spin- topological superconductivity beyond triplet pairingnon-degenerate fs so coupling inversion...

38
Spin- topological superconductivity beyond triplet pairing Congjun Wu University of California, San Diego July 6, WHU Summer School + βˆ’ x y z

Upload: others

Post on 09-Nov-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Spin-πŸ‘

𝟐topological superconductivity

beyond triplet pairing

Congjun Wu

University of California, San Diego

July 6, WHU Summer School

𝒑 + π’Šπ’” 𝒑 βˆ’ π’Šπ’”x

yz

Page 2: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Wang Yang (UCSD UBC)

Da Wang (Nanjin Univ. UCSD Nanjing Univ)

Yi Li (UCSD Princeton Johns Hopkins)

Tao Xiang (IOP, Chinese Academy of Sciences)

2

Collaborators:

Supported by NSF, AFOSR

Reference

1. W. Yang, Chao Xu, CW, arXiv:1711.05241.

2. W. Yang, Tao Xiang, and CW, Phys. Rev. B 96, 144514 (2017).

3. W. Yang, Yi Li, CW, Phys. Rev. Lett. 117, 075301(2016).

4. Y Li, D. Wang, CW, New J. Phys. 15 085002 (2013)

5. D Wang, Zhou-Shen Huang, CW, PRB 89, 174510 (2014)

Page 3: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Novel unconventional superconductivity

β€œBoundary of boundary” Majorana fermion without

spin-orbit coupling

Spin-3/2 half-Heusler SC – beyond triplet pairing

Majorana flat-band and

spontaneous TR symm. breaking

septet

Page 4: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

A. J. Leggett, Rev. Mod. Phys 47, 331 (1975)

L=1, S=1, J=L+S=0

β€’ Topological: DIII class (time-reversal invariant)

𝑑

𝑆 𝑑 βˆ™ 𝑆 = 0 B

)(Λ† kd

Ξ”

β€’ Unconventional but isotropic spin-orbit coupled gap function

β€’ Is 3He-B alone?

New opportunities in multi-component

fermion systems!

The distinction of the 3He-B phase

𝑑 π‘˜ = π‘˜

Page 5: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

β€’ Cold atom: alkali/alkaline-earth fermions

4-component fermion systems: beyond triplet

Kim, Hyunsoo, et al., Science Advances Vol. 4, eaao4513 (2018).

β€’ Hole-doped semiconductors:

CW, J. P. Hu, and S. C. Zhang. PRL 91 186402 (2003).CW, Mod. Phys. Lett, (2006).CW J. P. Hu, and S. C. Zhang. Int. J. Mod. Phys. B 24 311 (2010)

β€’ Spin πŸ‘

𝟐: Quintet and Septet pairings

beyond singlet and triplet.

septet

Wang Yang, Yi Li, CW, PRL 117, 075301 (2016).W. Yang, Tao Xiang, and CW, PRB 96, 144514 (2017).

β€’ Experiment: nodal superconductivity in half-Heusler compound YPtBi.

Page 6: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

S-wave quintet pairing – Non-Abeliean statistics

CW, Mod. Phys. Lett. (2006)

CW, J. P. Hu, and S. C. Zhang. Int. J. Mod. Phys. B 24 311 (2010)

β€’ Half-quantum vortex (HQV) loop (Alice String) – the SO(4) Cheshire charge.

β€’ Non-Abeliean phase: particle penetrating HQV loop.

|3/2

| 0

|1

|1/2 |βˆ’1/2

|2

| 𝑆𝑧

Page 7: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Isotropic pairings beyond singlet and triplet

d-vector d-tensor

Spherical harmonics

β€’ Isotropic pairings:

s-wave + singlet

p-wave + triplet

d-wave + quintet

f-wave + septet

𝐽 = 𝐿 + 𝑆 = 0

Spin tensors (spin, quadrupole, octupole)

β€’ Pairing Hamiltonian.

