spintronics a. kellou and h. aourag metallic thin films revisited: fe, co, ni multilayers

38
Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

Upload: augustus-roberts

Post on 19-Jan-2016

213 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

SpintronicsA. Kellou and H. Aourag

Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

Page 2: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

SpintronicsMetallic Thin Films Revisited: Fe, Co, Ni Multilayers

Spintronics: To Control a Spin of Electrons, not a Charge

Magnetic Nanostructures for Spintronics Magnetic Multilayers Magnetic Wires Magnetic Quantum Dots

Applications of Magnetic Nanostructures Reading Heads, Magnetic Field Sensors, MRAM Field Effect Transistor, Spin-Valve Transistor Quantum Computer

Page 3: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

Basic Structure

The prototype device that is already in use in industry as a

read headmemory-storage cell

is the

giant-magnetoresistive (GMR) sandwich structure

which consists of alternating

ferromagnetic and nonmagnetic metal layers.

Page 4: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

Basic Structure

Depending on the relative orientation of the magnetizations in the magnetic layers,

the device resistance changes from

small (parallel magnetizations) to large (antiparallel magnetizations).

This change in resistance (also called magnetoresistance) is used to sense changes in magnetic fields

Page 5: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

Basic Structure

Page 6: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

Basic Structure

two different approaches: 1) existing GMR-based technology - developing new materials with larger spin polarization of electrons

- making improvements or variations in the existing device that allow for better spin filtering.

2) finding novel ways of both generation and utilization of spin-polarized currents.

Page 7: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

Basic Structure

Problems:

existing metal-based devices do not amplify signals (although they are successful switches or valves), whereas semiconductor based spintronic devices could in principle provide amplification and serve, in general, as multi-functional devices.

spin polarizers and spin valves

Page 8: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

Magnetic Random Access Memory (MRAM)

Low Resistance High ResistanceReversible

Page 9: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

Issues in Magnetic Multilayers Fabrication of Ordered Nanostructures on a Surface

A detailed understanding of the various atomic processes

that occur during the formation of nanosized islands on surfaces

Surfaces are not simply a static media onto which the

deposited atoms and diffuse

Deposition and nucleation on a surface is important

Page 10: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

29III. Applications: ii) binary alloys

FeCr, CoCr, and NiCr:Structural and magnetic properties

a B E MX MCr M

FeCr Theory nm fm af

5.324 5.381 5.377

216231232

-4647.3167-4647.3330-4647.3390

--1.68

--0.37

--2.01

CoCr Theory nm fm af

5.360 5.409 5.425

189224179

-4888.6493-4888.6847-4888.6576

-1.25-

-1.59-

-2.98-

NiCr Theory nm fm af

5.453 5.489 5.511

213239217

-5143.3630-5143.3951-5143.3953

--0.60

--2.39

--3.29

120 130 140 150 160 170 180

-4647,35

-4647,34

-4647,33

-4647,32

-4647,31

-4647,30

-4647,29

-4647,28

-4647,27

FeCr NM FM AF

En

erg

y (R

y)

Volume (a.u.3)130 140 150 160 170 180

-4888,68

-4888,67

-4888,66

-4888,65

-4888,64

-4888,63

-4888,62

-4888,61

CoCr NM FM AF

Ene

rgy

(R

y)

Volume (a.u.3)

120 130 140 150 160 170 180 190 200-5143,40

-5143,38

-5143,36

-5143,34

-5143,32

NiCr NM FM AF

Ene

rgy

(R

y)

Volume (a.u.3)

Page 11: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

30III. Applications: iii) Ternary alloys

Semi-Heusler alloys

•Half-metallic materials possess 100% electron polarization at the Fermi energy.

•New class of magnetic materials displaying metallic character for one electron spin population and insulating character for the other.

•Technological interest as potential pure spin sources for use in spintronic devices, data storage applications, and magnetic sensors.

•Difficult to confirm experimentally the half-metallicity charcter (clean stoichiometric surfac).

