, U = -4QMC

    Many Body

    τ-0.6

    -0.4

    -0.2

    0.0G(k, )τ G(k, )τ

    (a) (b)

    (c) (d)

    -0.6

    -0.4

    -0.2

    0.0

    T = 0.2, n=0.8, U = -4

    Many-Body

    QMC

    -0.6

    -0.4

    -0.2

    0.0

    Σk

    U = - 4

    Kyung et al. cond-mat/0010001

    Proof that generalization for U < 0 works

    S. Allen

    B. Kyung

  • 34

    0.00 0.50 1.00 1.50 2.00ω

    T=1/3

    T=1/4

    T=1/5

    Even part of the pair susceptibility at q = 0, for different temperatures

    U = - 4

    Allen, et al. P.R. L 83, 4128 (1999)

    Mechanism for pseudogap formation in the attractive model:

    d = 2 is crucial

  • 35

    U > 0- Renormalized classical regime

    for spin fluctuations in pseudogap regime?

    Philippe Bourges cond-mat/0009373

    T

    δ

    pseudogap

    AF

    SC QCP ?

  • 36

    - Slightly Overdoped High-Tc Superconductor TlSr2CaCu2O6.8Guo-qing Zheng et al., P. R. L. 85, 405 (2000) - Pseudogap in Knight shift and NMR relaxation strongly

    H dependent, contrary to underdoped (up to 23 T).

    - Underdoped in a range ∆Τ ∼ 15 Κ near Tc see evidence for renormalized classical regime (KT behavior).

    Corson et al.Nature, 398, 221 (1999).

    - Higher symmetry group creates large range of T where there is a pseudogap.

    n = 1 n = 0

    SO(2)

    KT

    Pseudogap

    T

    SO(3)Allen et al. P.R.L. 83, 4128 (1999)

    U < 0 Pairing-fluctuation induced pseudogap

  • V. Conclusion•What is happening now?

    •Methods for thermodynamics and for crossed channels.

    •Computers : •Small sizes, not all relevant parameter regimes are accessible

    •Analytical studies :•No small parameter, no perfect approximation

    •Limiting cases, physical intuition•Not always reliable

  • Steve Allen

    François Lemay

    David Poulin Hugo Touchette

    Yury VilkLiang Chen

    Samuel MoukouriBumsoo Kyung

  • David Sénéchal A.-M.T.

    Michel Barrette

    Alain Veilleux

    Mehdi Bozzo-Rey

    Elix

  • Jean-Séastien Landry

    Bumsoo Kyung

    A-M.T.

    Sébastien Roy Alexandre Blais

    D. Sénéchal

    Claude Bourbonnais

    R. Côté

  • 41

    - How can we understand electronic systems that showboth localized and extended character?

    - Why do both organic and high-temperature superconductors show broken-symmetry states where mean-field-like quasipar-ticles seem to reappear?

    - Why is the condensate fraction in this case smaller than what would be expected fromthe shape of the would-be Fermi surface in the normal state?

    - Are there new elementary excitations that couldsummarize and explain in a simple way the anomalousproperties of these systems?

    - Do quantum critical points play an important role in the Physics of these systems?

    - Are there new types of broken symmetries? - How do we build a theoretical approach that can include bothstrong-coupling and d = 2 fluctuation effects?

    - What is the origin of d-wave superconductivity in the high-temperature superconductors?