Δ𝐿,𝛼𝛽 π‘˜ = Δ𝐿 𝜈=βˆ’πΏπΏ βˆ’ πœˆπ‘ŒπΏ,βˆ’πœˆ

π‘˜ π‘†πΏπœˆπ‘…

Wang Yang, Yi Li, CW, PRL 117, 075301 (2016).

β€’ Odd-parity pairing

states are topo. nontrivial.

Page 8: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Pictorial Rep.– spin structure of the gap function

septet

|30 β†’ Ξ”3

2

βˆ’ Ξ”1

2

+ Ξ”βˆ’

1

2

βˆ’ Ξ”βˆ’

3

2

β€’ Helical basis: 𝜎 β‹… π‘˜|π‘˜π›ΌβŸ© = 𝛼|π‘˜π›ΌβŸ©

Δ𝛼 π‘˜ : βŸ¨π›Ό+ π‘˜ 𝛼+(βˆ’π‘˜) βŸ©β€’ Intra-helical FS pairings (different phase patterns):

(𝛼 = Β±3

2, Β±

1

2)

Topo. index

# =3-1=2

triplet

|𝑆𝑆𝑧 = |10⟩ β†’ Ξ”3

2

+ Ξ”1

2

βˆ’ Ξ”βˆ’

1

2

βˆ’ Ξ”βˆ’

3

2

High topo.

index # =3+1=4,

distinct from 3He-B

Page 9: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Boundary Majorana modes (f-wave septet)

Bulk Vacuum

β€’ Zero modes (π‘˜2𝐷 = 0) as chiral eigenstates.

π‘ͺ𝒄𝒉 is a symmetry only for zero modes

Chiral operator π‘ͺ𝒄𝒉 = π’Šπ‘ͺ𝒑π‘ͺ𝑻;

𝜈 = +, βˆ’, +, βˆ’, for 𝛼 =3

2,1

2, βˆ’

1

2, βˆ’

3

2.

β€’ k.p theory: linear Majorana-Dirac cones.

032, +

012, βˆ’

0βˆ’

12, +

0βˆ’

32, βˆ’

πΆπ‘β„Ž π‘˜π›Ό2𝐷 = 0𝛼 , 𝜈 = 𝜈 |0𝛼 , 𝜈 ⟩

States with opposite chiral indices couple

Page 10: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

β€’ A linear and a cubic Majorana-Dirac

cones.

p-wave boundary Andreev-Majorana modes

β€’

π»π‘šπ‘–π‘‘π‘

(π‘˜||) =βˆ†π‘

π‘˜πΉ

00

00

π‘π‘˜+2

𝑂(π‘˜+3)

π‘–π‘˜+

π‘π‘˜+2

π‘π‘˜βˆ’2

βˆ’π‘–π‘˜βˆ’

𝑂(π‘˜βˆ’3)

π‘π‘˜βˆ’2

00

00

1st order π‘˜ β‹… 𝑝 theory

π‘˜2𝐷 = 032, +

012, +

0βˆ’

12, βˆ’

0βˆ’

32, βˆ’

β€’ Zero modes (π‘˜2𝐷 = 0) with chiral indices

Page 11: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

β€’ Band inversion

𝑠1/2, π’‘πŸ‘/𝟐

Spin-3/2 systems: YPtBi half-Huesler semi-metal

β€’ Low carrier density β†’ semimetal

h. h. l. h.

𝑛 β‰ˆ 2 Γ— 1018π‘π‘šβˆ’3, π‘˜πΉ~1

10

1

π‘Ž

non-degenerate FS

SO coupling

Inversion symmetry broken

π’‘πŸ‘/𝟐

π’”πŸ/𝟐

β€’ Non-centrosymmetric: 𝑇𝑑 symmetry

β€’ Linear 𝑇-dependence of penetration depth β†’ Nodal lines

Kim, Hyunsoo, et al., Science Advances Vol. 4, eaao4513 (2018).