To known if the intermettallic alloys based on a ferromagnet -Ti -Cr can lead to a half-metallicity behavior.

Page 12: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

31III. Applications: iii) Ternary alloys

260 270 280 290 300 310

-7040,070

-7040,065

-7040,060

-7040,055

-7040,050

-7040,045

-7040,040

-7040,035

-7040,030

FeCoTi NM FM

En

erg

y (R

y)

Volume (a.u3)

250 260 270 280 290 300 310 320 330

-7294,795

-7294,790

-7294,785

-7294,780

-7294,775

-7294,770

-7294,765

-7294,760

-7294,755

-7294,750

FeNiTi NM FM

En

erg

y (R

y)

Volume (a.u3)

220 230 240 250 260 270 280 290

-7434,20

-7434,19

-7434,18

-7434,17

-7434,16

-7434,15

FeCoCr NM FM

En

erg

y (R

y)

Volume (a.u3)

210 220 230 240 250 260 270 280 290 300

-8374,08

-8374,06

-8374,04

-8374,02

-8374,00

-8373,98

-8373,96 FeCoNi

NM FM

En

erg

y (R

y)

Volume (a.u.3)

250 260 270 280 290 300 310 320 330 340 350

-6596,225

-6596,220

-6596,215

-6596,210

-6596,205

-6596,200

-6596,195

-6596,190 CoTiCr

NM FM

En

erg

y (R

y)

Volume (a.u.3)

250 260 270 280 290 300 310 320 330 340

-6354,88

-6354,87

-6354,86

-6354,85

-6354,84

FeTiCr NM FM

En

erg

y (R

y)

Volume (a.u.3)

210 220 230 240 250 260 270 280 290

-7688,91

-7688,90

-7688,89

-7688,88

-7688,87

-7688,86

-7688,85

FeNiCr NM FM

En

erg

y (R

y)

Volume (a.u.3)260 270 280 290 300 310 320 330 340 350

-6850,928

-6850,920

-6850,912

-6850,904

-6850,896

-6850,888

-6850,880

NiTiCr NM FM

En

erg

y (R

y)

Volume (a.u.3)

Semi-Heusler alloys

Ground states from total energy calculations

• FeCoTi, CoTiCr, NiTiCr, and FeCoNi are predicted ferromagnetic.

• FeNiTi, FeNiCr, FeTiCr, and FeCoCr and are predicted antiferromagnetic.

• FeCoCr and FeNiCr are nonmagnetic.

Page 13: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

32III. Applications: iii) Ternary alloys

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

-120

-80

-40

0

40

80

120

160

Dn

Up

FeCoTi

DO

S (

stat

es/s

pin)

Energy (Ry)0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

-200

-160

-120

-80

-40

0

40

80

120

160

Dn

Up

FeNiTi

DO

S (

stat

es/s

pin)

Energy (Ry)0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

-200

-160

-120

-80

-40

0

40

80

120

160

200

Dn

Up

FeCoNi

DO

S (

stat

es/s

pin)

Energy (Ry)

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

-200

-160

-120

-80

-40

0

40

80

120

160

Dn

Up

FeCoCr

DO

S (

stat

es/s

pin)

Energy (Ry)

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

-200

-160

-120

-80

-40

0

40

80

120

160

Dn

Up

FeTiCr

DO

S (

sta

tes/

spin

)

Energy (Ry)0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

-200

-160

-120

-80

-40

0

40

80

120

160

Dn

Up

FeNiCr

DO

S (s

tate

s/sp

in)

Energy (Ry)

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9-200

-160

-120

-80

-40

0

40

80

120

160

Dn

Up

CoTiCr

DO

S (s

tate

s/sp

in)

Energy (Ry)

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

-200

-160

-120

-80

-40

0

40

80

120

160

200

Dn

Up

NiTiCr

DO

S (s

tate

s/sp

in)

Energy (Ry)

• All alloys are polarized except FeNiCr and CoTiCr.• FeCoTi, FeNiTi, and NiTiCr have a majority spin in a deep minimum right the Fermi level, leading to a pseudo-gap which is responsible for 100% electron polarization.