Page 12: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

𝐻𝐿 π‘˜ = Ξ»1 +5

2Ξ»2 π‘˜2 βˆ’ 2Ξ»2 π‘˜ βˆ™ 𝑆

2

𝐴 π‘˜ = kx𝑇π‘₯ + ky𝑇𝑦 + kz𝑇𝑧

Band Hamiltonian of YPtBi

β€’ Luttinger-Kohn for the hole band (Ξ“8: 𝑝3/2)

β€’ Non-centrosymmetric 𝑇𝑑 invariant

𝑇π‘₯ = SySxSy βˆ’ SzSxSz

𝑇𝑦 = SzSySz βˆ’ SxSySπ‘₯

𝑇𝑧 = SxSzSx βˆ’ SySzSy

π‘˜π‘₯

π‘˜π‘¦

π‘˜π‘§

𝑇2 rep. of 𝑇𝑑

Inversion βœ–Time reversal βœ”π‘‡π‘‘ group βœ”

β€’ Non-degenerate FS

π»π‘π‘Žπ‘›π‘‘ π‘˜ = 𝐻𝐿 π‘˜ + 𝐴 π‘˜

‑ P. M. R. Brydon, L. Wang, W. Weinert, D. F. Agterberg, Phys. Rev. Lett. 116 177001 (2016)

Page 13: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Pairing symmetries in speculations

Nodal rings in gap function for βˆ†π‘ 

βˆ†π‘= 0.3 and 0.7

β€’ One possibility: 𝑠-wave singlet + 𝑝-wave septet

𝛼,𝛽

π‘π‘˜π›Όβ€  [(βˆ†π’” + βˆ†π’‘π‘¨ π’Œ )𝑅]π›Όπ›½π‘βˆ’π‘˜π›½

†

Pairing within the same spin-split Fermi surface

Nodal rings around 001 , etc

‑ P. M. R. Brydon, L. Wang, W. Weinert, D. F. Agterberg,Phys Rev Lett 116 177001 (2016)

𝐴 π‘˜ = π‘˜π‘₯𝑇π‘₯ + π‘˜π‘¦π‘‡π‘¦ + π‘˜π‘§π‘‡π‘§

D. Agterberg, P. A. Lee, Liang Fu, Chaoxing Liu, I. Herbut, …….

β€’ Phase sensitive test?

Page 14: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Previous example (YBCO): zero-energy boundary modes

[11] boundary:𝜟 π’Œπ’Šπ’ = βˆ’πœŸ π’Œπ’π’–π’•

++βˆ’

βˆ’

[10] boundary:𝜟 π’Œπ’Šπ’ = 𝜟 π’Œπ’π’–π’•

C.-R. Hu, Phys. Rev. Lett. 72, 1526 (1994)

L. H. Greene, et al, PRL 89, 177001 (2002)

π‘˜π‘–π‘›

π‘˜π‘œπ‘’π‘‘

π‘˜π‘–π‘›

π‘˜π‘œπ‘’π‘‘

++βˆ’

βˆ’

Page 15: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

β€’ Surface Brilliouin zone:

Topo-index distribution in

[111]-surface for βˆ†π‘ 

βˆ†π‘= 0.3

A. P. Schnyder, P. M. R. Brydon, and C. Timm. PRB 85.2 (2012): 024522.

(π‘˜π‘₯2𝐷 , π‘˜π‘¦

2𝐷) inside a loop non-trivial topo index ±1

β€’ Loops: projection of the gap nodal rings.

Topo-index for nodal-ring superconductors

Each (π‘˜π‘₯2𝐷 , π‘˜π‘¦

2𝐷) a 1D superconductor

Page 16: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Majorana flat bands on the 111 -surface

e

e

e

o

o

o

𝟎

𝟐e

e

e

o

o

o

𝟏

πŸ‘

β€’ Chiral index (πΆπ‘β„Ž = 𝑖𝑇𝑃𝐻) for Majorana surface modes

a symmetry for zero modes (even, odd)

Non-magnetic impurity: odd under πΆπ‘β„Ž 1,3 βœ”; 0,2 βœ–

Magnetic impurity: even under πΆπ‘β„Ž 1,3 βœ–; 0,2 βœ”

β€’ Selection rules:

Bright regions: Majorana zero modes

Page 17: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

STM: quasi-particle interference (QPI) pattern

Ξ”πœŒπ‘ π‘“ πœ”, π‘Ÿ

β€’ Joint density of states of impurity scattering

Ξ”πœŒπ‘ π‘“ πœ”, π‘žFourier transform

β€’ Non-magnetic impurity on (111)-surface:

𝟏

πŸ‘

𝟏

πŸ‘

𝑹𝒆(βˆ†π†π’”π’‡ 𝝎 = 𝟎, 𝒒βˆ₯ ) π‘°π’Ž(βˆ†π†π’”π’‡ 𝝎 = 𝟎, 𝒒βˆ₯ )

Page 18: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Novel unconventional superconductivity

β€œBoundary of boundary” Majorana fermion without

spin-orbit coupling

Spin-3/2 half-Heusler SC – beyond triplet pairing

Majorana flat-band and

spontaneous TR symm. breaking

𝒑 + π’Šπ’” 𝒑 βˆ’ π’Šπ’”

Page 19: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Majorana modes on surfaces of 𝒑 Β± π’Šπ’” SC

β€œBoundary of boundary” method,

Surfaces spontaneously magnetized

β€’ Strategy one:

1) Single out one Fermi surface in the normal state by spin-orbit coupling.

2) Majorana fermion appears at boundary, or topo-defect (e.g. vortex core)

β€’ New strategy -- two-component Fermi surfaces without spin-orbit coupling

Mixed singlet-triplet pairing 𝒑 + π’Šπ’” 𝒑 βˆ’ π’Šπ’”

Page 20: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Spontaneous time-reversal symmetry breaking

β€’ Ginzburg-Landau analysis:

β€’ Pairing breaking time-reversal symmetry!

C. Wu and J. E. Hirsch, PRB 81, 20508 (2010).

20

𝐹 = 𝛼 βˆ†π‘‘2 βˆ’ 𝛽 βˆ†π‘ 

2 + 𝛾1 βˆ†π‘‘2 βˆ†π‘ 

2 + 𝛾2(Ξ”π‘‘βˆ— βˆ†π‘‘

βˆ—βˆ†π‘ βˆ†π‘  + 𝑐. 𝑐. )

𝛾2>0 πœ‘π‘  βˆ’ πœ‘π‘‘= Β±πœ‹

2

βˆ†π‘‘ + π‘–βˆ†π‘  (βˆ†π‘‘ + π‘–βˆ†π‘ )| π‘˜β†‘, βˆ’π‘˜β†“ + (βˆ†π‘‘ βˆ’ π‘–βˆ†π‘ ) π‘˜β†“, βˆ’ π‘˜β†‘

Equal in magnitude, opposite in phase.

Invariant under combined parity-time reversal (PT) transf.

βˆ†πΉ = 2𝛾2 Δ𝑠2 Δ𝑝

2cos 2(πœ‘π‘  βˆ’ πœ‘π‘‘)

Page 21: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Gapped edge modes of 1D 𝑝𝑧 Β± 𝑖 𝑠

𝐻1𝐷 = (βˆ’β„2πœ•π‘§

2

2π‘šβˆ’πœ‡(𝑧))Iβ¨‚πœπ‘§ βˆ’

Δ𝑝

π‘˜πΉπ‘–

𝑑

π‘‘π‘§πœŽπ‘§(π‘–πœŽπ‘¦)β¨‚πœπ‘₯ βˆ’ Ξ”π‘ πœŽπ‘¦β¨‚πœπ‘₯

β€’ 𝑠-wave pairing: βˆ†π‘ πΆπ‘β„Ž.

Zero modes ±Δ𝑠 remain eigenstates

β€’ Magnetized edges reduced

degrees of freedom

β€’ Opposite edges are magnetized

oppositely related by PT symmetry.