Semi-Heusler alloys

Total DOS

Page 14: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

33III. Applications: iii) Ternary alloys

• Stoichiometric composition X2YZ

• Electronic structure can range from metallic to semi-metallic or semiconducting behavior.

• Half-metallic ferromagnetism, in which the bandstructure for majority electrons is metallic while the bandstructure for minority electrons is insulating.

• Anomalous peak in the yield stress and high temperature strength and excellent oxidation and corrosion resistance.

Heusler alloys

Page 15: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

a (paramètre du reseau)

MX MAl MX’

Fe2AlTi nm 11.005fm 11.014 11.115a

-0.62

--0.01

--0.19

Co2AlTi nm 11.019fm 11.005

11.058b

-0.370.34b

--0.00

--0.05-0.05c

Ni2AlTi nm 11.136fm 11.136

10.926a

-+0.00

-+0.00

--0.00

Fe2AlCr nm 10.685fm 10.684

-0.08

-0.00

--1.04

Co2AlCr nm 10.758 fm 10.797 11.134b

-0.690.78b

--0.03

-1.611.60e

Ni2AlCr nm 10.841fm 10.960

-0.26

--0.03

-2.39

• All alloys are ferromagnetic, except Co2AlTi and Ni2AlTi (paramagnetic).

• Large magnetization in Cr alloys .

34III. Applications: iii) Ternary alloys

Heusler alloys

Page 16: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

Fe Co Ni

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

Ti Cr

a (A

ngös

trom

)

Element

Fe Co Ni140

160

180

200

220

240

Ti Cr

a (

An

stro

m)

Element

35III. Applications: iii) Ternary alloys

Heusler alloys

• Cr has induced a volume contraction although Z(Ti) < Z(Cr).

• This fact is due to changes in bonding.

• Cr has allso induced large bulk modulii except ofr Ni2AlCr (large magnitzation, hgh volume)

Lattice parameters and bulk modulii

Page 17: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

-0.6 -0.4 -0.2 0.0 0.2 0.4

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

Fe2AlTi

DO

S (

Sta

tes/

Spi

n)

E-EF (Ry)

-0.6 -0.4 -0.2 0.0 0.2 0.4

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

Fe2AlCr

DO

S (

Sta

tes/

Spi

n)

E-EF (Ry)

-0.6 -0.4 -0.2 0.0 0.2 0.4

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

Co2AlTi

DO

S (

Sta

tes/

Spi

n)

E-EF (Ry)

-0.6 -0.4 -0.2 0.0 0.2

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

Co2AlCr

DO

S (S

tate

s/S

pin)

E-EF (Ry)

-0.6 -0.4 -0.2 0.0 0.2 0.4

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

Ni2AlTi

DO

S (

Sta

tes/

Spi

n)

E-EF (Ry)

-0.6 -0.4 -0.2 0.0 0.2

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

Ni2AlCr

DO

S (

Sta

tes/

Spi

n)

E-EF (Ry)

• Cr has induced Fermi displacement to the right (anti-bonding states) with a prounounced half-metallicity character in Fe2AlCr and to the left in Co2AlCr and Ni2AlCr.

36III. Applications: iii) Ternary alloys

Heusler alloys

Total DOS

Page 18: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

i) Transition element family

ii) Binary systems

iii) Ternary systems

iv) Layered structures Clean V(001), Cr(001) and Fe (100) surfaces TM/5Cr(001) (TM = Ti, V, Cr, Mn, Fe, Co, Ni) Fe/Cr(001) systems

III. Applications

37

Page 19: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

38III. Applications: iv) Layered structures

The unit cell in film calculations.

Z

Interesting properties (GMR, MAE, high local moments …) when ferromagnetic and antiferromagnetic transition elements are layered.

Determination of interlayer exchange coupling (IEC).

Effect of magnetism in surface, interface, and superlattices phenomena

Ferromagnetic substrates are well studied: Cu(001), Ag(001), Au(001),

Fe(001), Co(001) …but not antiferromagnetic Cr !!!