π’‘π’›πˆπ’› + π’Šπ’”

𝐢=-1

Page 22: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Majorana zero mode at the magnetic domain

β€’ Chiral operator πΆπ‘β„Ž = βˆ’πœŽπ‘§β¨‚πœπ‘₯

𝐻2𝐷 = βˆ’β„2 πœ•π‘¦

2+πœ•π‘§2

2π‘šβˆ’ πœ‡ 𝑧 Iβ¨‚πœπ‘§ βˆ’

Δ𝑝

π‘˜πΉπ‘–(π‘–πœ•π‘¦πΌβ¨‚πœπ‘¦ βˆ’ πœ•π‘§πœŽπ‘₯β¨‚πœπ‘₯) βˆ’Ξ”π‘  𝑦 πœŽπ‘¦β¨‚πœπ‘₯

πΆπ‘β„Ž, 𝐻 = 0

β€’ Symmetry: reflection + gauge

𝑅𝑦 = 𝐺𝑀𝑦

𝑀𝑦: 𝑦 β†’ βˆ’π‘¦, π‘–πœŽπ‘¦β¨‚πœ0,

β€’ Majorana-mode at the magnetic domain: πΆπ‘β„Ž and 𝑅𝑦 common

eigenstates. 𝑦

𝑧

𝐺: π‘–πœŽ0β¨‚πœπ‘§

π’‘π’šπˆπ’š + π’‘π’›πˆπ’› βˆ’ π’Šπ’”π’‘π’šπˆπ’š + π’‘π’›πˆπ’› + π’Šπ’”

Page 23: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

𝒑 β‹… 𝝈 + π’Š 𝒔

Ψ↓

Ψ↑ = Ψ↓+

β€’ Zero mode: chiral and spin locking: 𝐢 = πœŽπ‘¦β¨‚πœπ‘₯ , 𝑆𝑧: πœŽπ‘§ β¨‚πœπ‘§.

β€’ 3𝐻𝑒-B: TR invariant: gapless Majorana-Dirac cone.

β€’ Mass by mixing Δ𝑠 𝐻𝑠 = πœŽπ‘¦β¨‚πœπ‘₯ = 𝐢Δ𝑠

𝐢=1, 𝑆𝑧=↑ 𝐢=-1, 𝑆𝑧= ↓

Ψ↓ =

0

π‘’βˆ’π‘–πœ‹4

π‘’π‘–πœ‹4

0

𝑒0(𝑧)Ψ↑ =

π‘’βˆ’π‘–πœ‹4

00

π‘’π‘–πœ‹4

𝑒0(𝑧)

Surface states of 3𝐻𝑒-B phase and 𝑝 β‹… 𝜎 + 𝑖𝑠

𝐻𝑝±𝑖𝑠 =Δ𝑑

π‘˜π‘“π‘˜π‘₯πœŽπ‘¦ βˆ’ π‘˜π‘¦πœŽπ‘₯ Β± Ξ”π‘ πœŽπ‘§

β€’ Massive Dirac cone and surface magnetization:

3𝐻𝑒-B

π‘˜π‘₯

π‘˜π‘¦

π‘˜2𝐷 = 0

Page 24: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Chiral Majorana modes along the 𝑝 β‹… 𝜎 Β± 𝑖𝑠 boundary

β€’ Mass (surface) changes sign across the domain.

β€’ Propagating 1D chiral Majorana mode.

β€’ Chiral operator 𝐢′: 𝐢′ = 𝐺𝑅π‘₯π‘‡π‘ƒβ„Ž β‡’ 𝐢′, 𝐻 = 0,

𝑅π‘₯ is reflection: π‘–πœŽπ‘₯β¨‚πœπ‘§, π‘₯ β†’ βˆ’π‘₯ ,

G is transformation 𝑐† β†’ 𝑖𝑐†.

Ξ¨(π‘˜π‘₯ = 0) =

1βˆ’π‘–1𝑖

𝑒0(𝑧, 𝑦) 𝐢′ = βˆ’1,𝑅𝑦 = βˆ’1

Ξ¨(π‘˜π‘₯ = 0) =

𝑖1βˆ’π‘–1

𝑒0(𝑧, 𝑦)𝐢′ = 1,

𝑅𝑦 = βˆ’1

β€’ Symmetry: 𝑅𝑦

𝒑 βˆ™ 𝝈 + π’Šπ’”

m>0m<0

𝒑 βˆ™ 𝝈 βˆ’ π’Šπ’”

𝜎

Page 25: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Drag and control by magnetic field

𝒑 βˆ™ 𝝈 βˆ’ π’Šπ’” 𝒑 βˆ™ 𝝈 + π’Šπ’”

Page 26: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Novel unconventional superconductivity

β€œBoundary of boundary” Majorana fermion without

spin-orbit coupling

Spin-3/2 half-Heusler SC – beyond triplet pairing

Majorana flat-band and

spontaneous TR symm. breaking

𝒑 + π’Šπ’” 𝒑 βˆ’ π’Šπ’”

x

y

z

Page 27: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Majorana edge modes in quasi-1D Toposuperconductors

Andreev Bound States

β†’ 1D or 2D Majorana fermions lattices.

Dispersionless in kx and ky

Kitaev, 2000; Tewari, et al, 2007;Alicea, et al, 2010;etc ...

Andreev bound states localized at ends z0 with energy zero.

x

y

z

Yi Li, Da Wang, Congjun Wu, New J. Phys

15, 085002(2013)

Page 28: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

mJ

Majorana Josephson coupling between chains

)2

sin( 221

iJH mt

J

L>>ΞΎ

mJ

)2

'cos( 2

21

iJH mt

L>>ΞΎ

J

2

L>>ΞΎ

z

[Kitaev, 2000; Yakovenko et al, 2004;Fu and Kane, 2009; Xu and Fu, 2010]

22 '

Yi Li, Da Wang, Congjun Wu, New J. Phys

15, 085002(2013)

Page 29: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Superconducting phase – Majorana fermion coupling

jiji

jim

jijit iJJH

,,

)2

sin()cos(

β€’ Possibility (I): Uniform phase, time-reversal symm. maintained.

Majorana edge modes decouple – flat edge-bands.

β€’ Possibility (II): Spontaneous time-reversal symm. breaking.

Majorana modes coupled and develop dispersion – lowering energy.

But density of states diverges intrinsic instability!!

Page 30: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Self-consistent calculation – spinless fermion

β€’ Current distribution – non-quantized vortex-antivortex

β€’ Superfluid phase distribution

z

y

𝐻 = βˆ’

𝑖

(𝑑𝑧𝑐𝑖+𝑐𝑖+𝑧 + 𝑑𝑦𝑐𝑖

+𝑐𝑖+𝑦 + β„Ž. 𝑐. ) βˆ’ πœ‡π‘π‘–+𝑐𝑖 βˆ’ 𝑉

𝑖

Δ𝑖,π‘–π‘§βˆ— 𝑐𝑖+𝑧 𝑐𝑖 + β„Ž. 𝑐.

+𝑉

𝑖

Δ𝑖,𝑖+π‘§βˆ— βˆ†π‘–,𝑖+𝑧

Page 31: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Local Density of States (LDOS)

2

1 4

1

Non-interacting result

Interaction treated at self-consistent mean-field level

z

y

Page 32: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Summary

β€’ Beyond triplet

Septet topo-SC from spin-3/2 electrons

Application to YPtBi

β€’ β€œBoundary of boundary”

Majorana zero/chiral modes without spin-orbit coupling

𝒑 βˆ™ 𝝈 + π’Šπ’”

m>0 m<0

𝒑 βˆ™ 𝝈 βˆ’ π’Šπ’”

𝟏

πŸ‘

β€’ Majorana flat-band and spontaneous TR symm. breaking

x

yz

Page 33: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Back up!