Vacuum

Vacuum

Page 20: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

39III. Applications: iv) Layered structures

Surface magnetism in the (001) direction: nonmagnetic V, antiferromagnetic Cr, and ferromagnetic Fe. 5-layers of V(001), Fe(001) and Cr(001) in repeated slab structure.

Magnetism occurs in V and is enhanced in Cr and Fe (001) surfaces because of the lying bonds (coordination number).

Clean V(001), Cr(001), and Fe(001) surfaces

M1 M2 M3

V(001) -0.17 -0.08 0.67

Fe(001) 2.53 2.42 3.02

Cr(001) 1.21 -1.56 2.62

M3 (Surface)

M2 (Sub-surface)

M1 (Central)Z=0

M3

BULK

0.00

2.26

± 0.77

Page 21: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

40III. Applications: iv) Layered structures

Several theoretical and experimental studies were devoted to the surface properties of the magnetic 3d transition metal grown on noble metal (Cu, Ag, and Au) and ferromagnetic (Fe, Co, and Ni) but not Cr(001).

Study of total and surface energies of Cr(001) films, magnetic, and electronic properties of 3d transition-metal (Ti, V, Cr, Mn, Fe, Co, Ni) monolayer on Cr(001), with two opposite spin orientations leading to ferromagnetic and antiferromagnetic configurations.

TM on 5-Cr(001) layers (TM = Ti, V, Cr, Mn, Fe, Co, Ni)

(a) 3-Cr(001) (b) 5-Cr(001) (c) TM/5-Cr(001)

Cr(3)

Cr(1)

TM

Cr(2)

Page 22: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

41III. Applications: iv) Layered structures

Difference in total energy

TM on 5-Cr(001) layers (TM = Ti, V, Cr, Mn, Fe, Co, Ni)

Ti V Cr Mn Fe Co Ni-2

-1

0

1

2

14.1

14.4

14.7

15.0

Antiferromagnetic

Ferromagnetic

E=E

FM-E

AF

M (

mR

y/a

tom

)

Element

Cr (S)

Ti, V, Cr

ferromagnetic coupled

TM Fe, Co, and Ni antiferromagnetic

coupled

Nothing about Mn (ferrimagnetic coupled ???!)

Page 23: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

42III. Applications: iv) Layered structures

TM on 5-Cr(001) layers (TM = Ti, V, Cr, Mn, Fe, Co, Ni)

Ti V Cr Mn Fe Co Ni

-3

-2

-1

0

1

2

3 FM AFM

MT

M ( B

)

Element

Ti V Cr Mn Fe Co Ni-3

-2

-1

0

1

2

3 FM AFM

M ( B

)

Element

Transition metal and total magnetic moment

TM’ s magnetic moment increases from Ti to Mn and decrease from Mn to Ni, in both ferromagnetic and antiferromagnetic configurations.

Mn deposition induces the highest value, followed by Fe, Co, and Ni.

Total magnetic moment has the same behavior as TM magnetic moment.

Page 24: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

43III. Applications: iv) Layered structures

TM on 5-Cr(001) layers (TM = Ti, V, Cr, Mn, Fe, Co, Ni)

Spin Density Waves in Cr thin films

Cr4 Cr3 Cr2 Cr1 Cr2 Cr3 Cr4-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

M (

)

Layer

The periodic nature the oscillations in 7-Cr(001) is strongly related to the itinerant linear Spin-Density Waves (observed in Cr multilayers, bulk Cr and its alloys.

Cr thin films need SDW to have antiferromagnetic ground state.

Page 25: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

44III. Applications: iv) Layered structures

Several theoretical and experimental studies were devoted to the surface properties of the magnetic 3d transition metal grown on noble metal (Cu, Ag, and Au) and ferromagnetic (Fe, Co, and Ni) but not Cr(001).

Study of total and surface energies of Cr(001) films, magnetic, and electronic properties of 3d transition-metal (Ti, V, Cr, Mn, Fe, Co, Ni) monolayer on Cr(001), with two opposite spin orientations leading to ferromagnetic and antiferromagnetic configurations.

TM on 5-Cr(001) layers (TM = Ti, V, Cr, Mn, Fe, Co, Ni)

(a) 3-Cr(001) (b) 5-Cr(001) (c) TM/5-Cr(001)

Cr(3)

Cr(1)

TM

Cr(2)

Page 26: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

45III. Applications: iv) Layered structures

Study of the diffusion, the surface alloy formation, and the magnetic properties in Fe/Cr(001) systems and magnetic properties of Fen/Crn(001) superlattices.

Fe/Cr multilayer exhibit interlayer exchange coupling (IEC), giant magneto-resistance (GMR), …etc.

Experimental results, obtained by similar techniques, often contradict each another and theoretical calculations also demonstrated a very complex behavior and solutions with close energies.

Fe/Cr(001) systems

Fig. 5.24 Upper half-slab of the unit cell in: (a) 4Cr(001), (b) 1Fe/3Cr(001), (c) 2Fe/2Cr(001), (d) Fe50Cr50/3Cr(001), and (e) 1Fe/Fe50Cr50/2Cr(001). The first layer (I) corresponds to central layers.

Cr

(c) 2Fe/2Cr(001)

I-3I-2I-1

I

(a) 4Cr(001) (b) 1Fe/3Cr(001)

Fe

(e) 1Fe/Fe50Cr50/2Cr(001)(d) Fe50Cr50/3Cr(001)

Page 27: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

46III. Applications: iv) Layered structures

Fe/Cr(001) systems

Total energies and total and partial magnetic moments

Ef (Ry/atom) M1 (B) M2 (B) M3 (B) M4 (B) M (B)

Bulk Fe - +2.32 - - - +2.25

Bulk Cr - +0.77 -0.77 - - +0.00

2Cr(001) ++ +-

79.0779.09

-1.82+1.84

+2.84-2.82

--

--

+4.52-4.56

3Cr(001) +++ +-+

47.2247.24

+1.15+1.17

-1.54-1.53

+2.64+2.62

--

+2.94+3.94

1Fe/2Cr ++/+ +-/+ ++/- +-/-

43.6142.7843.0543.07

+0.28+0.85-0.65-0.47

+0.31-0.81+0.54+0.54

+2.54+2.51-2.52-2.60

----

+6.19+4.45-4.14-4.67

1Fe/3Cr +-+/+ +-+/-

29.4629.72

-1.07+0.83

+1.05-0.84

-0.94+0.80

+2.55-2.52

+4.39-4.56

2Fe/2Cr +-/++ +-/+- +-/-+ +-/--

24.6237.3537.8624.69

+0.62+0.67-0.35-0.18

-0.74-0.53+0.16+0.27

+2.03+1.68-1.51-1.98

+2.95-2.75+2.77-2.96

+9.06-2.91+2.81-9.05

)( bulkCrCr

bulkFeFeStructf EnEnEE

Page 28: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

47III. Applications: iv) Layered structures

Fe/Cr(001) systems

Bilayer formation against the monolayer formation

)(2

1)001(4)001(2/2)001(3/1 CrCrFeCrFeMB EEEE

This energy is positive (+0.54 mRy/unit cell) in the ferromagnetic

state and negative (-8.10 mRy/atom) in the nonmagnetic state.

This means that magnetic moments allow BL formation (2Fe/2Cr(001)), whereas nonmagnetic state favors ML formation (1Fe/3Cr(001)).

This result contradicts the description which was discussed for Cr (ML) on Fe(001) substrate, where ML formation is preferred for the ferromagnetic configuration.