Page 34: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Drag and control by magnetic field

𝒑 βˆ™ 𝝈 βˆ’ π’Šπ’” 𝒑 βˆ™ 𝝈 + π’Šπ’”

Page 35: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Bulk topological index

𝑆20 = 𝑆30 =

spin

(p-wave triplet)quadrupole

(d-wave quintet)

octupole

(f-wave septet)

β€’ Winding number expressed in helicity basis: πœ‹3 π‘†π‘ˆ 4 = β„€

3

2+

1

2βˆ’

1

2(βˆ’) βˆ’

3

2(βˆ’)

𝑁𝑀 = 4

3

2+

1

2(βˆ’) βˆ’

1

2(-) βˆ’

3

2(+)

𝑁𝑀 = 0

3

2+

1

2(βˆ’) βˆ’

1

2(+) βˆ’

3

2(βˆ’)

𝑁𝑀 = 2

β€’ Pairing spin structure for π‘˜// 𝑧

Page 36: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Mixed triplet and singlet superconductivity

C. Wu and J. E. Hirsch, PRB 81, 20508 (2010).

β€’ Ultra-cold fermionic dipolar molecular

CuxBi2Se3, Sn1βˆ’xInxTe

Sasaki, et. al., PRL 107, 217001 (2011); Sasaki, et. al., PRL 109, 217004 (2012).

Solid systems:

k

k

k

kk

kk

k

)}()({2

1);( kkVkkVkkV

dplrdplrtr

set π‘˜β€² β†’ π‘˜

36

zkk Λ†)(

zkk Λ†//)(

3

8)(,

3

4)(

22 dkkV

dkkV

dplrdplr

0);( kkVtr

set π‘˜β€² β†’ βˆ’π‘˜ 0);( kkVtr

kktrkkV

coscos~);(

β€’ Dominant p-wave component

Page 37: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Magnetoelectric Effect

β€’ Spatial variation of 𝑉, Δ𝑠, Δ𝑝 induce magnetization

β€’ Ginzburg-Landau free energy:

β€’ Surface: sudden change of potential.

Δ𝐹(3) =2

3π·πœ–πΉβˆ« 𝑑3 π‘Ÿ β„Ž β‹… πΌπ‘š[βˆ’ 𝛻Δ𝑠 Ξ”p

βˆ— + Ξ”π‘ π›»Ξ”π‘βˆ— ]

Δ𝐹(4) = 𝐷∫ 𝑑3 π‘Ÿ β„Ž β‹… πΌπ‘š[ 𝛻𝑉 Ξ”sΞ”π‘βˆ— βˆ’ 𝑉 𝛻Δ𝑠 Ξ”p

βˆ— + π‘‰Ξ”π‘ π›»Ξ”π‘βˆ— ]

(𝐷 = 𝑁𝐹

1

π‘˜πΉ

7𝜁 3

8πœ‹ 2

1

𝑇𝑐2)

π‘€πœ‡ = βˆ’πœ•πΉ

πœ•β„Žπœ‡= π·πΌπ‘š Δ𝑠Δ𝑝

βˆ— 𝛻𝑉 for uniform Δ𝑠, Δ𝑝

Page 38: Spin- topological superconductivity beyond triplet pairingnon-degenerate FS SO coupling Inversion symmetry broken / / β€’ Non-centrosymmetric: symmetry β€’ Linear -dependence of penetration

Topology In Nodal Systems

Deform

β€’ Topo num for surface momenta: Trivial: enclosing nodal line even timesNon-trivial: enclosing nodal line odd times

a) b)

Topo num distribution in [111]-surface for a) βˆ†π‘ 

βˆ†π‘= 0.3 b)

βˆ†π‘ 

βˆ†π‘= 0.7

β€’ Topo # for a path 𝐿 in π‘˜-space:(TR and particle-hole sym)

π»π‘˜

π·π‘˜

†

π·π‘˜

π‘„π‘˜

†

π‘„π‘˜

BlockOff-diagonal

SVD

𝑁𝐿 =1

2πœ‹π‘– 𝐿

π‘‘π‘˜π‘™π‘‡π‘Ÿ[π‘„π‘˜

β€ πœ•π‘˜π‘™π‘„π‘˜], π‘„π‘˜: unitary.

A. P. Schnyder, P. M. R. Brydon, and C. Timm. Phys Rev B 85.2 (2012): 024522.