Page 29: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

48III. Applications: iv) Layered structures

Fe/Cr(001) systems

Diffusion and surface alloy formation against phase separation

))1(( UNCCOValloySA ExxEEE Ef (Ry/atom) M (B)

1Fe/3Cr nm fm

39.3629.46

-+4.39

1Cr/1Fe/2Cr nm fm

51.4537.36

-+7.96

2Cr/1Fe/1Cr nm fm

51.9241.11

-+0.19

ESA

(mRy/atom)

M (B)

Fe50Cr50/3Cr(001)

nm fm

-1.30+3.80

-+5.39

1Fe/Fe50Cr50/2Cr(001)

nm fm

-0.11+2.51

-+14.38

Fe do not diffuse to Cr bulk layers.

No magnetism favors phase separation or clustering, whereas magnetism favors formation of Fe50Cr50/3Cr(001) followed by Fe/Fe50Cr50/3Cr(001) ordered surface alloys (confirmed in recent experimental study).

Page 30: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

50III. Applications: iv) Layered structures

Fe/Cr(001) systems

Fen/Crn(001) superlattices

1 2 3 4 5

0,0

1,5

3,0

4,5

6,0

7,5

9,0

n

M (

)

M

-5

0

5

10

15

E

(mR

y/atom)

E

The formation energy is stabilized after n = 4.

The total magnetic moment is growing with the number of Fe and Cr layers.

Total energies favor the following spin alignments: +/+, ++/--, +++/+-+, ++++/-+-+, +++++/-+-+-.

Page 31: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

V. Conclusion

We have given additional results to structural, electronic, and magnetic properties the selected transition materials (Ti, V, Cr, Mn, Fe, Co, and Ni) and their related systems; binary alloys, ternary alloys in Half-Heusler and Heusler structures, thin films and superlattices.

We have shown the importance of d-states in the ground state properties in these systems.

We have also studied the equilibrium parameters and the stability mechanism from the different formation energies and from the position of the Fermi level in the density of states.

The new form of the GGA approximation is adequate for transition metals and their related alloys.

The obtained structural properties are in good agreement with experimental data and more efficient than LDA ones.

51

Page 32: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

In the binary systems XTi and XCr (X=Fe, Co, Ni), effects of magnetism is studied and related to the structural and electronic structures.

The martensitic transformation (MT) phenomena of NiTi have been studied and optimized lattice parameters for B19’ were given.

The different roles of d-states were highlighted and are totally responsible for unexpected and controversial behaviors.

52V Conclusion

Binary alloys

Page 33: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

Structural parameters, formation energies, magnetic moments, and electronic properties of XYZ Half-heusler and X2AlX’ Heusler alloys (X=Fe, Co, Ni; X’=Ti, Cr) were presented.

The obtained results of lattice parameters and local magnetic moments agree very well with the experimental results.

Cr sites carry large magnetic moments and the moments at the X sites are usually small, when compared to Ti substitution.

All the densities of states are marked by a pseudogap left the Fermi level, except for Fe2AlTi where the pseudogap is right EF.

Among the selected materials, the Fe2AlCr and Co2AlCr alloys present a pronounced half-metallicity character.

53

Ternary alloys V Conclusion

Page 34: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

The existence of itinerant linear Spin-Density Wave (SDW) is responsible for antiferromagnetic coupling between two adjacent Cr layers in Cr(001).

Mn overlayer induces the highest magnetic moments and relies between two opposite spin alignments in TM/Cr(001). Ferrimagnetic (FI) coupling can occur. Further investigations within the c(2x2) unit cell are necessary.

Ti, V, and Cr overlayers are antiferromagnetically coupled to the Cr sub-surface layer; Mn, Fe, Co and Ni are ferromagnetically coupled.

Fe layers are always antiferromagnetically coupled to Cr layers in Fe/Cr systems.

Fe atoms prefer to be deposited as an overlayer rather than being diffused in the Cr layers with formation of an ordered surface alloy.

Magnetism is responsible for the BL formation and ordered surface alloying in Fe/Cr (GMR, Colossal RM)

54

Layered structures V Conclusion

Page 35: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

Related Publications

Page 36: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

Related Publications

Page 37: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

Related Publications

Page 38: Spintronics A. Kellou and H. Aourag Metallic Thin Films Revisited: Fe, Co, Ni Multilayers

Related Publications